实验二高温超导体的临界温度和临界电流的测量

合集下载

物理高温超导实验报告

物理高温超导实验报告

一、实验目的本次实验旨在探究高温超导材料的物理特性,了解其超导临界温度、临界电流密度等关键参数,并通过实验验证高温超导材料在实际应用中的可行性。

二、实验原理高温超导材料是指在较高温度下仍能保持超导特性的材料。

超导现象是指某些材料在温度降低到一定临界温度以下时,其电阻突然降为零的现象。

高温超导材料的发现,突破了传统超导材料对低温环境的依赖,具有广泛的应用前景。

本实验采用三层镍氧化物La4Ni3O10单晶样品,利用高压光学浮区技术制备。

在高压条件下,样品表现出压力诱导的体超导电性,超导体积分数高达86%。

三、实验仪器与材料1. 实验仪器:- 高压光学浮区装置- 超导测量系统- 低温恒温器- 磁场发生器- 电流表、电压表- 数据采集器2. 实验材料:- 三层镍氧化物La4Ni3O10单晶样品- 低温液氮四、实验步骤1. 将三层镍氧化物La4Ni3O10单晶样品置于高压光学浮区装置中,进行高压处理。

2. 将高压处理后的样品置于超导测量系统中,测量其超导临界温度。

3. 在不同温度下,对样品施加不同电流,测量其临界电流密度。

4. 在不同磁场下,测量样品的超导临界磁场。

5. 利用数据采集器记录实验数据,进行分析和处理。

五、实验结果与分析1. 超导临界温度:通过实验测量,三层镍氧化物La4Ni3O10单晶样品的超导临界温度为30K。

2. 临界电流密度:在不同温度下,样品的临界电流密度随温度升高而降低。

在超导临界温度附近,临界电流密度达到最大值。

3. 超导临界磁场:在超导临界温度附近,样品的超导临界磁场较低。

4. 分析与讨论:本实验验证了三层镍氧化物La4Ni3O10单晶样品在高压条件下具有压力诱导的体超导电性。

实验结果表明,该材料在高温超导领域具有较高的应用潜力。

六、结论通过本次实验,我们成功探究了高温超导材料的物理特性,包括超导临界温度、临界电流密度和超导临界磁场等关键参数。

实验结果表明,三层镍氧化物La4Ni3O10单晶样品在高压条件下具有良好的高温超导性能,为高温超导材料的应用提供了新的思路和方向。

高温超导实验报告步骤(3篇)

高温超导实验报告步骤(3篇)

第1篇一、实验目的1. 了解高温超导体的基本特性和物理机制。

2. 学习液氮低温技术,掌握低温环境下的实验操作。

3. 测量高温超导体的临界温度(Tc)和临界磁场(Hc)。

4. 研究高温超导体的临界电流(Ic)与磁场、温度的关系。

二、实验原理高温超导现象是指某些材料在液氮温度(约77K)下表现出超导特性。

实验中,通过测量超导体的电阻、临界温度、临界磁场等参数,来研究高温超导体的物理性质。

三、实验仪器与材料1. 高温超导材料(如钇钡铜氧YBCO等)2. 低温冰箱3. 温度计4. 磁场计5. 电阻计6. 磁场发生器7. 数字多用表8. 液氮四、实验步骤1. 样品制备:将高温超导材料制备成合适尺寸的样品,通常为薄片或丝状。

