小升初数学长方体与正方体提高练习题

合集下载

2017小升初数学长方体正方体专项练习试题_题型归纳

2017小升初数学长方体正方体专项练习试题_题型归纳

2017小升初数学长方体正方体专项练习试题_题型归纳一、梳理知识1.什么是体积?什么是容积?常用的体积(容积)单位和有哪些?相邻体积单位之间的进率是多少?2.1立方厘米、1立方分米、1立方米分别有多大?联系生活,试着举例说一说。

3.怎样计算长方体的体积?你是怎样发现长方体体积公式的?正方体的体积公式与它有什么联系?4.如何测量不规则物体的体积?(例如测量土豆的体积)二、基础练习商店里把同样的盒装饼干摆成三堆(如下图)。

这三堆饼干的体积相等吗?为什么?2.在括号里填上合适的单位名称。

(1)一块橡皮的体积大约是6( )。

(2)集装箱的体积大约是40( )。

(3)水桶的容积大约是12( )。

(4)一个西瓜的体积大约是4( )。

(5)教室的面积大约是56( )。

(6)一本数学书的体积约是320( )。

3.单位换算3.05立方米=( )立方分米60毫升=( )升450立方厘米=( )升( )立方分米=800毫升710毫升=( )升=( )立方分米4.7升=( )立方分米( )立方厘米4.一种冷藏车的车厢是长方体,从里面量,长4米,宽1.7米,高1.8米。

它的容积是多少立方米?5.一块正方体石料,棱长8分米。

这块石料的体积是多少立方分米?如果1立方分米的石料重2.7千克,这块石料重多少千克?6.一根长方体木料,长3米,横截面是一个边长3分米的正方形,这根木料的体积是多少立方米?7.学校把10.5m3黄沙铺在一个长6m、宽3.5m的长方体沙坑里,可以铺多厚?(用方程)三、综合练习1.长/cm宽/cm底面积/cm2高/cm表面积/cm2体积/cm3长方体107 52.4 4.8 19.2正方体62.一个花坛(如图)底面是边长1.2米的正方形,四周用木条围成,高0.9米。

(1)这个花坛的占地面积是多少平方米?(2)用土填满花坛,约要多少立方米土?(木条厚度不计)(3)做这样一个花坛,四周约需要多少平方米的木条?3.一个公园的入口处有12根长方体立柱,每根立柱长2.4米,宽0.8米,高11.5米。

长方体和正方体基础+拓展+提高练习题

长方体和正方体基础+拓展+提高练习题

长方体和正方体基础+拓展+提高练习1、长方体有()个面,每个面是(),特殊情况有两个相对的面是(),()的面完全相同。

长方体有()条棱,()的棱长度相等。

长方体有()个顶点。

2、正方体有()个面,每个面都是(),正方体有()条棱,棱的长度(),正方体有()个顶点。

3、相交于一个顶点的三条棱分别叫做长方体的()、()、()。

正方体可以看成是()都相等的长方体。

正方体是特殊的()。

4、长方体或正方体(),叫做它的表面积。

5、()叫做物体的体积。

6、计量体积要用()单位,常用的体积单位有()、()、()。

相邻两个长度单位间的进率是(),相邻两个面积单位间的进率是(),相邻两个体积单位间的进率是()。

7、()通常叫做它们的容积。

计量液体的容积一般用单位。

8、一个正方体的棱长是a,棱长之和是,表面积是,体积是。

9、一个长方体的长、宽、高分别是a、b、h,它的棱长之和是,表面积是,体积是。

10、一个正方体的棱长是7分米,它的表面积是()平方分米。

11、一个长方体的长是6厘米,宽和高都是4厘米,它的表面积是()平方厘米。

12、正方体的棱长扩大2倍,表面积扩大()倍,体积扩大( ) 倍。

13、一个长7厘米,宽6厘米,高3厘米的礼盒,用绳子将它捆起来,接头处 5厘米,至少要()分米的绳子。

14、有一根长52厘米的铁丝,恰好可以焊接成一个长6厘米,宽4厘米,高多少厘米的长方体?15、用96厘米长的铁丝焊接成一个正方体的框架,然后用纸给它的表面包裹起来,至少需要多少平方厘米的纸?16、一个长方体和一个正方体的棱长之和相等,已知长方体的长为5厘米,宽为3厘米,高为4厘米,求正方体的棱长。

17、一个房间的长6米,宽3.5米,高3米,门窗面积是8平方米。

现在要把这个房间的四壁和顶面粉刷水泥,粉刷水泥的面积是多少平方米?如果每平方米需要水泥4千克,一共要水泥多少千克?18、一个抽屉,长50厘米,宽30厘米,高10厘米,做一对这样的抽屉,至少需要木板多少平方分米?19、一种汽车上的油箱,里面长8分米,宽5分米,高3.5分米。

小学数学-有答案-小升初综合练习题:长方体正方体表面积

小学数学-有答案-小升初综合练习题:长方体正方体表面积

小升初综合练习题:长方体正方体表面积一、填空:(38%,每空2分)1. 长方体和正方体都有________个面,________条棱,________个顶点。

2. 长方体的每个面都是________形或有一组对面是________.它有________条棱,平行的________条棱都相等。

3. 相交于长方体一个顶点的三条棱的长度分别叫做它的________、________和________.4. 长方体有________个面,从不同的角度观察一个长方体,最多能看到________个面。

