实验二 振幅调制器

合集下载

实验报告《振幅解调器》

实验报告《振幅解调器》

深 圳 大 学 实 验 报 告实验课程名称:通信电路实验实验项目名称:振幅解调器振幅解调器一,实验目的与要求:(1)实验目的:1.熟悉电子元器件和高频电子线路实验系统。

2.掌握用包络检波器实现AM波解调的方法。

3.理解包络检波器只能解调m<=100%的,而不能解调m>100%的AM波。

4. 掌握用MC1496模拟乘法器组成的同步检波器来实现AM波和DSB-SC波的解调方法。

(2)实验内容:1.用示波器观察包络检波器解调AM波,DSB-SC波时的性能。

2.用示波器观察同步检波器解调AM波,DSB-SC波时的性能。

3.用示波器观察包络检波器的滤波电容过大对AM波解调的影响。

(3)实验器材实验版3,函数发生器,双踪示波器,万用表,三通连接器二,方法、步骤:(1)实验原理:①包络检波二极管包络检波器适合于解调信号电平较大(大信号,峰峰值1.5V以上)的AM波。

本实验电路包括二极管的单向导电性使得电路的充放电时间常数不同来实现检波。

电路图如下:乙=RC时间常数的选择尤为重要。

②同步检波:MC1496集成电路图如下:同步检波,又称相干检波,利用与已调幅波的载波同步的一个恢复载波与已调波相乘,再用低通滤波器虑除高频分量,从而解调得调制信号。

如图,恢复载波先加到IN1上,已调幅波加到IN2上。

相乘之后经过低通滤波器过滤高频分量,然后在输出OUT端提取调制信号。

三,实验过程及内容:1.实验准备:接好实验电路,放好实验面板,打开开关,开始实验。

2.二极管包络检波器:①如右图,按照实验指导书的做法。

调好输入信号。

首先获得AM波。

②AM波的包络检波器解调:在实验中我们得到信号图像如下:实验分析:如上图,波形的峰峰值为55.5mV,比原来输入的60mV值有所减小。

这可能是是因为电路过程中一些误差和损耗造成的。

频率为1.01KHz与原调制信号一样。

这时候可以很直观地看到,原来的调制信号的包络已经很好地被解调出来。

幅度调制及解调实验二

幅度调制及解调实验二

实验二 幅度调制及解调实验一、实验目的 1、理解幅度调制与检波的原理;2、掌握用集成乘法器构成调幅与检波电路的方法。

二、实验原理实验电路图如图2-2所示调幅就是用低频调制信号去控制高频载波信号的幅度,使高频载波信号的振幅按调制信号变化。

而检波则是从调幅波中取出低频信号。

振幅调制信号按其不同频谱结构分为普通调幅(AM )信号,抑制载波的双边带调制(DSB )信号,单边带调制(SSB )信号。

此实验主要涉及普通调幅(AM )及检波原理。

三、实验设备1、测控电路(二)实验挂箱2、函数信号发生器3、虚拟示波器四、实验内容及步骤 1、“测控电路二”实验挂箱接入12V ±直流电源;2.调幅波的观察(1)把“U12信号产生单元”电源开关拨到“开”方向,调节此单元的电位器(电位器W1调节信号幅度,电位器W2调节信号频率),使之输出频率为Z 3KH .1、幅值为P P 1V -的正弦波信号,接入“U1调幅单元”的调制波输入端;(2)调节实验屏上的函数信号发生器,使之输出频率为Z 100KH 、幅值为P P 4.0V -的正弦波信号,接入“U1调幅单元”的载波输入端。

0tUs图2-1 普通调幅(AM )波波形 (3)“U1调幅单元”的输出端接入示波器CH1,调节“U1调幅单元”的电位器W ,在示波器上观测到如图2-1所示的普通调幅(AM )波。

3.解调波的观察(1)在保持调幅波的基础上,将“U1调幅单元”的输出端接入“U2解调单元”的调幅波输入端,把输入“U1调幅单元”的载波信号接入“U2解调单元” 载波输入端; (2)“U2解调单元”的输出端接入虚拟示波器的CH2,调节“U2解调单元“的电位器W1,观测到解调信号。