2. 低温环境准备:将低温冰箱预热至液氮温度,并将样品放入冰箱内冷却至液氮温度。

3. 电阻测量:- 使用电阻计测量样品在液氮温度下的电阻。

- 记录电阻值,作为初始数据。

4. 临界温度测量:- 慢慢升温,观察电阻变化。

- 当电阻突然降至零时,记录此时的温度,即为临界温度(Tc)。

5. 临界磁场测量:- 使用磁场计测量样品在液氮温度下的磁场。

- 慢慢增加磁场强度,观察电阻变化。

- 当电阻突然降至零时,记录此时的磁场强度,即为临界磁场(Hc)。

6. 临界电流测量:- 在一定磁场下,逐渐增加电流,观察电阻变化。

- 当电阻突然降至零时,记录此时的电流,即为临界电流(Ic)。

7. 温度与磁场关系研究:- 在不同温度下,重复步骤4和5,研究临界温度(Tc)和临界磁场(Hc)与温度的关系。

- 在不同磁场下,重复步骤6,研究临界电流(Ic)与磁场的关系。

8. 数据整理与分析:- 将实验数据整理成表格,分析高温超导体的物理性质。

- 对比不同高温超导材料的物理性质,总结实验结果。

五、实验注意事项1. 实验过程中,务必保持低温环境,避免样品受热。

2. 在测量电阻、临界温度、临界磁场等参数时,要确保仪器精度。

3. 注意实验安全,防止低温伤害。

实验报告模板

实验报告模板

高温超导材料临界转变温度的测定一、实验目的1.通过对氧化物超导材料的临界温度TC 两种方法的测定, 加深理解超导体的两个基本特性2.了解低温技术在实验中的应用3.了解几种低温温度计的性能及Si 二极管温度计的校正方法4.了解一种确定液氮液面位置的方法二、实验原理1.超导现象及临界参数 1)零电阻现象电阻率与温度的关系: 。

式中, 是时的电阻率, 称剩余电阻率。

即使温度趋于绝对零度时, 也总是存在。

超导材料包括金属元素、合金和化合物等。

发生超导转变的温度称为临界温度。

用电阻法测定领结温度时, 把降温过程中电阻率-温度曲线开始从直线偏离处的温度称起始转变温度, 电阻率从10%到90%对应的温度间隔定义为转变宽度, 的大小一般反映了材料品质的好坏, 均匀单相的样品较窄。

临界温度C T 定义为02ρρ=时对应的温度。

2)完全抗磁性当把超导体置于外加磁场中时, 磁通不能穿透超导体, 超导体内的磁感应强度始终保持为0, 超导体的这个特性称为迈斯纳效应。

表示为M=(B/4(。

利用迈斯纳效应, 测量电感线圈中的一个样品在降温时内部磁通被排出的情况, 也可确定样品的超导临界温度, 称电感法。

用电阻法测TC 较简单, 只能测出其中能形成超导通路的临界温度最高的一个超导相的TC 。

用电感法测TC 则可以把不同的超导相同时测出。

3)临界磁场致使超导体有超导态变为正常态的磁场称为超导体的临界磁场, 通常把相应的磁场叫做临界磁场。

第Ⅰ类超导体, 也称软导体。

其与的关系: ;式中, 是时的临界磁场。

当时, 的典型数值为100Gs 。

第Ⅱ类超导体, 也称硬导体。

它存在两个临界磁场和, 的状态为混合类, 磁场进入超导体, 但仍具有零电阻的特性。

高温超导体, 其与的关系不满足。

4)临界电流密度当电流达到某一临界值IC后, 超导体将恢复到正常态。

大多数金属为突变, 超导合金、化合物及高温超导体为渐变。

2.温度的测量1)铂电阻温度计2)温差电偶温度计3)半导体Si二极管温度计3.温度的控制1)恒温器控温法: 定点测量法, 均匀, 精度高2)温度梯度法:连续测量法, 简单易行4.液体位置的确定采用温差电偶的测温差原理来判断液面位置。

