光纤通信发展

合集下载

光纤发展历程

光纤发展历程

光纤发展历程随着科技的不断进步和人们对信息传输速度的不断追求,光纤作为一种高速、大容量、低损耗的传输介质,逐渐成为信息通信领域的主要选择。

下面将从光纤的发展历程出发,详细介绍光纤的发展过程。

1. 光纤的起源光纤的起源可以追溯到19世纪,但真正的光纤通信技术始于20世纪60年代。

当时,发明家Narinder Singh Kapany首次提出了光纤的概念,并成功实现了光信号的传输。

这标志着光纤通信技术的诞生。

2. 单模光纤的诞生1966年,著名物理学家Charles Kao在英国提出了用玻璃制成光纤的概念,并预言了光纤的潜力。

他的研究表明,纯净的玻璃可以用于传输光信号,并且光的损耗可以得到有效控制。

这一发现奠定了光纤通信技术的基础。

3. 多模光纤的发展1969年,美国贝尔实验室的Robert Maurer、Donald Keck和Peter Schultz成功制备出了第一根多模光纤。

多模光纤的核心直径较大,可以容纳多个光信号同时传输,因此具有较大的带宽。

这一突破使得光纤通信技术得以实际应用,开启了光纤通信的时代。

4. 单模光纤的进一步发展随着对通信速度和传输距离要求的不断提高,单模光纤逐渐取代了多模光纤成为主流。

单模光纤的核心直径较小,只能容纳单个光信号传输,因此具有更低的色散和损耗,可以实现更高的传输速率和更远的传输距离。

5. 光纤通信的商业化应用20世纪70年代末,光纤通信技术开始商业化应用。

1977年,美国贝尔实验室率先建立了光纤通信网络,用于电话和数据传输。

之后,光纤通信技术迅速发展,应用于全球范围内的长途电话传输、互联网和有线电视等领域。

6. 光纤通信的进一步发展随着科技的不断进步,光纤通信技术也在不断创新和发展。

1988年,美国科学家发明了光纤放大器,增强了光信号的传输能力。

1992年,全光网络技术实现了全光通信的梦想,使光纤通信的传输速率达到了Gb/s级别。

7. 光纤通信的现状和未来光纤通信已经成为主流的通信技术,被广泛应用于全球范围内的通信网络。

光纤通信技术发展历程及趋势

光纤通信技术发展历程及趋势

光纤通信技术发展历程及趋势光纤通信技术是二十世纪末开始普及的通信技术,其独特的优势和快速的发展速度,使得它成为了现代社会最重要的通信技术之一。

本文将会阐述光纤通信技术的发展历程,并且对未来的趋势进行探讨。

一、光纤通信技术的发展历程1960年代,光纤通信技术的概念首次被提出。

但是,由于当时无法制造出高质量的光纤,这项技术一直处于实验室阶段。

直到20世纪70年代,美国贝尔实验室首次成功制造出了质量优良的光纤,使得光纤通信技术才开始出现了真正的应用。

比较典型的是,1977年美国AT&T公司在美国第一次开通了一条光纤通信线路,同时也标志着光纤通信技术进入了商业化运营的阶段。

20世纪80年代,光纤通信技术迅速发展。

国外厂商加强了对光纤技术的研究和开发,并成立了多个光纤通信领域的国际标准组织,比如ITU和FSAN等。

国内也于1984年开始进入光纤通信技术的领域,并发起了“863计划”,同时成立了多家研究机构和起步公司,加快了国内的光纤通信技术的发展。

20世纪90年代,在无线通信和传统有线通信技术的双重推动下,光纤通信技术得到了更广泛的应用。

比如,在网络终端之间的传输和银行间仪表的交换等领域,光纤通信技术的应用得到了广泛的推广。

此外,同时成立的一些国际合作组织,如CORBA、WAP等,也为光纤通信技术的发展提供了更加优质的平台。

二、光纤通信技术的现状与趋势目前,光纤通信技术已经成为现代化电信网络的基石,且持续不断地得到进一步的扩展和升级。

因此,我们现在需要了解的是光纤通信技术未来的趋势和现状。