五、实验注意事项1、实验挂箱中的直流电源正负极切忌接反,否则就会烧坏实验箱上的集成芯片。

2、为了得到更好的实验效果,实验时,外加信号的幅度不宜过大,请按照“实验内容及步骤”说明部分做实验。

实验报告-振幅调制器

实验报告-振幅调制器

深 圳 大 学 实 验 报 告实验课程名称:通信电路实验实验项目名称:振幅调制器振幅调制器一,实验目的与要求:1.熟悉电子元器件和高频电子线路实验系统。

2.掌握用MC1496来实现AM和DSB-SC的方法,并研究已调波与调制信号,载波之间的关系。

3.掌握在示波器上测量调幅系数的方法。

4.通过实验中的波形变换,学会分析实验现象。

二,方法、步骤:1.实验电路图:如图:W1可以调节1.4端之间的平衡,而W2用来调节8.10端之间的平衡。

另外在1.4端可以产生附加直流电压。

所以当IN2端加入调制信号就可以产生AM波。

而BG1为射极跟随器,提高调制器的负载能力。

2.实验开始,按照实验报告要求连接好电路,用函数发生器作为调制信号源,用AS1634函数信号发生器作为载波源。

接通电源,开始实验。

3.静态测量:(1),(2)IN1 和IN2的输入失调电压调节:分别调整W1,W2 使两个输入端单独输入是输出波形为0!★实验分析:这是因为对于相乘器,V0=kVcV (V0,Vc,V分别为输出,IN1,IN2端电压)。

因此当v=0时,即使Vc不等于0,V0都会等于0。

可以调节W1达到平衡。

W2同理。

(3)直流调制特性测量:实验数据记录如下:其中Vcp_p=20mVVAbv)-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4V0(v)0.586 0.441 0.287 0.146 0 0.147 0.291 0.428 0.580 K(1/v)-73.25 -73.5 -71.75 -73 0 73.5 72.7572.571.33由公式V0=K×VAB×Vcp-p 可以计算出k值。

如表。

作出直流调制曲线如下:4.DSB-SC波形观察。

★实验分析:将调制器的输入载波波形与输出DSB-SC波形比较,可发现:再调制信号的正半周期,两者相同;在调制信号的负半周期,两者也相同。

但是此时信号的包络已经不能再反映调制信号波形的变化,而且在调制信号波形过零处已调波相位有180°的突变。

振幅调制器实验报告

振幅调制器实验报告

振幅调制器(利用乘法器)一、实验目的1.掌握用集成模拟乘法器实现全载波调幅和抑制载波双边带调幅的方法与过程,并研究已调波与二输入信号的关系。

2.掌握测量调幅系数的方法。

3.通过实验中波形的变换,学会分析实验现象。

二、实验主要仪器1.双踪示波器。

2.高频信号发生器。

3.万用表。

4.实验板G3三、预习要求1.预习幅度调制器有关知识。

2.认真阅读实验指示书,了解实验原理及内容,分析实验电路中用1496乘法器调制的工作原理,并分析计算各引出脚的直流电压。

3.分析全载波调幅及抑制载波调幅信号特点,并画出其频谱图图5-1 1496芯片内部电路图四、实验原理幅度调制就是载波的振幅受调制信号的控制作周期性的变化。

变化的周期与调制信号周期相同。

即振幅变化与调制信号的振幅成正比。

通常称高频信号为载波信号,低频信号为调制信号,调幅器即为产生调幅信号的装置。

实验仪器采用集成模拟乘法器1496来构成调幅器,图5-1为1496芯片内部电路图,它1681214+VCC载波输入调制输入载波输入调制输入-VccIc Ic是一个四象限模拟乘法器的基本电路,电路采用了两组差动由V 1-V 4组成,以反极性方式相连接,而且两组差分对的恒流源又组成一对差分电路,即V 5、V 6、,因此恒流源的控制电压可正可负,以此实现了四象限工作。

D 、V 7、V 8为差动放大器,V 5、V 6的恒流源。

进行调幅时,载波信号加在V 1-V 4的输入端,即引脚的⑧、⑩之间,调制信号加在差动放大器V 5、V 6的输入端,即引脚的①、④之间,②、③脚外接1K Ω电阻,以扩大调制信号动态范围,已调制信号取自双差动放大的两集电极(即引出脚⑹、⑿之间)输出。

用1496集成电路构成的调幅器电路图如图5-2所示,图中Rp1用来调节引出脚①、④之间的平衡,Rp2用来调节⑧、⑩脚之间的平衡,三极管V 为射频跟随器,以提高调幅器带负载的能力。

五、实验内容及步骤实验电路图见5-2图5-2 1496构成的调幅器1.直流调制特性的测量(1)调Rp2电位器使载波输入端平衡,在调制信号输入端IN 2加峰值为100mV ,频率为1KHz 的正弦信号,调节Rp2电位器使输出端信号最小,然后去掉输入信号。