5. 一个长方体的长是5分米,宽是4分米,高是3分米,6个面中最小的一个面的面积是________,最大的一个面的面积是________.6. 一个长方体长4米,宽3米,高2米,它的占地面积最大是________平方米。

7. 一个长方体模型,从前面看是从上面看是,长方体右面的面积是________平方厘米。

8. 长方体的右侧面面积是12平方厘米,前面面积是8平方厘米,上面面积是6平方厘米,这个长方体的长、宽、高分别是________、________、________.二、选择(8%,每题2分):一个长方体水池,长20米,宽10米,深2米,占地()平方米。

A.200B.400C.520下面的图形中,能按虚线折成正方体的是()A. B. C. D.从一个体积是30立方厘米的长方体木块中,挖掉一小块后(如图),它的表面积()A.和原来同样大B.比原来小C.比原来大D.无法判断用一根52厘米长的铅丝,正好可以焊成长6厘米,宽4厘米,高()厘米的长方体教具。

A.2B.3C.4D.5三、解答题(共1小题,满分6分)计算下面每个形体的棱长和。

下面各题,列式计算,不写答.一个长方体,长5分米,宽3分米,高4分米,求它的所有棱长的和。

用钢筋做一个长和宽都是3.5分米,高是10厘米的长方体,需多少分米的钢筋?棱长是4分米的正方体,棱长总和是多少分米?一个长方体的棱长和是36厘米,从一个顶点出发的三条棱的长度和是________厘米。