1. 高速化和可靠化对于当前的光纤通信技术来说,高速化和可靠化是最重要的趋势。

从20世纪90年代以来,光纤通信技术经过了多次升级和更新,使得光纤传输速度提高了许多倍。

未来,光纤通信技术还将进一步提高传输速度和可靠性,以满足不断增长的通信需求。

2. 光纤无源器件的发展光纤无源器件是光纤通信技术中的关键部件,包括了二分束器、可控式衰减器、晶格光纤等等。

中国光纤通信的发展历程

中国光纤通信的发展历程

中国光纤通信的发展历程光纤通信作为现代通信技术的重要组成部分,已经在中国取得了长足的发展。

下面将从三个阶段来介绍中国光纤通信的发展历程。

一、起步阶段(1970年代-1980年代)中国光纤通信的起步可以追溯到上世纪70年代。

当时,由于国际形势复杂,中国面临着对外通信受限的困境。

为了摆脱这一局面,中国开始研究光纤通信技术,并在1974年成功研制出了最早的光纤传输系统。

这标志着中国光纤通信技术的起步阶段。

在1980年代,中国光纤通信技术得到了进一步发展。

1987年,中国成功研制出国产化光纤预制棒,实现了光纤通信技术的本土化。

同时,中国也开始建设光纤通信网络,实现了国内光纤通信的初步覆盖。

这一阶段的发展为后续的高速、大容量光纤通信网络的建设打下了坚实的基础。

二、快速发展阶段(1990年代-2000年代)进入1990年代,中国光纤通信迎来了快速发展的时期。

1992年,中国光纤通信网络迎来了第一次大规模建设的高潮,国内第一条全光纤通信干线投入使用。

这标志着中国光纤通信网络开始进入大规模商用阶段。

在2000年代,中国光纤通信网络得到了进一步的完善和扩展。

2001年,中国首次实现了全国光纤通信网络的覆盖,全面推进了信息高速公路建设。

光纤通信技术在中国的应用越来越广泛,不仅在城市中得到普及,而且逐渐延伸至农村地区。

中国光纤通信网络的建设为信息化社会的发展提供了坚实的基础。

三、创新发展阶段(2010年代至今)进入21世纪,中国光纤通信进入了创新发展的阶段。

2013年,中国成功研制出世界上第一根光纤光子晶体光缆,实现了光纤通信技术的重大突破。

光子晶体光缆具有更高的传输速率和更大的传输容量,为中国光纤通信技术的发展带来了新的机遇。

在2010年代,中国光纤通信技术得到了广泛应用和推广。

光纤通信网络不仅在城市中得到普及,而且逐渐延伸至乡村和偏远地区。

同时,中国积极推动光纤通信技术与其他领域的融合,如物联网、云计算等,进一步拓展了光纤通信技术的应用领域。

光纤通信的发展现状和未来

光纤通信的发展现状和未来

光纤通信的发展现状和未来1. 引言1.1 光纤通信的发展现状和未来光纤通信作为现代通信领域的重要技术,已经在全球范围内得到广泛应用。

随着信息社会的快速发展,光纤通信技术也在不断创新和进步,展现出巨大的发展潜力。

本文将对光纤通信的发展现状和未来进行深入探讨。

光纤通信技术的历史可以追溯到上个世纪,随着光纤通信技术的不断完善和发展,其传输效率和传输距离也得到了极大提升。

光纤通信的优势和特点在于其大带宽、低延迟、抗干扰等特性,使其成为当前通信领域的主流技术之一。

光纤通信的应用领域涵盖了电信、互联网、广播电视等多个领域,为信息传输提供了高效稳定的基础。

光纤通信的发展趋势表现为技术不断创新、传输速率不断提高、成本不断降低等方面。

未来光纤通信的发展方向将主要集中在提高传输速率、扩大传输容量、增强网络智能化等方面。

光纤通信的前景看好,技术创新将是推动其发展的重要动力,未来光纤通信的发展是不可逆转的趋势,必将为人类社会的发展带来更多的便利和可能性。

2. 正文2.1 光纤通信技术的历史光纤通信技术的历史可以追溯到1960年代初,当时美国贝尔实验室的研究人员首次提出利用光纤传输信号的概念。

随着技术的不断进步,20世纪70年代初,光纤通信技术开始被商业化应用。