振幅调制器与解调器的设计

振幅调制器与解调器的设计
调节电位器RP1,获得调制度分别为30%,100%及>100% 的调幅波,依次加至AM解调器UAM-IN的输入端,分别记录 解调输出波形,并与调制信号相比。
Ma=30%
调制信号峰峰值为200mv
解调信号峰峰值为73mv 输出信号波形
Ma=100%
调制信号峰峰值为200mv
解调信号峰峰值为66mv 输出信号波形
峰值为564mv 调节RP1,VAB=-0.4V,输出信号波形
峰值为286mv 调节RP1,VAB=-0.2V,输出信号波形
峰值为0mv 调节RP2,VAB=0V,输出信号波形
峰值为266mv 调节RP2,VAB=+0.2V,输出信号波形
峰值为558mv 调节RP2,VAB=+0.4V,输出信号波形
频率为1KHz,峰值为80mv 输出信号波形
频率为1KHz,峰值为100mv 输出信号波形
实验步骤六
将函数波发生器的输出正弦信号加到AM调幅器实验电路板的 调制信号输入IN2端。 示波器的CH1通道接到AM调幅器实验电路板的输出OUT端。 观察输出信号波形,调节RP2电位器使输出信号最小。
输出信号波形
VMIN=19mV
调幅输出信号波形
实验步骤十四
调节RP1改变VAB的值,观察并记录ma =100% 和ma >100% 两种调幅波在零点附近的波形情况。
Ma=100% 调节RP1,ma=100%,调幅输出信号波形
ma>100% 调节RP1, ma>100% ,调幅输出信号波形
三、实现解调全载波信号(AM)
在AM调制器的载波信号输入端IN1加 VC(t)=10Sin2π×105t(mV)信号(已调好),调制信号端 IN2不加信号。

振幅调制 解调实验报告

振幅调制 解调实验报告

振幅调制解调实验报告1. 实验目的本实验旨在通过振幅调制与解调实验,了解振幅调制与解调的原理,掌握振幅调制与解调的基本方法和技巧,以及了解其在通信领域中的应用。

2. 实验器材- 信号发生器- 振幅调制解调实验箱- 示波器- 直流稳压电源- 多用电表- 连接线等实验仪器设备3. 实验原理3.1 振幅调制振幅调制(Amplitude Modulation,AM)是将音频等低频信号通过调制器幅度调制到载波上的一种调制方式。