六年级下册数学试题-小升初复习讲练:长方体和正方体的表面积(含答案)sc

六年级下册数学试题-小升初复习讲练:长方体和正方体的表面积(含答案)sc

长方体和正方体的表面积典题探究例1.一个正方体的棱长总和是24米,它的表面积是24平方米..例2.棱长为6cm的正方体的体积和表面积相等..(判断对错)例3.一个正方体棱长扩大2倍,则表面积扩大倍,体积扩大倍.例4.一个长方体的棱长总和是108厘米,它的长、宽、高的比为4:3:2,这个长方体的表面积是.例5.一块长方形铁皮(如图),长25厘米,宽15厘米,从四个角分别剪去边长2厘米的小正方形,然后把四周折起来,做成没有盖子的铁盒,请你帮忙计算一下:做这样一个盒子至少需要多少铁皮?铁盒的容积是多少?演练方阵A档(巩固专练)一.选择题(共15小题)1.一个正方体油桶的底面积是9平方厘米,它的表面积是()A.81cm2B.18cm2C.54cm22.一个正方体的棱长是5厘米,它的表面积是()A.25平方厘米B.200平方厘米C.125立方厘米D.150平方厘米3.东东从拼好的长方体中拿走了一块(如图),它的表面积()A.比原来大B.比原来小C.不变4.一根长方体木料,长是8分米,宽是2分米,高是4分米,这根长方体木料的表面积是()平方分米.A.64 B.56 C.1125.把三个棱长是1cm的正方体拼成一个长方体,表面积减少了()cm2.A.2B.4C.6D.86.一个长方体水池,长20米,宽10米,深2米,占地()平方米.A.200 B.400 C.5207.把正方体的棱长扩大4倍,它的表面积扩大()A.4倍B.8倍C.12倍D.16倍8.(•高邮市)有两盒滋补品,用下面三种方式包装,你认为最省包装纸的是()A.B.C.9.(•江都市)如图上画了长方体的长、宽、高,这个长方体左面的面积是()A.15平方厘米B.12平方厘米C.20平方厘米D.无法确定10.(•淳安县)一个棱长2厘米的正方体,挖掉一个棱长1厘米的小正方体后(如图),它的表面积()A.增大了B.减少了C.不变D.无法断定11.(•恭城县)棱长是6cm的正方体,它的体积和表面积相比()A.体积大B.表面积大C.一样大D.无法比较12.(•张家港市)把2个棱长4厘米的正方体木块粘合成一个长方体,这个长方体的表面积是()A.160平方厘米B.128平方厘米C.192平方厘米D.172平方厘米13.(•靖江市)棱长是a米的正方体,它的表面积是()平方米.A.12a B.a3C.6a2D.a214.(•新邵县)一个正方体的棱长是a分米,它的表面积是()平方分米.A.a2B.4a2C.6a215.(•雁江区)两块同样的肥皂用三种包装,第()种包装更省包装纸.A.B.C.二.填空题(共13小题)16.把底面积为25平方厘米的两个相同的正方体,拼成一个长方体,则长方体的表面积是_________平方厘米.17.用铁皮做一个无盖的长方体油箱,要求做一个油箱至少需要多少铁皮,是求油箱的_________,要求油箱能装多少升汽油,是求油箱的_________A、表面积B、底面积C、体积D、容积.18.一个底面半径2cm,高10cm的圆柱的表面积是_________平方厘米.19.一个长方体它的底面是正方形,面积是25平方厘米,它的一个侧面的面积是30平方厘米.这个长方体的表面积是_________平方厘米.20.一个棱长为9分米的正方体的表面积是_________平方分米,把它削成一个最大的圆锥,体积是_________立方厘米.21.正方体棱长总和是24厘米,它的表面积是_________,体积是_________.22.鲜奶盒长6.3厘米,宽4厘米,高10.5厘米.将24盒鲜奶盒包装成一箱,纸箱使用的纸最少是_________平方厘米.23.(•温江区模拟)把两个棱长是2厘米的正方体拼成一个长方体,则长方体的表面积是_________平方厘米.24.(•岚山区模拟)把表面积是54平方厘米的正方体等分成两个长方体,每个长方体的表面积是_________.25.一个正方体木块的棱长为a厘米,把它锯成两个长方体,这两个长方体的棱长总和是_________厘米,表面积总和是_________平方厘米.26.(•北京)一个正方体的棱长为acm,它的棱长总和是_________,它的表面积是_________,它的体积是_________.27.(•满洲里市)在一个长方体中(如图)知道了后面的面积大小还要知道_________的长度,就可以求体积了;同样知道了横截面积,还知道_________的长度,也可以求体积.如果告诉你这个长方体是一个玻璃鱼缸,长是8分米、宽是5分米、高是5分米,那么这个玻璃鱼缸的棱长之和是_________分米,而且做这个鱼缸至少需要_________平方分米的玻璃材料,另外如果在这个鱼缸内放入3分米高的水,这些水有_________升;再放入几条金鱼后水面上升1.2厘米,这些金鱼的体积是_________立方厘米.28.(•静宁县模拟)一个正方体的棱长总和48厘米,它的棱长是_________,表面积是_________,体积是_________.B档(提升精练)一.选择题(共15小题)1.(•岚山区模拟)把一个棱长为a的正方体,任意截成两个长方体,这两个长方体表面积之积是()A.a×a×6 B.a×a×7 C.a×a×8 D.无法确定2.(•陆良县)如图是一个长3厘米,宽与高都是2厘米的长方体,在它的上面挖掉一个棱长为1厘米的小正方体,这时它的表面积是()平方厘米.A.32 B.34 C.不能计算3.(•上海)如图中两个物体的表面积比较,结果是()A.甲>乙B.甲<乙C.甲=乙4.(•团风县模拟)一根长方体木料,长2米,宽和厚都是5米,把它锯成1米长的两段,表面积增加了()平方米.A.50 B.40 C.255.(•中山模拟)把一个正方体的棱长扩大20%,它的表面积就扩大()A.20% B.40% C.44% D.120%6.(•宜宾县模拟)一个正方体的棱长为1dm,它的表面积是()A.1 dm2B.1000 dm2C.6 dm27.(•广元模拟)二个同样大小的正方体,组成一个新长方体,表面积是40平方厘米,求一个正方体的表面积()A.22平方厘米B.24平方厘米C.36平方厘米8.(•宜昌)如图,将一个大正方体,从它的一个顶点处挖去一个小正方体后,剩下物体的表面积和原来的表面积相比较,()A.变大B.变小C.不变D.无法确定9.(•云阳县)用8个1立方厘米的小方块拼成一个较大正方体,如果拿去一个小方块(如图),它的表面积与拼成的较大正方体的表面积比较()A.一样大B.减少了C.增大了10.