第一条商用光纤通信线路于1977年在美国开始运营,标志着光纤通信技术正式进入商用阶段。

在接下来的几十年里,光纤通信技术经历了快速发展。

1980年代中期,光纤通信开始被广泛应用于长途通信领域,取代了传统的铜线传输方式,大大提高了通信速度和质量。

1990年代初,光纤通信技术进一步发展,引入了光放大器和波分复用技术,使得光纤网络的容量和传输速度大幅提升。

随着信息社会的到来,光纤通信技术在网络通信、数据传输、广播电视等领域得到广泛应用。

今天,光纤通信已经成为现代通信网络的主要基础设施,为人们带来了更加高效和便捷的通信体验。

未来,随着5G、物联网等新技术的发展,光纤通信技术将继续发挥重要作用,推动通信技术的进步和应用的拓展。

光纤通信的发展历程

光纤通信的发展历程

光纤通信的发展历程光纤通信是指利用光纤作为传输媒介来传送信息的通信方式。

它相比传统的电信传输方式具有更高的传输速度、更大的传输容量和更低的传输损耗,因而在信息时代得以广泛应用。

下面将对光纤通信的发展历程进行简要概述。

20世纪60年代至70年代初,光纤通信技术还处于研究和实验阶段。

1966年,美国的高尔(Charles Kao)和哈罗歇(George Hockham)首次提出了用光纤作为信息传输媒介的概念,并对光纤的传输特性进行了分析。

然而,当时光纤的损耗率非常高,传输距离有限,无法实现实际应用。

70年代末至80年代,光纤通信技术取得了突破性进展。

1970年,美国的万怀远发明了用波导方法包裹光纤的技术,使得光纤的传输损耗率大幅降低。

此外,研究人员还采用了掺杂混合氧化物使光纤内部的损耗降低,同时也使传输带宽提高。

这些技术突破将光纤通信从实验室推向了实际应用阶段。

80年代,随着单模光纤的发展,光纤通信的有效传输距离显著增加,同时大容量传输也成为可能。

此时,光纤通信开始逐渐取代传统的电信传输方式。

1988年,美国波士顿与英国伦敦之间建成了第一条跨洋光缆,使得全球范围内的光纤通信成为现实。

90年代,光纤通信进一步发展。

1992年,美国贝尔实验室研制成功了DWDM(密集波分复用)技术,使得在一根光纤上能够同时传输多个不同的光信号,实现了更大的传输容量。

随着互联网的普及,光纤通信迅速成为信息交流的重要基础设施。

21世纪以来,随着科技的进步,光纤通信技术不断发展。

光纤通信的传输速度进一步提高,传输容量也不断增大。

2009年,日本NTT成功实现了每秒度量级的10万公里传输速度,创造了世界纪录。

现如今,光纤通信已成为人们生活中不可或缺的一部分,广泛应用于电话、电视和互联网等各个领域。

在未来,光纤通信技术的发展前景依然广阔。

如今的研究重点主要包括提高光纤传输速率、减小传输损耗、降低光纤制造成本等方面。

同时,光纤通信技术也在无线通信领域得到了广泛应用,如光纤无线通信、光纤毫米波通信等,为人们提供了更快、更稳定的通信服务。

光纤通信技术发展趋势和新技术突破

光纤通信技术发展趋势和新技术突破

光纤通信技术发展趋势和新技术突破光纤通信技术作为信息传输的重要方式,已经在现代化社会中扮演着不可或缺的角色。

随着云计算、物联网和5G等新兴技术的推动,光纤通信技术也在不断发展和突破。

本文将从发展趋势和新技术突破两个方面进行探讨。

一、光纤通信技术发展趋势1. 高速和大容量:随着人们对于高速网络的需求日益增长,光纤通信技术也要求能以更高的速度进行数据传输。

目前,光纤通信技术已经实现了T级别的传输速率,未来将向更高的速率发展。

同时,随着信息量的不断增加,光纤通信技术也要求提供更大的容量,以满足数据传输需求。

2. 低延迟:随着云计算、物联网和实时应用等的不断普及,对网络的低延迟要求越来越高。

光纤通信技术的传输速度虽然已经非常快,但仍然存在一定的传输延迟。