振幅调制可以分为线性调制与非线性调制两种情况。

3.1.1 线性调制线性调制是指调制器的输出与调制信号的幅度成正比变化。

此时,调制信号的幅度越大,产生的调制波的振幅也越大。

3.1.2 非线性调制非线性调制是指调制器的输出与调制信号的幅度非线性变化。

当调制信号的幅度较小时,调制波的振幅较小;当调制信号的幅度较大时,调制波的振幅反而会变小。

3.2 振幅解调振幅解调是将调幅信号中的信息信号从载波中还原出来的过程。

常用的解调电路有简单的包络检波电路和同步检波电路。

4. 实验步骤4.1 振幅调制1. 按照实验电路图连接电路,将信号发生器的输出接入调制器的调制端,设置合适的频率和幅度。

2. 连接示波器,将示波器的一路接入调制器的调制端,另一路接入调制器的输出端。

3. 打开电源,调节调制幅度、偏置电压、调制频率等参数,观察得到的调制波形。

4.2 振幅解调1. 在调制器输出端使用衰减器将载波的强度减小。

2. 将衰减后的载波接入解调器的输入端,使用示波器观察解调器输出的波形。

3. 根据需求调节解调电路的参数,最终得到解调后的信号。

5. 实验结果与分析在振幅调制实验中,通过调节调制器的参数,我们成功地将信号发生器产生的低频信号调制到载波上,并观察到了所得到的调制波形。

调制幅度、偏置电压和调制频率的调节对于调制波形的形态有一定的影响,通过调节这些参数,我们可以得到不同形态的调制波形。

同时,在振幅解调实验中,我们通过调节解调电路的参数,成功将调幅信号中的信息信号从载波中还原出来。

振幅调制实验报告

振幅调制实验报告

一、实验目的1. 理解振幅调制的基本原理和过程。

2. 掌握使用示波器等仪器测量调幅系数的方法。

3. 通过实验验证振幅调制和解调的基本性能。

4. 增强对高频电子线路实验系统的熟悉程度。

二、实验原理振幅调制(AM)是一种将低频信号(调制信号)加载到高频载波上的技术。

其基本原理是利用调制信号控制高频载波的振幅,使载波的振幅随调制信号的规律变化。

振幅调制分为普通调幅(AM)、抑制载波双边带调幅(DSB-SC)和抑制载波单边带调幅(SSB-SC)三种。

本实验主要研究普通调幅(AM)调制和解调过程。

调制过程包括:1. 调制信号的产生:通过信号发生器产生所需频率和幅度的调制信号。

2. 载波信号的产生:通过信号发生器产生所需频率和幅度的载波信号。

3. 振幅调制:将调制信号与载波信号相乘,得到调幅信号。

解调过程包括:1. 检波:将调幅信号通过二极管检波,得到与调制信号幅度成正比的检波信号。

2. 低通滤波:将检波信号通过低通滤波器,滤除高频分量,得到还原后的调制信号。

三、实验设备1. 信号发生器2. 示波器3. 信号发生器4. 二极管检波器5. 低通滤波器6. 连接线7. 实验模块四、实验步骤1. 调制信号和载波信号的产生:分别设置调制信号和载波信号的频率、幅度等参数。

2. 振幅调制:将调制信号与载波信号相乘,得到调幅信号。

3. 观察调幅信号:使用示波器观察调幅信号的波形,分析调幅系数。

4. 检波:将调幅信号通过二极管检波,得到检波信号。

5. 低通滤波:将检波信号通过低通滤波器,得到还原后的调制信号。

6. 观察还原后的调制信号:使用示波器观察还原后的调制信号,分析调制效果。

五、实验结果与分析1. 调幅系数测量:通过示波器观察调幅信号的波形,可以计算出调幅系数。

调幅系数定义为调制信号幅度与载波信号幅度之比。

2. 调制效果分析:通过观察还原后的调制信号,可以分析调制效果。

如果还原后的调制信号与原始调制信号相似,则说明调制效果良好。

振幅解调器实验报告

振幅解调器实验报告

振幅解调器实验报告振幅解调器实验报告引言:振幅解调器是一种电子设备,用于将调幅信号转换为原始的基带信号。

本实验旨在通过搭建一个简单的振幅解调器电路来验证其工作原理,并探究不同参数对解调效果的影响。

一、实验原理振幅解调器的原理基于调幅信号的特性。

调幅信号是由载波信号和基带信号叠加而成的,通过解调器可以将载波信号分离出来,以获取原始的基带信号。

实现这一过程的关键是使用二极管作为非线性元件,利用其特性进行信号的整流和滤波。

二、实验材料与方法1. 材料:- 信号发生器- 振幅解调器电路板- 示波器- 电阻、电容、二极管等元件2. 方法:1) 将信号发生器的输出端与振幅解调器电路板的输入端相连。

2) 将振幅解调器电路板的输出端与示波器的输入端相连。

3) 调节信号发生器的频率和幅度,观察示波器上的波形变化。

三、实验结果与分析在实验过程中,我们通过调节信号发生器的频率和幅度,观察示波器上的波形变化。

实验结果表明,振幅解调器可以成功将调幅信号解调为基带信号,并且解调效果受到频率和幅度的影响。

1. 频率对解调效果的影响:在实验中,我们分别调节信号发生器的频率为低频、中频和高频,观察示波器上的波形变化。

结果显示,在低频时,解调效果较好,基带信号能够较为准确地还原。

而在中频和高频时,解调效果下降,基带信号出现了失真和畸变。

这是因为在高频情况下,二极管的响应速度较慢,无法完全跟随载波信号的变化,导致解调效果下降。

2. 幅度对解调效果的影响:我们还通过调节信号发生器的幅度,观察示波器上的波形变化。

结果显示,在较小的幅度下,解调效果较好,基带信号能够较为准确地还原。

而在较大的幅度下,解调效果下降,基带信号出现了失真和畸变。

这是因为在较大幅度的情况下,二极管的非线性特性会引起信号的失真,从而影响解调效果。

四、实验总结通过本次实验,我们成功搭建了一个振幅解调器电路,并验证了其工作原理。

实验结果表明,振幅解调器可以将调幅信号解调为基带信号,但解调效果受到频率和幅度的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二振幅调制器一、实验目的:1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。