(•顺德区)一个长方体,把它切成3个正方体,一个小正方形的表面积是24平方厘米.原来长方体的表面积是()A.24平方厘米B.48平方厘米C.56平方厘米D.72平方厘米11.(•芜湖县)把一个棱长为a米的正方体,任意截成两个长方体,这两个长方体的表面积是()平方米.A.6a2B.8a2C.10a2D.12a212.(•顺德区)把3个棱长为10分米的正方体拼成一个长方体,表面积会减少()A.200平方分米B.300平方分米C.400平方分米D.600平方分米13.(•湖南模拟)把一个棱长为a的正方体,切成两个长方体表面积为()A.5a2B.6a2C.7a2D.8a214.(•武胜县)用同样的铝皮制作三个无盖的容器(如图),不计损耗,需要铝皮最少的是()(单位:厘米)A.B.C.15.(•抚州模拟)在棱长1分米的正方体的一角,挖去一个棱长3cm的小正方体,那么,剩下的部分的表面积与原正方体的表面积相比()A.比原来大B.比原来小C.一样二.填空题(共13小题)16.(•江岸区)长方体的长、宽、高分别是7cm、6cm、3cm,它的表面积是_________ cm2.17.(•广州模拟)一根长方体的木料,正好可以锯成两个同样的正方体,这时表面积增加了24平方厘米,这根长方体的木料原来的表面积是_________平方厘米.18.(•海曙区)把一个棱长是a厘米的正方体任意截成两个长方体,这两个长方体表面积之和是6a2平方厘米._________(判断对错)19.(•宿城区模拟)一个正方体的棱长之和是36厘米,它的表面积是_________平方厘米,体积是_________立方厘米.20.(•西安)一个长方体如图,它后面的面的面积是_________dm2,左面的面的面积是_________dm2,顶面的面的面积是_________dm2,这个长方体所占的空间是_________dm3.21.(•陕西)用12个棱长1厘米的小正方体拼成一个长3厘米、宽与高都是2厘米的大长方体,再将它去掉一个小正方体(如图所示),现在它的表面积是_________平方厘米.22.(•临川区模拟)一根长48分米的铁丝做成一个长方体框架,长、宽、高的比为1:2:3,如果用纸把框糊成一个长方体模型,至少需要纸_________平方分米.23.(•上海模拟)图中表示的小正方体的表面积为54平方米,则如图中用8个这样的小正方体组成的正方体的表面积是_________平方米.24.(•东兰县模拟)大小两个正方体的棱长比是3:2;大小正方体的表面积比是_________;大小正方体的体积比是_________.25.(•广州模拟)一个棱长2厘米的正方体橡皮泥,在它的顶点挖去一个棱长1厘米的小正方体后,表面积是原来的_________%,体积是原来的_________%.26.(•孝感模拟)用一根36厘米长的铁丝焊成一个最大的正方形模型,它的表面积好是_________体积是_________.27.(•道里区模拟)把两个一样的正方体拼成一个长方体后,体积和表面积都不变._________.(判断对错)28.(•无锡)一个长方体的长和宽都是20厘米,高6厘米.这个长方体的表面积是_________平方厘米,体积是_________立方厘米,做这个长方体框架至少要_________厘米长的铁丝.C档(跨越导练)一.填空题(共3小题)1.(•天门)如图所示,把底面周长12.56厘米,高10厘米的圆柱切成若干等分,拼成一个近似的长方体,这个长方体的表面积是_________平方厘米,体积是_________立方厘米.2.(•商州区)一个棱长为6分米的正方体木块的表面积是_________平方分米,把它切削成一个最大的圆锥体,这个圆锥体的体积是_________立方分米.3.(•北京模拟)一个长方体,如果高增加2厘米就成了正方体,而且表面积要增加56平方厘米,原来这个长方体的体积是_________.二.解答题(共3小题)4.(•商州区)棱长是6分米的正方体的体积和表面积相等._________.(判断对错)5.(•秀屿区)6月1日,全国“限塑令”正式实施一周年.实验小学六年一班学生准备到超市和菜场向顾客赠送自制环保袋.(1)这种环保袋是一个长方体,它的长40厘米,宽10厘米,高50厘米,制作这样的一只环保袋需要多少平方厘米的环保纸?(接头处忽略不计)(2)为确保能在6月1日前完成1500只环保袋,同学们“五一”节过后(5月4日)就开始动工.前7天制作了420只,照这样的速度,能按期完成吗?(用比例解)(3)六(1)班同学把这1500只环保袋按2:3分配给第一、二两个小分队,第二小分队领到多少任务?如果第二小分队有15个同学,他们平均每人要送出几只环保袋?6.(•重庆)有一个长方体,如右图,(单位:厘米)现将它“切成”完全一样的三个长方体.(1)共有_________种切法.(2)怎样切,使切成三块后的长方体的表面积的和比原来长方体的表面积增加得最多,算一算表面积最多增加了多少?长方体和正方体的表面积答案典题探究例1.一个正方体的棱长总和是24米,它的表面积是24平方米.正确.考点:长方体和正方体的表面积.分析:根据题意可得出正方体的棱长为24÷12=2米,有表面积公式计算可得出结论.解答:解:24÷12=2(米),2×2×6=24(平方米),所以原题说法正确.故答案为:正确.点评:此题考查了正方体的表面积公式的应用,可以先借助公式计算出正确答案,再进行判断.例2.棱长为6cm的正方体的体积和表面积相等.错误.(判断对错)考点:长方体和正方体的表面积;长方体和正方体的体积.专题:立体图形的认识与计算.分析:根据正方体的表面积公式:s=6a2,正方体的体积公式:v=a3,因为表面积和体积不是同类量,无法进行比较.由此解答.解答:解:表面积:6×6×6=216(平方厘米);体积:6×6×6=216(立方厘米);因为表面积和体积不是同类量,无法进行比较.故答案为:错误.点评:此题解答关键是明确:只有同类量才能进行比较大小,不是同类量无法进行比较.例3.一个正方体棱长扩大2倍,则表面积扩大4倍,体积扩大8倍.考点:长方体和正方体的表面积;长方体和正方体的体积.分析:根据正方体表面积扩大的倍数是棱长扩大倍数的平方,体积扩大的倍数是棱长扩大倍数的立方求解即可.解答:解:一个正方体棱长扩大2倍,则表面积扩大2×2=4倍,体积扩大2×2×2=8倍.故答案为:4,8.点评:考查了正方体的体积,正方体的表面积和正方体棱长的关系,是基础题型,比较简单.例4.一个长方体的棱长总和是108厘米,它的长、宽、高的比为4:3:2,这个长方体的表面积是468平方厘米.