为了满足低延迟的需求,光纤通信技术需要进一步提升传输速度和减少传输延迟,在保证高速和大容量的同时,提供更低的延迟。

3. 网络安全:随着网络攻击日益猖獗,网络安全已经成为一个全球性的重要议题。

光纤通信技术作为信息传输的基础,需要更加注重网络安全。

未来,光纤通信技术需要进一步加强数据的加密和安全传输,以确保用户的数据不被未授权访问和篡改。

4. 绿色环保:光纤通信技术相较于传统的电信传输方式更加环保。

光通信不需要大量的电源来支持传输信号,同时也不会产生电磁辐射。

未来,光纤通信技术需要进一步提高能效,减少能耗,以推动绿色环保的发展。

二、新技术突破1. 高密度纤芯:高密度纤芯技术是目前光纤通信技术的一个重要突破。

传统的单模光纤通常具有一个纤芯,而高密度纤芯技术可以在一个纤芯中传输多个模式的光信号,从而提高光纤的传输容量。

高密度纤芯技术利用了光信号的多个自由度,可以显著提高数据传输速率和容量。

2. 弯曲光纤:传统的光纤在弯曲时会有较大的光功率损耗,限制了其应用范围。

然而,新的弯曲光纤技术可以在光纤弯曲的情况下保持较低的光功率损耗,拓展了光纤在现实世界中的应用空间。

弯曲光纤技术的突破将有助于在复杂环境中部署光纤网络,并提高光纤通信技术的适用性。

简述光纤通信的发展

简述光纤通信的发展

简述光纤通信的发展光纤通信是一种通过光信号传输信息的通信技术,其发展经历了多个阶段。

20世纪60年代,光纤通信的概念首次提出。

当时,光纤通信只能传输非常低的带宽,距离也受到限制。

然而,研究人员意识到光纤具备传输信息的巨大潜力,并开始尝试改进和优化技术。

70年代至80年代初,光纤通信的发展取得了重大突破。

研究人员发现,将纤芯材料从铜改为玻璃可以显著提高光纤的传输性能。

此外,光纤信号的传输距离也得到了大幅增加。

随着技术的进步,光纤通信的传输速率逐渐提高,千兆比特传输速度的实现让人们开始看到了光纤通信的巨大潜力。

90年代至今,光纤通信得到了广泛应用和发展。

随着技术革新和新的突破,光纤通信已经成为现代通信网络的主流技术,并逐渐取代了传统的铜缆通信。

光纤通信的传输速度不断提高,目前已经实现了数十甚至上百兆比特每秒的传输速率,满足了现代社会对于高速数据传输的需求。

光纤通信的发展不仅可以归功于技术的进步,也得益于市场需求的推动。

随着互联网的普及和发展,人们对于网络连接的需求不断增加,高速传输成为了一个迫切的需求。

光纤通信的优势是其传输速度快、抗干扰性好、带宽大,满足了这一需求,并逐渐得到了广泛应用。

光纤通信的发展不仅改变了人们的生活方式,也促进了社会经济的发展。

光纤通信技术的应用推动了信息产业的发展,加速了数据在各个领域的传输和处理。

例如,在医疗领域,光纤通信技术的应用使得医院之间可以进行实时的远程会诊,提高了医疗服务的质量。

在交通领域,光纤通信技术的应用实现了智能交通系统和车辆自动驾驶等创新服务。

然而,光纤通信仍然面临着一些挑战和限制。

光纤通信的建设和维护成本较高,光纤网络的覆盖率仍有待提高。

此外,光纤通信的光纤质量、信号传输的可靠性等方面也需要不断改进和优化。

总体而言,光纤通信作为现代通信技术的核心,正在快速发展并广泛应用于各个领域。

未来,随着技术的不断创新和突破,光纤通信有望继续提升速度、增加带宽,并实现更广泛的应用。

光纤通信的发展趋势及应用

光纤通信的发展趋势及应用

光纤通信的发展趋势及应用随着信息技术的不断发展,光纤通信已经逐渐成为了现代通信的主流方式。

在未来,光纤通信的发展趋势将会更加明显,应用也会更为广泛。

一、发展趋势1.高速化: 在网络应用日益增长的时代,人们对于通信传输速率的要求越来越高,光纤通信的发展将不断迎来更高的速率挑战,比如400Gbps、1 Tbps标准的制定、应用和推广。