2.研究已调波与调制信号及载波信号的关系。

3.掌握调幅系数测量与计算的方法。

4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。

二、实验内容:1.调测模拟乘法器MC1496正常工作时的静态值。

2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。

3.实现抑止载波的双边带调幅波。

三、基本原理略四、实验步骤:1.静态工作点调测:使调制信号VΩ=0,载波Vc=0(短路块J11、J17开路),调节VR7、VR8使各引脚偏置电压接近下列参考值:V8V10V1V4V6V12V2V3 V55.62V 5.62V 0V 0V 10.38V10.38V -0.76V -0.76V –7.16VR39、R46与电位器VR8组成平衡调节电路,改变VR8可以使乘法器实现抑止载波的振幅调制或有载波的振幅调制。

2.加大V Ω,观察波形变化,画出过调制波形并记下对应的V Ω、V C 值进行分析。

附:调制信号V Ω可以用外加信号源,也可直接采用实验箱上的低频信号源。

将示波器接入J22处,(此时J17短路块应断开)调节电位器VR3,使其输出1KHz 信号不失真信号,改变VR9可以改变输出信号幅度的大小。

将短路块J17短接,示波器接入J19处,调节VR9改变输入V Ω的大小。

c U图2-3(a ) 抑制载波调幅波形 图2-3(b ) 普通调幅波波形五、实验记录1. 整理实验数据,写出实测MC1496各引脚的实测数据。

静态工作点调测,实验测得结果:V1V2V3V4V5V6V8V10V12 0.02V -0.76V -0.76V 0.02V -7.16V 10.36V 5.60V 5.60V 10.38V经比对,各引脚偏置电压接近参考值,测试结果正常。

2.调幅实验调幅波形:(1)先观察生成载波的波形,在振荡器与频率调制模块的ZD-OUT上用示波器观察载波输出波形:(2)由低频信号模块产生1.6~1.7kHz的语音频率信号,接入振幅调制模块,利用产生幅度调制波,用示波器观察TF-OUT端的包络信号。

示波器CH1和CH2通道分别接载波输入ZD.IN端和调幅波输出TF-OUT端的波形:3.画出调幅实验中m=30%、m=100%、m > 100% 的调幅波形,分析过调幅的原因。

1)上面的(2)中的图即为m<1的正常AM波形图。

2)100% 调制度观察3)过调制时的AM波形观察分析:调幅波用调制信号去控制载波的振幅,从而使它随着调制信号线性变化,但是频率不发生变化,而且m 越大,调幅越深,m=1时调幅达到最大值,为百分之百调幅,当它大于1时,AM信号波形出现某一段时间振幅为零的过调制。

实验三调幅波信号的解调一、实验目的:1.掌握调幅波的解调方法。

2.掌握二极管峰值包络检波的原理。

3.掌握包络检波器的主要质量指标,检波效率及各种波形失真的现象,产生的原因以及克服的方法。

二、实验内容:1.完成普通调幅波的解调2.观察抑制载波的双边带调幅波的解调3.观察普通调幅波解调中的对角切割失真,底部切割失真以及检波器不加高频滤波的现象。

三、实验电路说明略四、实验步骤1.解调全载波调幅信号(1)m<30%的调幅波检波:从J45(ZF.IN)处输入455KHZ,0.1V. m<30%的已调波,短路环J46连通,调整CP6中周,使J51(JB.IN)处输出0.5V~1V已调幅信号。

将开关S13拨向左端,S14,S15,S16均拨向右端,将示波器接入J52(JB.OUT),观察输出波形.(2)加大调制信号幅度,使m=100%,观察记录检波输出波形.2.观察对角切割失真:保持以上输出,将开关S15拨向左端,检波负载电阻由3.3KΩ变为100KΩ,在J52处用示波器观察波形,并记录与上述波形进行比较.3.观察底部切割失真:将开关S16拨向左端,S15也拨向左端,在J52处观察波形并记录与正常鲜调波形进行比较。

4.将开关S15,S16还原到右端,将开关S14拨向左端,在S52处可观察到检波器不加高频滤波的现象。

五、实验报告要求1.通过一系列检波实验,将下列内容整理在表内:输入的调幅波波形M<30% m=100% m>100%二极管包络检波器输出波形不能解调出 不能解调出 2. 观察到的对角切割失真和负峰切割失真波形以及检波器不加高频滤波的现象。

调幅中放输出波形:调幅,解调输出波形:分析:在本次实验中,在实验箱上,先用短接线连接TF.OUT,进行晶体混频或平衡混频,即先进行一次混频,取16.455-10=6.455(MHZ),然后再进行二次混频,得到6.455-6=0.455(MHZ)的中频标准值,然后再检波输出,解调输出,得到只有相差没有幅度差的波形。