考点:长方体和正方体的表面积;按比例分配应用题.分析:根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等,6个面都是长方形(特殊情况有两个相对的面是正方形),相对的面的面积相等;已知一个长方体的棱长总和是108厘米,它的长、宽、高之比是4:3:2,首先根据按比例分配的方法分别求出长、宽、高;再根据长方体的表面积公式解答.解答:解:4+3+2=9(份),长:108÷4×=27×=12(厘米),宽:108÷4×=27×=9(厘米),高:108÷4×=27×=6(厘米);表面积:(12×9+12×6+9×6)×2,=(108+72+54)×2,=234×2,=468(平方厘米);答:这个长方体的表面积是468平方厘米.故答案为:468平方厘米.点评:此题主要考查长方体的特征和表面积的计算,以及了解和掌握长方体的表面积公式:S=2(ab+ah+bh);解题的关键是根据按比例分配的方法求出长、宽、高.例5.一块长方形铁皮(如图),长25厘米,宽15厘米,从四个角分别剪去边长2厘米的小正方形,然后把四周折起来,做成没有盖子的铁盒,请你帮忙计算一下:做这样一个盒子至少需要多少铁皮?铁盒的容积是多少?考点:长方体和正方体的表面积;长方体和正方体的体积.专题:压轴题.分析:求做这样一个盒子至少需要多少铁皮,用长方形铁皮的面积减去四个边长2厘米的正方形的面积;计算铁盒的容积,需要求出盒子的长、宽,长方形铁皮的长、宽都要减去两个2厘米即是盒子的长、宽,高是2厘米.根据长方体的容积公式解答.解答:解;25×15﹣2×2×4,=375﹣16,=359(平方厘米);(25﹣2﹣2)×(15﹣2﹣2)×2,=21×11×2,=462(立方厘米);答:做这样一个盒子至少需要359平方厘米铁皮,铁盒的容积是462立方厘米.点评:此题这样考查长方体的表面积和体积的计算,在计算长方体的表面积的时候,一定要分清求几个面的面积,根据公式解答即可.演练方阵A档(巩固专练)一.选择题(共15小题)1.一个正方体油桶的底面积是9平方厘米,它的表面积是()A.81cm2B.18cm2C.54cm2考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:根据正方体的表面积公式:s=6a2,用正方体的底面积乘6即可.解答:解:9×6=54(平方厘米),答:它的表面积是54平方厘米.故选:C.点评:此题主要考查正方体的表面积公式的灵活运用.2.一个正方体的棱长是5厘米,它的表面积是()A.25平方厘米B.200平方厘米C.125立方厘米D.150平方厘米考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:正方体的表面积=棱长×棱长×6,正方体的棱长已知,代入公式即可求解.解答:解:5×5×6=25×6=150(平方厘米);答:正方体的表面积是150平方厘米.故选:D.点评:此题主要考查正方体表面积的计算方法.3.东东从拼好的长方体中拿走了一块(如图),它的表面积()A.比原来大B.比原来小C.不变考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:据此即可解答问题.从正方体顶点处拿掉一个小正方体,减少三个面的同时又增加三个面,所以表面积不变;据此解答.解答:解:从正方体顶点处拿掉一个小正方体,减少三个面的同时又增加三个面,所以表面积不变.故选:C.点评:该题主要考查正方体的表面积和立方体的切拼问题.4.一根长方体木料,长是8分米,宽是2分米,高是4分米,这根长方体木料的表面积是()平方分米.A.64 B.56 C.112考点:长方体和正方体的表面积.分析:根据长方体的表面积公式计算即可求得这根长方体木料的表面积.解答:解:(8×2+8×4+2×4)×2,=(16+32+8)×2,=56×2,=112(平方分米);答:这根长方体木料的表面积是112平方分米.故选:C.点评:考此题查了长方体的表面积,长方体的表面积公式:S=2(ab+ah+bh),是基础题.5.把三个棱长是1cm的正方体拼成一个长方体,表面积减少了()cm2.A.2B.4C.6D.8考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:由题意可知:三个棱长都是1cm的正方体拼成一个长方体后,减少了4个面,每个面的面积可求,从而可以求出减少的面积.解答:解:1×1×4=4(平方厘米)答:表面积减少了4平方厘米.故选:B.点评:解答此题的关键是明白:三个棱长都是1cm的正方体拼成一个长方体后,减少了4个面.6.一个长方体水池,长20米,宽10米,深2米,占地()平方米.A.200 B.400 C.520考点:长方体和正方体的表面积.专题:压轴题.分析:求占地面积也就是求长方体的底面积,利用长方形的面积公式计算.解答:解:20×10=200(平方米);答:占地200平方米.故选:A.点评:此题考查的目的是理解水池的占地面积,实际就是求长方体的底面积,根据长方形的面积公式计算解答.7.把正方体的棱长扩大4倍,它的表面积扩大()A.4倍B.8倍C.12倍D.16倍考点:长方体和正方体的表面积.分析:根据正方体的表面积的计算方法,正方体的表面积=棱长×棱长×6,再根据积的变化规律,积扩大的倍数等于因数扩大倍数的乘积;由此解答.解答:解:根据积的变化规律,把正方体的棱长扩大4倍,它的表面积扩大:4×4=16倍;故选:D.点评:此题主要根据正方体的表面积的计算方法和积的变化规律解决问题.8.(•高邮市)有两盒滋补品,用下面三种方式包装,你认为最省包装纸的是()A.B.C.考点:长方体和正方体的表面积.专题:压轴题.分析:由题意可知,哪种方式包装的表面积最小,则最省包装纸.解答:解:假设每盒滋补品三种面的面积分别为1、2、3,则A的表面积=3×4+2×2+1×4=20;B的表面积=3×2+2×4+1×4=18;C的表面积=3×4+2×4+1×2=22;所以B种包装最省包装纸.故选:B.点评:解答此题的关键是,看哪种方式包装的表面积最小,则最省包装纸.9.(•江都市)如图上画了长方体的长、宽、高,这个长方体左面的面积是()A.15平方厘米B.12平方厘米C.20平方厘米D.无法确定考点:长方体和正方体的表面积.专题:压轴题.分析:由图意可知:左面的长和宽分别为4厘米和3厘米,于是利用长方形的面积公式即可求解.解答:解:4×3=12(平方厘米),故选:B.点评:弄清楚左面的长和宽是正确解答本题的关键.10.(•淳安县)一个棱长2厘米的正方体,挖掉一个棱长1厘米的小正方体后(如图),它的表面积()A.