2.全光网的建设: 在现代通信中,全光网已经成为了一个不可逆转的趋势。

在未来,光纤通信将推进网络的全面光化,建设“全光网”,以满足高速、高可靠性、低时延等特点的通信。

3.绿色环保: 光纤通信不需要使用电磁波,不会污染环境,使用光信号传输也不会产生电磁辐射,因此光纤通信被认为是一种优化的绿色通信方式。

4. 保证网络安全: 光纤通信的传输过程采用光信号,通信加密方式可最大程度保护数据的安全性,轻松满足全球互联网安全防护标准。

二、应用1.电信: 光纤通信的应用在电信通信领域已经十分广泛,随着4G网络和5G网络的发展,对带宽和速度的需求越来越高,进一步推动着光纤通信的发展。

2.工业: 由于光纤通信具有传输距离远、速率高、干扰小、噪声小等优势,因此在工业自动化及控制系统方面应用日益增多,如可变速驱动、温度传输及模块化组装系统等。

3医疗卫生: 光纤通信技术在医疗卫生中得到了广泛应用。

一方面,可以将远程医疗、远程诊断和手术机器人等技术应用于医疗领域。

另一方面,利用光纤传感技术可以实现体内和体外传感及生理参数监测。

4.交通: 光纤通信可以实现路灯智能化管理、路面监控、车辆远程控制、调度等,促进交通常态化、智能化发展。

光纤通信可以实现对公共交通系统网络的灵活调配,保证公共交通系统数据的安全、快速、准确传输。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要]对光纤通信技术领域的主要发展热点作一简述与展望,主要有超高速传输系统、超大容量波分复用系统、光联网技术、新一代的光纤、IP over SDH与IP overOptical以及光接入网。

关键词:光纤超高速传输超大容量波分复用光联网光纤通信的诞生与发展是电信史上的一次重要革命。

近几年来,随着技术的进步,电信管理体制的改革以及电信市场的逐步全面开放,光纤通信的发展又一次呈现了蓬勃发展的新局面,本文旨在对光纤通信领域的主要发展热点作一简述与展望。

1 向超高速系统的发展从过去2O多年的电信发展史看,网络容量的需求和传输速率的提高一直是一对主要矛盾。

传统光纤通信的发展始终按照电的时分复用(TDM)方式进行,每当传输速率提高4倍,传输每比特的成本大约下降30%~40%;因而高比特率系统的经济效益大致按指数规律增长,这就是为什么光纤通信系统的传输速率在过去20多年来一直在持续增加的根本原因。

目前商用系统已从45Mbps增加到10Gbps,其速率在20年时间里增加了20O0倍,比同期微电子技术的集成度增加速度还快得多。

高速系统的出现不仅增加了业务传输容量,而且也为各种各样的新业务,特别是宽带业务和多媒体提供了实现的可能。

目前10Gbps系统已开始大批量装备网络,全世界安装的终端和中继器已超过5000个,主要在北美,在欧洲、日本和澳大利亚也已开始大量应用。

我国也将在近期开始现场试验。

需要注意的是,10Gbps系统对于光缆极化模色散比较敏感,而已经敷设的光缆并不一定都能满足开通和使用10Gbps系统的要求,需要实际测试,验证合格后才能安装开通。

在理论上,上述基于时分复用的高速系统的速率还有望进一步提高,例如在实验室传输速率已能达到4OGbps,采用色度色散和极化模色散补偿以及伪三进制(即双二进制)编码后已能传输100km。

然而,采用电的时分复用来提高传输容量的作法已经接近硅和镓砷技术的极限,没有太多潜力可挖了,此外,电的40Gbps系统在性能价格比及在实用中是否能成功还是个未知因素,因而更现实的出路是转向光的复用方式。

光复用方式有很多种,但目前只有波分复用(WDM)方式进入大规模商用阶段,而其它方式尚处于试验研究阶段。

2 向超大容量WDM系统的演进如前所述,采用电的时分复用系统的扩容潜力已尽,然而光纤的200nm可用带宽资源仅仅利用了不到1%,99%的资源尚待发掘。

如果将多个发送波长适当错开的光源信号同时在一极光纤上传送,则可大大增加光纤的信息传输容量,这就是波分复用(WDM)的基本思路。

采用波分复用系统的主要好处是:(1)可以充分利用光纤的巨大带宽资源,使容量可以迅速扩大几倍至上百倍;(2)在大容量长途传输时可以节约大量光纤和再生器,从而大大降低了传输成本;(3)与信号速率及电调制方式无关,是引入宽带新业务的方便手段;(4)利用WDM网络实现网络交换和恢复可望实现未来透明的、具有高度生存性的光联网。