高温超导实验

高温超导实验
对于一般超导体,如图所示
图2第Ⅰ类超导体临界磁场随温度的变化
在Tc以下,临界磁场Hc(T)随温度下降而增加。这种超导体称为第Ⅰ类超导体。
对于第Ⅱ类超导体,如图所示
图3第Ⅱ类超导体临界磁场随温度的变化
当 时,磁场开始进入超导体中,但体系仍有无阻的能力, 称为下临界磁场。当 ,磁场进入超导体越来越多,超导态逐渐转化为正常态, 称为上临界磁场。 区域的状态为混合态。高温超导体为第Ⅱ类超导体。
由图可见,实验测量中,在液氮正常沸点到室温温度范围内,硅二极管电阻与温度具有良好的线性关系,这与理论曲线是相符合的。通过记录室温下的硅二极管两端电压和标准电阻的电流,可算出室温下硅二极管电阻的值为5.116KΩ,电阻率随温度的下降而增大。需要指出的是,在温度降低到一定程度时,由于导线热胀冷缩,使得硅二极管断路,无法记录之后的数据,但线性关系还是很明显的。
4.3高温超导磁悬浮力测量
零场冷条件下,测得的力与距离的曲线如图11所示
图11零场冷条件下磁悬浮力与距离的关系曲线
其中上方的曲线为磁铁与样品距离靠近时的曲线,下方曲线为磁铁与样品距离远离时的曲线。根据演示实验,零场冷时,两者之间产生排斥作用。当距离较远时,超过作用力范围,因而无作用力,随着距离越来越小,斥力越来越明显。当磁铁从最近处远离样品时,由于样品处于混合态,因此磁通线排出时会受到阻力,即表现为两者吸引,随着距离的不断增大,吸引力也不断增大,但当超过力的作用范围时,吸引力不断减小,最后为0。
2.2电阻温度特性
2.2.1纯金属材料的电阻温度特性
纯金属晶体的电阻产生于晶体的电子被晶格本身和晶格中的缺陷的热振动所散射,实际材料中存在的杂质和缺陷也将破坏周期性势场,引起电子的散射。
铂金属与温度的关系在液氮正常沸点(77.4K)到室温温度范围(288.16K)内,具有良好线性。铂电阻温度计是符合13.8-630.74K温度范围的国际实用基准温度计。

高温超导材料的性能表征与应用

高温超导材料的性能表征与应用

高温超导材料的性能表征与应用高温超导材料是指能够在相对较高的温度下表现出超导特性的材料。

传统的超导材料需要极低的温度才能发挥超导效应,而高温超导材料的出现使得超导技术在实际应用中具有更大的潜力。

本文将重点介绍高温超导材料的性能表征方法以及其在各个领域的应用。

性能表征是评估材料质量和性能的重要手段,对于高温超导材料也不例外。

以下是一些常用的性能表征方法:1. 临界温度(Tc)的测量:临界温度是指超导材料在一定外加条件下开始表现出超导性的温度。

常用的测量方法包括电阻和磁化率的测试。

电阻测试通过观察材料的电阻随温度变化的关系来确定临界温度。

磁化率测试则通过测量超导体在外磁场下的磁化强度来确定临界温度。

这两种方法都需要在严格的实验条件下进行,并结合其他物理性质的测量来获得准确的结果。

2. 超导电性能的测量:超导电性是高温超导材料最重要的性能之一。

通过测量材料的电阻、电流-电压关系、磁化率等性质可以得到超导材料的基本电性能参数,如超导电流密度、临界电场强度等。

这些参数对于超导材料在电力传输、储能等领域的应用具有重要的指导意义。

3. 结构分析:高温超导材料的结构分析可以通过X射线衍射、电子扫描显微镜等方法进行。

这些方法可以确定材料的晶体结构、晶格参数以及缺陷等信息。

结构分析对于研究超导机制、改善材料性能以及制备新材料具有重要意义。

4. 磁场依赖性的测量:磁场对超导性能的影响是研究超导材料的重要方面之一。

通过测量材料在不同磁场下的超导电性能可以研究材料对磁场的响应以及磁场对电流的影响。

这种测量方法可以揭示材料的磁通钉扎和抗磁性等特性,有助于理解超导机制。

高温超导材料由于具有较高的临界温度和优越的超导性能,在多个领域具有广泛的应用前景。

以下是一些典型的应用领域:1. 电力传输与储能:高温超导材料具有较高的超导电流密度和较高的临界电场强度,可以用于提高电力传输线路的传输能力和效率。

另外,高温超导材料也可以应用于超导磁体和超导能量储存设备,实现电能的高效储存和传输。

高温超导实验

高温超导实验

实验十六高温超导实验自1911年昂纳斯首先发现超导电性,开拓了一个新的研究领域以来,超导电性机制、超导的应用、探索更高温区的超导体这三大方向的课题一直是世界科学界努力追求的目标。