增大了B.减少了C.不变D.无法断定考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:根据正方体的特征,6个面都是正方形,6个面的面积都相等,正方体的表面积=棱长×棱长×6;从一个棱长2厘米的正方体,挖掉一个棱长1厘米的小正方体,因为这个小正方体在顶点上,有3个1平方厘米的把外露,挖掉一个棱长1厘米的小正方体后,又露出与原来相同的3个面,所以表面积不变.解答:解:2×2×6=24(平方厘米);答:它的表面积不变,还是24平方厘米.故选:C.点评:此题考查的目的是使学生理解掌握正方体的特征及表面积的计算方法.11.(•恭城县)棱长是6cm的正方体,它的体积和表面积相比()A.体积大B.表面积大C.一样大D.无法比较考点:长方体和正方体的表面积;长方体和正方体的体积.分析:根据体积和表面积的意义进行解答,进而得出结论.解答:解:体积和表面积的意义不同:正方体的体积是正方体所占空间的大小,它的单位是立方米、立方分米、立方厘米;而表面积是指正方体六个面的总面积,它的单位是平方米、平方分米、平方厘米;所以棱长是6cm的正方体,它的体积和表面积没有可比行,无法比较;故选:D.点评:解答此题应根据体积和表面积的意义进行分析即可.12.(•张家港市)把2个棱长4厘米的正方体木块粘合成一个长方体,这个长方体的表面积是()A.160平方厘米B.128平方厘米C.192平方厘米D.172平方厘米考点:长方体和正方体的表面积.分析:由“把2个棱长4厘米的正方体木块粘合成一个长方体”可知,两个正方体共有12个面,粘合成长方体后,减少了2个面,即还剩10个面,求这10个面的面积就是长方体的表面积.解答:解:4×4×10=160(平方厘米);故答案为:A.点评:解答此题的关键是明白,粘合成长方体后,减少了2个面,即还剩10个面.13.(•靖江市)棱长是a米的正方体,它的表面积是()平方米.A.12a B.a3C.6a2D.a2考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:根据正方体的特征:它的6个面是完全相同的正方形.由正方体的表面积公式:s=6a2,据此解答.解答:解:棱长是a米的正方形,它的表面积是6a2平方米;故选:C.点评:此题考查的目的是掌握正方体的特征和表面积的计算方法.14.(•新邵县)一个正方体的棱长是a分米,它的表面积是()平方分米.A.a2B.4a2C.6a2考点:长方体和正方体的表面积.分析:正方体的表面积=棱长×棱长×6,由此可以解决问题.解答:解:正方体的表面积=a×a×6=6a2;故答案为:C.点评:此题考查了正方体表面积公式的应用.15.(•雁江区)两块同样的肥皂用三种包装,第()种包装更省包装纸.A.B.C.考点:长方体和正方体的表面积.分析:根据把两个相同的长方体拼成一个大长方体,表面积都减少两个面,求哪种包装最省包装纸,只要减少两个最大的面(两个最大的面重合)即可.解答:解:由分析知,求哪种包装最省包装纸,只要减少两个最大的面(两个最大的面重合)即可;由图可知A种包装最省纸;故选:A.点评:解答此题要明确:把两个相同的长方体拼成一个大长方体,表面积减少了两个面的面积.二.填空题(共13小题)16.把底面积为25平方厘米的两个相同的正方体,拼成一个长方体,则长方体的表面积是250平方厘米.考点:长方体和正方体的表面积.分析:两个相同的正方体,拼成一个长方体,则长方体的表面积=两个正方体的表面积的和﹣2个面的面积.解答:解:25×6×2﹣25×2=300﹣50=250(平方厘米);答:长方体的表面积是250平方厘米.故答案为:250.点评:考查了正方体的表面积公式:正方体的表面积=一个面的面积×6.本题关键是明白两个相同的正方体,拼成一个长方体,长方体的表面积=两个正方体的表面积的和﹣2个面的面积.17.用铁皮做一个无盖的长方体油箱,要求做一个油箱至少需要多少铁皮,是求油箱的A,要求油箱能装多少升汽油,是求油箱的DA、表面积B、底面积C、体积D、容积.考点:长方体和正方体的表面积;长方体和正方体的体积.专题:立体图形的认识与计算.分析:做一个长方体的油箱(无盖),要求至少需要多少铁皮,就是求这个长方体油箱的5个面要用多少(面积单位)的铁皮,实际上就是求这个油箱的表面积.体积是物体所占空间的大小,容积是指容器所能容纳物质的体积,所以容积体积不是一回事.求油箱能装多少升汽油,是求油箱的容积.解答:解:做一个长方体的油箱,要求至少需要多少铁皮,这是求油箱的表面积.求油箱能装多少升汽油,是求油箱的容积.故选:A、D.点评:本题主要是考查体积、容积的意义,面积的意义.注意,求这个油箱能装多少油,是求它的容积,它有多大,求它的体积,求用多少铁皮是求它的表面积.18.一个底面半径2cm,高10cm的圆柱的表面积是150.72平方厘米.考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:首先明确条件,已知“圆柱的底面半径是2厘米,高是10厘米”,根据公式表面积=底面积×2+侧面积,解答即可.解答:解:3.14×22×2+2×3.14×2×10=25.12+125.6=150.72(平方厘米)答:这个圆柱的表面积是150.72平方厘米.故答案为:150.72.点评:理解和掌握圆柱体的表面积计算公式是解题的关键.19.一个长方体它的底面是正方形,面积是25平方厘米,它的一个侧面的面积是30平方厘米.这个长方体的表面积是170平方厘米.考点:长方体和正方体的表面积.专题:立体图形的认识与计算.分析:一个底面是正方形的长方体,它的底面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式计算即可.解答:解:因这个长方体的底面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.点评:本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.20.一个棱长为9分米的正方体的表面积是486平方分米,把它削成一个最大的圆锥,体积是190755立方厘米.考点:长方体和正方体的表面积;圆锥的体积.专题:立体图形的认识与计算.分析:(1)正方体的棱长已知,利用正方体的表面积S=6a2,即可求得其表面积.(2)由题意可知:这个最大圆锥的底面直径和高都应等于正方体的棱长,利用圆锥的体积V=Sh,即可求出这个圆锥的体积.解答:解:(1)9×9×6=81×6。