鉴于上述应用的巨大好处及近几年来技术上的重大突破和市场的驱动,波分复用系统发展十分迅速。

如果认为1995年是起飞年的话,其全球销售额仅仅为1亿美元,而2000年预计可超过40亿美元,2005年可达120亿美元,发展趋势之快令人惊讶。

目前全球实际敷设的WDM系统已超过3000个,而实用化系统的最大容量已达320Gbps(2*16*10Gbps),美国朗讯公司已宣布将推出80个波长的WDM系统,其总容量可达200Gbps(80*2.5Gbps)或400Gbps(40*10Gbps)。

实验室的最高水平则已达到2.6Tbps(13*20Gbps)。

预计不久实用化系统的容量即可达到1Tbps的水平。

可以认为近2年来超大容量密集波分复用系统的发展是光纤通信发展史上的又一里程碑。

不仅彻底开发了无穷无尽的光传输键路的容量,而且也成为IP业务爆炸式发展的催化剂和下一代光传送网灵活光节点的基础。

3 实现光联网——战略大方向上述实用化的波分复用系统技术尽管具有巨大的传输容量,但基本上是以点到点通信为基础的系统,其灵活性和可靠性还不够理想。

如果在光路上也能实现类似SDH在电路上的分插功能和交叉连接功能的话,无疑将增加新一层的威力。

根据这一基本思路,光的分插复用器(OADM)和光的交叉连接设备(OXC)均已在实验室研制成功,前者已投入商用。

实现光联网的基本目的是:(1)实现超大容量光网络;(2)实现网络扩展性,允许网络的节点数和业务量的不断增长;(3)实现网络可重构性,达到灵活重组网络的目的;(4)实现网络的透明性,允许互连任何系统和不同制式的信号;(5)实现快速网络恢复,恢复时间可达100ms。

鉴于光联网具有上述潜在的巨大优势,发达国家投入了大量的人力、物力和财力进行预研,特别是美国国防部预研局(DARPA)资助了一系列光联网项目,如以Be11core为主开发的“光网技术合作计划(ONTC)”,以朗讯公司为主开发的“全光通信网”预研计划”,“多波长光网络(MONET)”和“国家透明光网络(NTON)”等。

在欧洲和日本,也分别有类似的光联网项目在进行。

综上所述光联网已经成为继SDH电联网以后的又一新的光通信发展高潮。

其标准化工作将于2000年基本完成,其设备的商用化时间也大约在2000年左右。

建设一个最大透明的。

高度灵活的和超大容量的国家骨干光网络不仅可以为未来的国家信息基础设施(NII) 奠定一个坚实的物理基础,而且也对我国下一世纪的信息产业和国民经济的腾飞以及国家的安全有极其重要的战略意义。

4 新一代的光纤近几年来随着IP业务量的爆炸式增长,电信网正开始向下一代可持续发展的方向发展,而构筑具有巨大传输容量的光纤基础设施是下一代网络的物理基础。

传统的G.652单模光纤在适应上述超高速长距离传送网络的发展需要方面已暴露出力不从心的态势,开发新型光纤已成为开发下一代网络基础设施的重要组成部分。

目前,为了适应干线网和城域网的不同发展需要,已出现了两种不同的新型光纤,即非零色散光纤(G.655光纤)和无水吸收峰光纤(全波光纤)。

4.1 新一代的非零色散光纤非零色散光纤(G.655光纤)的基本设计思想是在1550窗口工作波长区具有合理的较低色散,足以支持10Gbps的长距离传输而无需色散补偿,从而节省了色散补偿器及其附加光放大器的成本;同时,其色散值又保持非零特性,具有一起码的最小数值(如2ps/(nm.km)以上),足以压制四波混合和交叉相位调制等非线性影响,适宜开通具有足够多波长的DWDM系统,同时满足TDM和DWDM两种发展方向的需要。

为了达到上述目的,可以将零色散点移向短波长侧(通常1510~1520nm范围)或长波长侧(157nm附近),使之在1550nm附近的工作波长区呈现一定大小的色散值以满足上述要求。