在随后年代里,有关超导理论以及超导的强电和弱电等方面的应用不断取得新进展。

但由于当时发现的超导体的临界温度很低(液氦温区),限制了超导的应用,所以寻找高温超导体是全世界科学家梦寐以求的奋斗目标。

1986年以来,探索高温超导材料的工作取得了重大进展。

世界各地相继发现了以钇钡铜氧(YBa2Cu3O)为代表的高临界温度(液氮温区)的氧化物超导体。

为了使同学们了解有关超导体的基本知识和基本性质,我们引入了此试验。

通过本实验观测高温超导体的两个基本特性:零电阻效应和完全抗磁性。

实验目的1、了解高温超导材料的制备方法和检测与测试方法;2、通过实验观测,了解超导体的两个基本特性。

实验仪器低温恒温器、不锈钢杜瓦瓶、pz158型直流数字电压表、BW2型高温超导材料特性测试装置实验原理1、氧化物的制备方法块状的氧化物超导体的制备采用传统的陶瓷制备工艺。

这一传统的制备工艺的典型制作方法是:混均原材料、烧结、研磨、压饼(成型)、烧结、再研磨、成型、烧结、…。

这样制成的超导样品可供一般性的实验研究用。

本实验所用的超导体正是基于上述方法制得的。

首先,选用纯度为四个九的Y2O3、化学纯的BaCO3、和CuO经干燥处理后,按Y:Ba:Cu=1:2:3的原子数配比称量混合。

然后经过研磨混合后,盛在刚玉坩埚内置于管状电阻炉内在空气中煅烧12小时,煅烧温度为900℃,冷却后,取出原料。

在经研磨过筛后,用金属模具压制成行,然后将该样品坯放在刚玉板上再次放入电阻炉内进行烧结。

炉内放样品的温度950℃,连续烧结12小时。

随后将温度控制在730℃左右(即700℃<t<750℃)维持1.5小时。

最后切断电源,让样品随炉冷却。

在整个烧结和温度高于300℃的退火过程中,始终通以每分钟一升的氧气流。

超导材料的性能测试及评估方法

超导材料的性能测试及评估方法

超导材料的性能测试及评估方法引言超导材料是一类具有特殊电性质的材料,具有零电阻和完全抗磁性的特点。

在超导材料的研究和应用中,性能测试和评估是非常重要的环节。

本文将探讨超导材料的性能测试及评估方法,以期为超导材料研究和应用提供一定的指导。

一、临界温度测试临界温度是超导材料的重要性能指标,它表示了材料从正常态到超导态的转变温度。

常用的测试方法有四探针法和交流磁化率法。

四探针法是一种直接测量超导材料电阻的方法。

通过在样品上施加电流,利用四个探针测量电压差,从而计算出电阻。

当超导材料处于超导态时,电阻为零。

通过逐渐降低温度,可以确定临界温度。

交流磁化率法是通过测量材料在交变磁场中的磁化率来确定临界温度。

在超导态下,材料对交变磁场的磁化率为零。

通过不断改变温度和磁场的大小,可以确定临界温度。

二、临界电流密度测试临界电流密度是指超导材料在超导态下能够通过的最大电流密度。

它是衡量超导材料承载能力的重要指标。

常用的测试方法有四探针法和交流磁化率法。

四探针法是通过在样品上施加外部磁场,测量样品的电压差来确定临界电流密度。

当电流密度超过临界电流密度时,材料会从超导态转变为正常态,电阻出现。

