第24届希望杯全国数学竞赛八年级决赛试题(含答案)
历届1-24“希望杯”全国数学邀请赛八年级-真题及答案

第二届(1991 年)初中二年级第一试试题
一、选择题:(每题1分,共15分)
1.如图1,已知AB=8,AP=5,OB=6,则OP的长是[ ] A.2; B.3; C.4; D.5
2.方程x2-5x+6=0的两个根是[ ] A.1,6 ; B.2,3; C.2,3; D.1,6
A
O
P
B
(1)
3.已知△ABC是等腰三角形,则[ ]
8x
2y 5
z
6x 3
z
x
2
y
x y z
3
x 1 5
y 1 3
3x 4 y 5z 1
则1989x-y+25z=______. 10.已知3x2+4x-7=0,则6x4+11x3-7x2-3x-7=______.
一、选择题
答案与提示
提示: 1.因为所求角α=5(90°-α),解得α=75°.故选(B). 2.因为2的平方是4,4的平方根有2个,就是±2.故选(C). 3.以x=1代入,得a0-a1+a0-a1-a1+a1-a0+a1-a0+a1=2a0-3a1+3a1-2a0=0.故选(A).
1. △ABC中,∠CAB ∠B=90°,∠C的平分线与AB交于L,∠C的外角平分线与BA
的延长线交于N.已知CL=3,则CN=______.
2. 若 a 1 (ab 2)2 0 ,那么
1
1
ab (a 1)(b 1)
1
的值是_____.
(a 1990)(b 1990)
3. 已知a,b,c满足a+b+c=0,abc=8,则c的取值范围是______.
历届希望杯初二试题及答案

历届希望杯初二试题及答案一、选择题(每题5分,共20分)1. 下列哪个数不是质数?- A. 2- B. 3- C. 4- D. 5答案:C2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?- A. 5- B. 6- C. 7- D. 8答案:A3. 一个数的平方根是4,这个数是多少?- A. 16- B. 8- C. 4- D. 2答案:A4. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?- A. 25π- B. 50π- C. 100π- D. 200π答案:B二、填空题(每题3分,共15分)1. 一个数的立方根是2,这个数是______。
答案:82. 如果一个数的绝对值是5,那么这个数可能是______或______。
答案:5,-53. 一个数的倒数是1/4,这个数是______。
答案:44. 一个圆的直径是10厘米,那么它的半径是______厘米。
答案:55. 一个直角三角形的两个锐角的度数之和是______度。
答案:90三、解答题(每题10分,共30分)1. 一个长方形的长是宽的两倍,如果长是10厘米,求这个长方形的面积。
答案:首先,我们知道长方形的宽是长的一半,即5厘米。
长方形的面积是长乘以宽,所以面积是10厘米乘以5厘米,等于50平方厘米。
2. 一个数列的前三项是2,4,8。
如果这个数列是一个等比数列,求第四项。
答案:等比数列的每一项都是前一项的固定倍数。
这里,每一项都是前一项的2倍。
所以,第四项是8乘以2,等于16。
3. 一个水池的容积是100立方米,如果每小时流入水池的水是5立方米,求需要多少小时才能填满水池。
答案:要填满100立方米的水池,每小时流入5立方米,需要的时间是100除以5,等于20小时。
结束语希望杯数学竞赛不仅考查学生的数学知识,更注重考查学生的逻辑思维和解决问题的能力。
通过这样的竞赛,学生能够更好地理解数学知识,提高自己的数学素养。
八年级数学希望杯第1-22届试题汇总(含答案与提示)

希望杯第一届(1990)第二试试题 (1)希望杯第二届(1991年)初中二年级第二试试题 (5)希望杯第三届(1992年)初中二年级第二试题 (10)希望杯第四届(1993年)初中二年级第一试试题 (18)希望杯第四届(1993年)初中二年级第二试试题 (24)希望杯第五届(1994年)初中二年级第一试试题 (26)希望杯第五届(1994年)初中二年级第二试试题 (32)第六届(1995年)初中二年级第一试试题 (45)希望杯第六届(1995年)初中二年级第二试试题 (50)希望杯第七届(1996年)初中二年级第一试试题 (56)希望杯第七届(1996年)初中二年级第二试试题 (62)希望杯第八届(1997年)初中二年级第一试试题 (72)希望杯第八届(1997年)初中二年级第二试试题 (79)第九届(1998年)初中二年级第一试试题 (88)希望杯第九届(1998年)初中二年级第二试试题 (98)1999年第十届“希望杯”全国数学邀请赛第二试 (108)2000年第十一届“希望杯”数学竞赛初二第一试 (111)2000年第十一届“希望杯”数学竞赛初二第二试 (114)2001年希望杯第十二届初中二年级第一试试题 (119)2001年希望杯第12届八年级第2试试题 (122)2002年第十三届全国数学邀请赛初二年级第一试 (129)2002年度初二“希望杯”全国数学邀请赛第二试 (132)2003年第十四届“希望杯”全国数学邀请赛初二第1试 (139)2003年第十四届“希望杯”(初二笫2试) (142)2004年第十五届“希望杯”全国数学邀请赛初二 (148)2004年第十五届“希望杯”全国数学邀请赛初二第2试 (151)2005年第十六届希望杯初二第1试试题 (157)2005年第十六届“希望杯”全国数学邀请赛第二试 (159)2006年第十七届“希望杯”全国数学邀请赛第一试 (163)2006年第十七届“希望杯’’数学邀请赛第二试 (166)2007年第十八届”希望杯“全国数学邀请赛第一试 (171)2007年第十八届“希望杯”全国数学邀请赛第二试 (173)2008年第19届“希望杯”全国数学邀请赛初二第2试试题 (179)2009年第二十届“希望杯”全国数学邀请赛第一试 (183)2009年第20届“希望杯”全国数学邀请赛第二试 (186)2010年第二十一届“希望杯”全国数学邀请赛第一试 (193)2010年第二十一届“希望杯”全国数学邀请赛第二试 (195)2011年第二十二届“希望杯”全国数学邀请赛第二试 (201)希望杯第一届(1990)第二试试题一、选择题:(每题1分,共5分)1.等腰三角形周长是24cm,一腰中线将周长分成5∶3的两部分,那么这个三角形的底边长是[ ]A.7.5 B.12. C.4. D.12或42.已知P=2)1989(11991199019891988-++⨯⨯⨯,那么P 的值是[ ]A .1987B .1988.C .1989D .19903.a >b >c ,x >y >z ,M=ax+by+cz ,N=az+by+cx ,P=ay+bz+cx ,Q=az+bx+cy ,则[ ]A .M >P >N 且M >Q >N.B .N >P >M 且N >Q >MC .P >M >Q 且P >N >Q.D .Q >M >P 且Q >N >P4.凸四边形ABCD 中,∠DAB=∠BCD=900, ∠CDA ∶∠ABC=2∶1,AD ∶CB=1,则∠BDA=[ ]A .30°B .45°.C .60°.D .不能确定5.把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割[ ]A .是不存在的.B .恰有一种.C .有有限多种,但不只是一种.D .有无穷多种二、填空题:(每题1分,共5分)1. △ABC 中,∠∠B=90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA 的延长线交于N .已知CL=3,则CN=______.2. 2(2)0ab -=,那么111(1)(1)(1990)(1990)ab a b a b ++++++的值是_____. 3. 已知a ,b ,c 满足a+b+c=0,abc=8,则c 的取值范围是______.4. ΔABC 中, ∠B=300,三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是______. 5. 设a,b,c 是非零整数,那么a b c ab ac bc abc a b c ab ac bc abc++++++的值等于_________.三、解答题:(每题5分,共15分)1.从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177.2.平面上有两个边长相等的正方形ABCD 和A 'B 'C 'D ',且正方形A 'B 'C 'D '的顶点A '在正方形ABCD 的中心.当正方形A 'B 'C 'D '绕A '转动时,两个正方形的重合部分的面积必然是一个定值.这个结论对吗?证明你的判断.3.用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n 之和被7除余数都不为1,将所有满足上述条件的自然数n 由小到大排成一列n 1<n 2<n 3<n 4……,试求:n 1·n 2之值.答案与提示一、选择题提示:1.若底边长为12.则其他二边之和也是12,矛盾.故不可能是(B)或(D).又:底为4时,腰长是10.符合题意.故选(C).=19882+3×1988+1-19892=(1988+1)2+1988-19892=19883.只需选a=1,b=0,c=-1,x=1,y=0,z=-1代入,由于这时M=2,N=-2,P=-1,Q=-1.从而选(A).4.由图6可知:当∠BDA=60°时,∠CDB5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点,组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于1的正三角形.