典型G.655光纤在1550nm波长区的色散值为G.652光纤的1/6~1/7,因此色散补偿距离也大致为G.652光纤的6~7倍,色散补偿成本(包括光放大器,色散补偿器和安装调试)远低于G.652光纤。

4.2 全波光纤与长途网相比,城域网面临更加复杂多变的业务环境,要直接支持大用户,因而需要频繁的业务量疏导和带宽管理能力。

但其传输距离却很短,通常只有50~80km,因而很少应用光纤放大器,光纤色散也不是问题。

显然,在这样的应用环境下,怎样才能最经济有效地使业务量上下光纤成为网络设计至关重要的因素。

采用具有数百个复用波长的高密集波分复用技术将是一项很有前途的解决方案。

此时,可以将各种不同速率的业务量分配给不同的波长,在光路上进行业务量的选路和分插。

在这类应用中,开发具有尽可能宽的可用波段的光纤成为关键。

目前影响可用波段的主要因素是1385nm附近的水吸收峰,因而若能设法消除这一水峰,则光纤的可用频谱可望大大扩展。

全波光纤就是在这种形势下诞生的。

全波光纤采用了一种全新的生产工艺,几乎可以完全消除由水峰引起的衰减。

除了没有水峰以外,全波光纤与普通的标准G.652匹配包层光纤一样。

然而,由于没有了水峰,光纤可以开放第5个低损窗口,从而带来一系列好处:(1)可用波长范围增加100nm,使光纤的全部可用波长范围从大约200nm增加到300nm,可复用的波长数大大增加;(2)由于上述波长范围内,光纤的色散仅为155Onm波长区的一半,因而,容易实现高比特率长距离传输;(3)可以分配不同的业务给最适合这种业务的波长传输,改进网络管理;(4)当可用波长范围大大扩展后,允许使用波长间隔较宽、波长精度和稳定度要求较低的光源、合波器、分波器和其它元件,使元器件特别是无源器件的成本大幅度下降,这就降低了整个系统的成本。

5 IP over SDH与IP over Optical以IP业务为主的数据业务是当前世界信息业发展的主要推动力,因而能否有效地支持IP 业务已成为新技术能否有长远技术寿命的标志。

目前,ATM和SDH均能支持IP,分别称为IP over ATM和IP over SDH两者各有千秋。

IP over ATM利用ATM的速度快、颗粒细、多业务支持能力的优点以及IP的简单、灵活、易扩充和统一性的特点,可以达到优势互补的目的,不足之处是网络体系结构复杂、传输效率低、开销损失大(达25%~30%)。

而SDH与IP的结合恰好能弥补上述IP over ATM的弱点。

其基本思路是将IP数据包通过点到点协议(PPP)直接映射到SDH帧,省掉了中间复杂的ATM层。

具体作法是先把IP数据包封装进PPP分组,然后利用HDLC组帧,再将字节同步映射进SDH的VC包封中,最后再加上相应SDH开销置入STM-N帧中即可。

IP over SDH在本质上保留了因特网作为IP网的无连接特征,形成统一的平面网,简化了网络体系结构,提高了传输效率,降低了成本,易于IP组插和兼容的不同技术体系实现网间互联。

最主要优点是可以省掉ATM方式所不可缺少的信头开销和IP over ATM封装和分段组装功能,使通透量增加25%~30%,这对于成本很高的广域网而言是十分珍贵的。

缺点是网络容量和拥塞控制能力差,大规模网络路由表太复杂,只有业务分级,尚无优先级业务质量,对高质量业务难以确保质量,尚不适于多业务平台,是以运载IP业务为主的网络理想方案。

随着千兆比高速路由器的商用化,其发展势头很强。

采用这种技术的关键是千兆比高速路由器,这方面近来已有突破性进展,如美国Cisco公司推出的12000系列千兆比特交换路由器(GSR),可在千兆比特速率上实现因特网业务选路,并具有5~60Gbps的多带宽交换能力,提供灵活的拥塞管理、组播和QOS功能,其骨干网速率可以高达2.5Gbps,将来能升级至10Gbps。

这类新型高速路由器的端口密度和端口费用已可与ATM相比,转发分组延时也已降至几十微秒量级,不再是问题。

相关文档
最新文档