小学数学-有答案-小升初总复习数学专项练习试卷:长方体和正方体

小学数学-有答案-小升初总复习数学专项练习试卷:长方体和正方体

小升初总复习数学专项练习试卷:长方体和正方体一、填空1. 我们学过的几何图形有________、________、________、________、________.2. ________叫做周长。

3. ________叫面积。

4. 长方形的周长=________,字母表示:________.5. 正方形的周长=________,字母表示:________.6. 三角形的周长=________,平行四边形的周长=________,梯形的周长=________.7. 长方形的面积=________;字母表示:s=________.8. 正方形的面积=________;字母表示:s=________.9. 长方体的表面积=________;字母表示:s=________;长方体的体积=________;字母表示:v=________.10. 正方体的表面积=________;字母表示:s=________;正方体的体积=________;字母表示v=________.二、有关计算棱长:有关计算棱长:(1)一个长方体的长6厘米,宽5厘米,高4厘米。

它的棱长和是多少?(2)长方体的棱长和是60厘米,长6厘米,宽5厘米。

高是多少?(3)长方体的棱长和是60厘米,长6厘米,高4厘米。

宽是多少?(4)长方体的棱长和是60厘米,宽5厘米,高4厘米。

长是多少?(1)正方体的棱长是8厘米。

它的棱长和是多少?(2)正方体的棱长和是96厘米。

它的棱长是多少?一个正方体礼盒,棱长为1.5dm,包装这个礼品盒至少要用多少平方分米的包装纸?(接头不计。

)用一根长48厘米的铁丝围成一个长方体,这个长方体长5厘米,宽4厘米,它的高是多少厘米?一个长方体的长是15厘米,宽是12厘米,棱长总和是148厘米,它的高是多少?两根同样长的铁丝焊一个长方体和正方体,长方体长7厘米,宽5厘米,高3厘米,正方体的棱长是多少厘米?三、表面积:一个长方体的长8厘米,宽5厘米,高3厘米。

小升初数学《长方形和正方形》专项试题及答案

小升初数学《长方形和正方形》专项试题及答案

小升初数学《长方形和正方形》专项试题一、选择题1.一个平行四边形相邻的两条边分别是6cm、4cm,量得一条边上的高是5cm,这个平行四边形的面积是()平方厘米。

A.36 B.24 C.20 D.152.一个平行四边形的底扩大3倍,高扩大2倍,面积就扩大()A.5倍B.6倍C.不变3.4个完全相同的正方形拼成一个长方形(如图).图中阴影三角形的面积的大小是( ).A.甲>乙>丙B.乙>甲>丙C.甲=乙=丙4.正方体的棱长扩大到原来的2倍,它的表面积扩大到原来的()倍.A.2 B.4 C.8 D.125.两个表面积都是24平方厘米的正方体,拼成一个长方体.这个长方体的表面积是()平方厘米.A.48 B.44 C.40 D.166.一个正方体的棱长扩大到原来的3倍,它的体积就扩大到原来的()。

A.3倍B.6倍C.9倍D.27倍7.做一个铁皮烟囱需要多少铁皮,就是求烟囱的()A.表面积B.体积C.侧面积8.把一团圆柱体橡皮泥揉成与它等底的圆锥体,高将()。

A.扩大到原来的3倍B.缩小为原来的13C.不变D.扩大到原来的9倍9.压路机的前轮转动一周所压过的路面面积是指()A.前轮的表面积B.前轮的侧面积C.前轮的底面积10.在长12厘米,宽10厘米,高8厘米的长方体中切出一个体积最大的圆柱,这个圆柱的体积是()立方厘米.A.1130.4 B.602.88 C.628 D.904.3211.下面说法正确的是()。

A.圆锥的体积等于圆柱体积的1 3B.把0.56扩大到它的100倍是56C.书的总页数一定,未读的页数与已读的页数成正比例12.把一个棱长1厘米的正方体切成两个完全一样的长方体后,表面积比原来增加()A.50% B.16C.1313.一底面是正方形的长方体,把它的侧面展开后,正好是一个边长为8分米的正方形,原来长方体的体积是()立方分米.A.32 B.64 C.1614.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90 B.100 C.110 D.12015.奇思用和两种图形拼成了一个图案(如图),这个图案的面积是()dm2.A.10 B.8 C.616.如下图所示,有()对面积相等的三角形。

(提高版)专题21《长方体,正方体表面积》2020年小升初数学金牌提分闯关练(原卷版)

(提高版)专题21《长方体,正方体表面积》2020年小升初数学金牌提分闯关练(原卷版)