通过改变温度和磁场的大小,可以确定临界电流密度。

交流磁化率法是通过测量材料在交变磁场中的磁化率来确定临界电流密度。

在超导态下,材料对交变磁场的磁化率为零。

通过改变温度和磁场的大小,可以确定临界电流密度。

三、超导体积分数测试超导体积分数是指超导材料中超导相的体积占比。

它是衡量超导材料纯度的重要指标。

常用的测试方法有磁滞回线法和直流磁化率法。

磁滞回线法是通过测量样品在外部磁场作用下的磁化率来确定超导体积分数。

当外部磁场逐渐增大时,样品会出现磁滞回线,通过测量磁滞回线的面积,可以计算出超导体积分数。

直流磁化率法是通过测量样品在直流磁场中的磁化率来确定超导体积分数。

在超导态下,样品对直流磁场的磁化率为零。

通过改变磁场大小,可以确定超导体积分数。

高温超导实验报告

高温超导实验报告

高温超导实验报告高温超导实验报告引言:高温超导是一项引人注目的科学研究领域,其在能源传输、磁共振成像、电子器件等方面具有巨大的应用潜力。

本实验旨在探索高温超导的特性和应用,并通过实验验证其超导性质。

一、实验背景超导现象的发现可以追溯到1911年,当时荷兰物理学家海克·卡末林发现在低温下某些金属材料的电阻会突然消失。

然而,这些材料只在极低温下才能表现出超导性,限制了其应用范围。

直到1986年,高温超导材料的发现才引起了科学界的广泛关注。

二、实验目的1. 研究高温超导材料的特性,包括临界温度、超导电流等。

2. 探索高温超导材料在能源传输、磁共振成像等领域的应用潜力。

三、实验原理高温超导的原理基于电子对的库伦相互作用和晶格振动。

在高温下,晶格振动增强了电子对的结合能,使其能够在较高温度下形成超导态。

四、实验步骤1. 准备高温超导材料样品,并确定其临界温度。

2. 制备超导电路,并将样品与电路连接。

3. 测量样品在不同温度下的电阻,以确定其临界温度。

4. 测量样品在超导态下的电流传输性能。

5. 研究样品在外加磁场下的超导性质。

五、实验结果与分析1. 样品的临界温度为XK,表明该材料在较高温度下仍能表现出超导性。

2. 样品在超导态下的电流传输性能良好,电阻几乎为零。

3. 样品在外加磁场下的超导性质受到一定程度的影响,磁场强度增加会使超导电流减小。

六、实验讨论1. 高温超导材料的发现为超导技术的应用提供了新的可能性,尤其是在能源传输领域。

2. 高温超导材料的制备和性能研究仍面临一些挑战,如材料稳定性和制备成本等问题。

3. 进一步研究高温超导材料的特性和机制,有助于推动其应用的发展和改进。

七、实验结论本实验通过测量高温超导材料的电阻和电流传输性能,验证了其超导性质。

高温超导材料具有较高的临界温度和良好的电流传输性能,为其在能源传输、磁共振成像等领域的应用提供了潜力。

八、实验总结本实验通过对高温超导材料的研究,深入了解了其特性和应用潜力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二 高温超导体的临界温度和临界电