由于一次混频就直接检波得到的效果并不好,所有我们采用二次混频,才能够得到中频标准值,得到更精确的结果。

实验五变容二极管调频器一、实验目的1.掌握变容二极管调频器电路的原理。

2.了解调频器调制特性及测量方法。

3.观察寄生调幅现象,了解其产生及消除的方法。

二、实验内容:1.测试变容二极管的静态调制特性2.观察调频波波形3.观察调制信号振幅对频偏的影响4.观察寄生调幅现象三、基本原理:略四、实验步骤1.静态调制特性测量将开关S2“1”拨向ON,输入端不接音频信号,将频率计通过一个100P的。

电容接到调频器的输出端J6处,CT1调于中间位置,调整电位器VR1,记下变容二极管两端电压和对应输出频率,将对应的频率填入表5.1。

五、实验报告要求1.整理实验数据V D(V)2 3 4 5 5.2 6 8 10 11F0(MH Z)9.719.819.8999.9910.0010.0710.1910.2510.26 频率调制输出平滑正弦波:分析频偏变化与调制信号之间的关系:调频即为载波的瞬时频率受调制信号的控制。

其频率的变化量与调制信号成线性关系,常采用变容二极管实现调频。

调频波的频偏与调制信号的频率无关,调制指数与调制频率成反比。

调频时,载波的瞬时频率与调制信号成线性关系。

载波的瞬时相位与调制信号的积分成线性关系。

实验六调频波解调实验一、实验目的:1.掌握集成电路频率解调器的工作原理。

2.熟悉集成电路MC3361的基本功能与用法。

3.掌握MC3361用于频率解调的调试方法。

二、实验内容:1.观察MC3361二次混频的波形。

2.用MC3361完成频率解调,观察不失真输出波形与哪些因素有关。

三、实验原理电路:略四、实验步骤1.观察MC3361二次混频实验:(1)将6.455MHZ频偏为15KHZ左右的FM信号加到该模块J37(S.IN)处,信号幅度调到100mV,短路块J29断开,在J38处(ZP.OUT)用示波器看输出信号波形,记下波形和频率并与输入波形进行比较。

若J38处无输出,可轻调VR12、VR14电位器,直到有输出。

改变输入信号幅度,观察输出变化并记录。

(2) 将FM波改为AM波,输入信号幅度为100mV 左右,观察输出波形,若要使输出信号为不失真的中频调幅波,特别注意调整VR14以改变实际输入信号幅度,观察输出变化并记录。

2.调频波解调实验(1) 同实验步骤一条件,在J38处看到455KHZ中频调频信号,将开关S9置于左端,在J39(J.P.OUT)观察鉴频输出低频信号,此时可调节移相器CP4和电位器VR12以保证输出信号波形最好,其中VR12改变输出信号幅度大小。

(2) 加大、减小调制信号振幅,观察输出波形频偏变化并进行分析。

(3) 改变输入信号频率,观察输出波形变化并进行分析。

注:若输出信号幅度较小,可将低放模块中的短路块J42短接在J.P.IN处,从J44处可观察到放大后的低频信号。

五、实验报告要求:1.整理实验数据,画出二次混频,鉴频前后的波形。

通过波形分析二次混频,鉴频的作用。

其中可通过改变输入信号的幅度测出不同的波形:1)将6.455MHZ频偏为15KHZ左右的FM信号加到该模块输入波形:幅度:372mv 输出波形:频率:474.454khz2)将FM波改为AM波,输入信号幅度为100mV左右,观察输出波形输入波形:幅度:p-p:185mv输出波形:幅度:p-p174mv3)调频波解调时,输出的低频信号波形加大、减小调制信号振幅后。

振幅变为:调制信号振幅为372mV。

输出低频信号波形减小调制信号振幅(3)改变输入信号频率为10.1462Mhz,输出波形:分析:鉴频的基本思路是,通过回路对调频波的载频产生适当的失谐而起鉴频作用。

将调频波送至LC谐振电路,产生失谐后的调频—调幅波,再用幅度检波器将中的调制信号检出。

本次实验的频率调制,通过ZD.OUT端接入晶体管混频,再通过鉴频(频率范围在1K~2K),然后再低频放大。

用示波器观察,DF.OUT的频率解调波和TZXH的输出低频信号,观察到只有相差,没有频差。

相关文档
最新文档