2020年小升初数学精选常考题金牌提分闯关练(提高版)专题21《长方体,正方体表面积》1.(2019春•浦城县期中)营养学家建议:儿童每天喝水的摄入量约为1500毫升,要达到这个要求,小明每天用底面直径8cm,高10cm的圆柱形水杯喝水,他约喝()杯水比较好.A.2B.3C.4D.52.(2019春•镇康县期中)一长方体容器能容纳30L水,它的宽是3dm,高是25cm,长是() A.24dm C.4dm4dm B.33.(2018春•綦江区期末)一台长方体形冰箱的长是0.6米,宽是5分米,高是1.8米,这台冰箱的占地面积是()A.3平方米B.0.3平方米C.9平方米D.5.4立方米4.(2017春•皇姑区校级月考)一个长8cm、宽6cm、高7cm的长方体纸盒,最多能放()个棱长为2cm 的正方体.A.42B.36C.405.(2016秋•隆林县期末)一个无盖的长方体水槽,长12分米,宽5分米,高2分米.做这个水槽至少需要铁皮()平方分米.A.120B.128C.1886.一个水池,从里面量底面是边长6分米的正方形,水深0.45米,水池里的水有() A.2.7升B.16.2升C.162升7.(2019秋•张家港市校级期末)有一个长方体玻璃鱼缸,长50分米,宽35分米,高24分米.这个鱼缸前面的玻璃破损,需重配一块平方分米的玻璃;这个鱼缸最多能注升的水.8.(2019秋•市中区期末)360m沙均匀铺在长10米,宽3米的长方体沙坑内,可以铺分米厚.9.(2019春•黄冈期末)一个长方体形的金鱼缸长8dm,宽5dm,高6dm(如图),左侧的玻璃不小心被打坏了,需配上玻璃的面积是2dm.10.(2019春•大田县期末)一个长方体的游泳池,长、宽、高分别是50m、15m、2m,在这个游泳池的底面和四周贴上瓷砖,贴瓷砖的面积是2m,这个游泳池的容积是3m.。

六年级下册数学-小升初长方体和正方体专项试题-s12-人教版

六年级下册数学-小升初长方体和正方体专项试题-s12-人教版

-小升初长方体和正方体专项试题-人教版一、解答题(题型注释)别是6分米、4分米、26分米,正方体的体积是多少立方分米?2.一个正方体水箱的容积是125立方分米,把这一满水箱水全部注入到一长方体水箱内。

已知长方体水箱长10分米,宽5分米,这个水箱内的水深多少分米?3.一个长方体长4米,宽4米,高1.5米,这个长方体的表面积是多少?4.在如图上添上若干个正方形,使它成为一个正方体表面积的展开图,并求出这个正方体的表面积和体积.(正方形边长2厘米)5.按要求涂一涂6.加上一条线段,使下面的图形变成我们认识的图形。

7.下面是由几个正方体拼成的模型,请把从不同角度看到的形状画在下面的方格里。

8.学校新建了一个游泳池,长50米,宽20米,深2米,水深1.5米.这个游泳池占地多少平方米?池内水的体积是多少立方米?9.一块正方体石料棱长是6分米,这块石料的体积是多少立方分米?如果1立方分米石料的质量是2.7千克,这块石料的质量是多少千克?参数答案1.解:(6+4+26)×4=144(分米)144÷12=12(分米)正方体的体积=棱长×棱长×棱长=12×12×12=1728(立方分米)答:正方体的体积是1728立方分米。

【解析】1.长方体12条棱长的总长度,12条棱分别为:4条长,4条宽,4条高。

正方体有12条棱,并且长度都是一样的。

2.125÷(10×5)=2.5(分米)答:这个水箱内的水深2.5分米。

【解析】2. 125÷(10×5)=2.5(分米)答:这个水箱内的水深2.5分米。

3.解:(4×4+4×1.5+4×1.5)×2=(16+6+6)×2=28×2=56(平方米)答:这个长方体的表面积是56平方米.【解析】3.长方体的表面积=(长×宽+长×高+宽×高)×2,把数据代入计算即可解答.本题考查了长方体表面积公式的应用,关键是掌握表面积公式.4.解:正方体的表面积=2×2×6=24(平方厘米),正方体的体积=23=8(立方厘米).答:这个正方体的表面积和体积分别是24平方厘米、8立方厘米.【解析】4.根据正方体的展开图,1﹣4﹣1型,补上3个小正方形,是它能够折成正方体,根据正方体的表面积=棱长×棱长×6求出正方体的表面积,根据体积=棱长3,求出体积,据此解答即可.此题考查正方体的展开图、表面积和体积,解决此题的关键是,熟悉正方体的展开图的类型,记住表面积体积的计算方法.5.解:【解析】5.6.解:【解析】6.7.【解析】7.8.解:50×20=1000(平方米)1000×1.5=1500(立方米)答:这个游泳池占地1000平方米,池内水的体积是1500立方米.【解析】8.用游泳池的长乘宽即可求出游泳池的占地面积,用占地面积乘水的深度即可求出池内水的体积.9.6×6×6=216(立方分米),216×2.7=583.2(千克)【解析】9.正方体的体积=棱长x棱长x棱长,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长方体与正方体⑴
⑴两个长7厘米、宽5厘米、高3厘米的同样大小的长方体拼成一个大长方体,表面积减少多少厘米?
⑵一个底面是正方形的长方体,如果高增加1厘米,它的表面积就增加4平方厘米,如果高是15厘米,它的体积是多少?
⑶一个8厘米长的长方体,正好截成两个正方体,这个长方体的表面积和体积各是多少?
⑷这是一个正方体纸盒的展开图,1点与哪些点重合?
⑸把一个正方体沿它的棱剪开,有11个展开图,这些展开图都有14个“点”,19条“边”。

正方体只有8个点,12条棱,为什么它的展开图有14个“点”,19条“边”呢?
⑴⑵⑶
⑷⑸⑹
⑺⑻⑼
⑽⑾
⑹用三条长度分别为235厘米、445厘米、515厘米的编织条加固长方体包装箱。

若每根编织条加固时截头重叠都是5厘米,问包装箱的体积是多少立方米?。

相关文档
最新文档