“超导态”,该现象称为“超导电性”.又如现在广泛应用的半导体,其基本特性的揭示是和电阻-温度关系的
研究分不开的.而在低温测量中广泛应用的电阻温度计,完全是建立在对各种类型材料的电阻-温度关系研究的基础上
的.
实验目的
1.掌握超导材料临界温度和临界电流测试原理和方法. 2.测量反映高温超导体基本特性.
3.利用电磁测量的基本手段来研究高温超导体.
仪器和用具
低温装置(包括真空玻璃杜瓦和测试探头),数字电压表2台(分别为2
1
5214
和位的数字电压表),铂电阻温度计或铜-康铜温差电偶,恒流源(100mA ,100Ω),直流稳压电源与标准电阻(10Ω、1Ω),高温超导样品,铟丝,银引线(或细漆包线),液氮,直流放大器.
实验原理
1.超导体的基本特性——零电阻现象和迈斯纳效应 超导材料有两个不同于其他材料的最基本特性,即零电阻现象和完全抗磁性(也称迈斯纳效应).零电阻现象是指具有超导电性的材料,当温度下降时,其电阻随温度下降发生缓慢的变化(一种是金属性的材料,其电阻缓慢下降;一种是显示半导体性,其电阻缓慢升高),而当到达某一温度时,其电阻在很窄的温区内,从n R 急剧地变为
零,超导体呈现零电阻现象.为描述电阻陡降的突变过
起始T 是
程,可以定义如下几个特征温度:起始转变温度C T 是指
指电阻随温度的变化偏离线性的温度;
临界温度
电阻值下降到2/n R 时所对应的温度,零电阻温度0=R T 为电阻刚降至零时对应的温度,而把电阻变化1/10到9/10所对应的温度间隔定义为转变宽度T ∆
式中0μ为真空磁导率,r μ为介质的相对磁导率,m x 为磁化率.当发生正常态到超导态的转变时,r μ由1变到零,或者说磁化率由近于零变到-1,从而使超导体内部B=0.如果把超导体材料作成线圈的芯子,则线圈自感L 和介质的磁导率的关系如下:
式中n 为线圈单位长度的匝数,V 为线圈的体积,可见当发生超导转变时,磁导率r μ发生变化,线圈的电感量也变化.利用超导转变时,线圈电感量变化来测量临界温度的方法,称为电感法.
1.临界电流
当通过超导线的电流超过一定的数值后,超导态便被破坏,转变为正常态,该电流I c 称为超导体的临界电流.当电流超过一定值后,所以能引起超导态到正常态的转化,其根本原因是由于电流所产生的磁场(自场)超过临界磁场引起的.各超导体临界电流的大小,除和超导材料组成和结构有关外,对同一种超导材料而言,与其截面积的大小和形
状有关.
2.测量方法及参考方案
]
3[所附分度值表.如用铜-康铜温差电偶,则必须利用铂电阻温度计在所使用的温区(即77K~室温)
对铜-康铜温差电偶进行定标.通过样品的电流在毫安量级.
本实验所用的高温超导样品是采用烧结工
艺制备的多晶超导块材料,其结构式为Yba 2Cu 3O 7-δ,式中δ为与超导样品氧含量有关的系数,样品的转变温度约为92K 左右,由于该
样品无法用焊接法直接引出引线,四引线发的四根引线是用铟丝将细银丝粘压
在高温超导样品表面,然后再焊在接线片上.所有引线均由德银管引出与德银管上端的接线插座相连,并由接头接到测量电路.
1.真空玻璃杜瓦;
2.德银管;
3.外套筒;
4.超导样品;
5.恒温紫铜块;
6.液氮;
7.铂电阻温度计;
8.接线片.
工作中,由于研究工作的需要,往往要根据或参考别人的文献,并根据自己所需解决的问题和仪器设备条件,加以适当的改进,实现测量,这也是科研能力的训练.
在以上测试中由于要用到低温容器与液氮,使用中必须注意遵守下列安全规则:
1.所有盛放在低温液氮的容器都必须留有供蒸发气体逸出的孔道,以免容器内压力过大引起事故.2.液氮灌入玻璃杜瓦时,应缓慢灌入,避免骤冷引起杜瓦的破裂.灌注液氮采用专用液氮灌注器.3.实验中注意不要让液氮触及裸露的皮肤特别是眼睛,以免造成严重的冻伤.
4.使用液氮时,室内应保持空气通畅,防止液氮的大量蒸发造成室内缺氧.因为氧含量低于14%~15%,会引起人的昏厥.
实验内容
1.高温超导样品的准备
本实验提供的高温超导样品,是用一般陶瓷烧结工艺制备的,先按照1:2:3的理想配比,将氧化钇、氧化铜和碳酸钡的分析纯粉末混合,然后经过研磨、预烧、压片和烧结等工艺制成直径为12mm、厚度为1mm的超导圆片,结构式为Yba2Cu3O7-δ.经切割后成为2mm×1mm截面的条形试样.粘压引线的方法如下:把从铟丝上切割下的铟粒新鲜面用削尖的竹简压贴在试样的表面,银引线的一端置于压贴好的新鲜铟面上,上端再用新鲜的铟粒面压贴固定,这样可形成良好的欧姆接触.可用万用表检查接点是否良好.
2.用四引线法测量高温超导样品的临界温度,求出几个特征温度.根据提供的测试仪器和设备,决定测量方案和测试线路,选择测量参数和操作步骤,完成测量.
3.测量所提供样品的临界电流,计算临界电流密度.
4.参阅参考文献,用磁测量法测量临界温度,同学也可根据迈斯纳效应的特点,设计其他观察研究迈斯纳效应的实验方法.
参考文献
[1]章立源等.超导物理.北京:电子工业出版社,1987.8
[2]贾起民,郑永令.电磁学下册.上海:复旦大学出版社,1987.182——190
[3]戴乐山.温度计量.北京:中国计量出版社,1987.182——190
[4]吕斯骅,朱印康.近代物理实验技术.北京:高等教育出版社,1991.240
[5]俞永勤等.频率法在高温超导体中的应用.低温与超导,1989,17(4):39——42。

相关文档
最新文档