故选(D).二、填空题提示:1.如图8:∠NLC=∠B+∠1=∠CAB-90°+∠1=∠CAB-∠3 =∠N.∴NC=LC=3.5.当a,b,c均为正时,值为7.当a,b,c不均为正时,值为-1.三、解答题1.证法一把1到354的自然数分成177个组:(1,178),(2,179),(3,180),…,(177,354).这样的组中,任一组内的两个数之差为177.从1~354中任取178个数,即是从这177个组中取出178个数,因而至少有两个数出自同一个组.也即至少有两个数之差是177.从而证明了任取的178个数中,必有两个数,它们的差是177.证法二从1到354的自然数中,任取178个数.由于任何数被177除,余数只能是0,1,2,…,176这177种之一.因而178个数中,至少有两个数a,b的余数相同,也即至少有两个数a,b之差是177的倍数,即×177.又因1~354中,任两数之差小于2×177=354.所以两个不相等的数a,b之差必为177.即.∴从自然数1,2,3,…,354中任取178个数,其中必有两个数,它们的差是177.2.如图9,重合部分面积S A'EBF是一个定值.证明:连A'B,A'C,由A'为正方形ABCD的中心,知∠A'BE=∠A'CF=45°.又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C.在△A'FC和△A'EB中,∴S A'EBF=S△A'BC.∴两个正方形的重合部分面积必然是一个定值.3.可能的四位数有9种:1990,1909,1099,9091,9109,9910,9901,9019,9190.其中 1990=7×284+2,1909=7×272+5.1099=7×157,9091=7×1298+5,9109=7×1301+2,9910=7×1415+5,9901=7×1414+3,9019=7×1288+3,9190=7×1312+6.即它们被7除的余数分别为2,5,0,5,2,5,3,3,6.即余数只有0,2,3,5,6五种.它们加1,2,3都可能有余1的情形出现.如0+1≡1,6+2≡1,5+3≡(mod7).而加4之后成为:4,6,7,9,10,没有一个被7除余1,所以4是最小的n.又:加5,6有:5+3≡1,6+2≡1.(mod7)而加7之后成为7,9,10,12,13.没有一个被7除余1.所以7是次小的n.即 n1=4,n2=7∴ n1×n2=4×7=28.希望杯第二届(1991年)初中二年级第二试试题一、选择题:(每题1分,共10分)1.如图29,已知B是线段AC上的一点,M是线段AB的中点,N为线段AC的中点,P为NA的中点,Q为MA的中点,则MN∶PQ等于( )A.1 ; B.2; C.3; D.42.两个正数m,n的比是t(t>1).若m+n=s,则m,n中较小的数可以表示为( )A.ts; Bs-ts; C.1tss+; D.1st+.3.y>0时( )4.(x+a)(x+b)+(x+b)(x+c)+(x+c)(x+a)是完全平方式,则a,b,c的关系可以写成( ) A.a<b<c. B.(a-b)2+(b-c)2=0. C.c<a<b. D.a=b≠c5.如图30,AC=CD=DA=BC=DE.则∠BAE是∠BAC的 ( )A.4倍. B.3倍. C.2倍. D.1倍6.D是等腰锐角三角形ABC的底边BC上一点,则AD,BD,CD满足关系式( )A.AD 2=BD 2+CD 2. B .AD 2>BD 2+CD 2. C .2AD 2=BD 2+CD 2. D .2AD 2>BD 2+CD 27.方程2191()1010x x -=+的实根个数为( ) A .4 B .3. C .2 D .18.能使分式33x y y x-的值为的x 2、y 2的值是( )A.x 2y 22,y 2C. x 2y 22,y 29.在整数0,1,2,3,4,5,6,7,8,9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u .则x+y+z+u 的值为 ( )A .17B .15.C .13D .1110.两个质数a ,b ,恰好是x 的整系数方程x 2-21x+t=0的两个根,则b a a b +等于( ) A.2213; B.5821; C.240249; D.36538. 二、填空题(每题1分,共10分)1.1989×19911991-1991×19891988=______.2.分解因式:a 2+2b 2+3c 2+3ab+4ac+5bc=______.3.(a 2+ba+bc+ac):[(b 2+bc+ca+ab):(c 2+ca+ab+bc)]的平方根是______.4.边数为a ,b ,c 的三个正多边形,若在每个正多边形中取一个内角,其和为1800,那么111a b c++=_________. 5.方程组51x ay y x +=⎧⎨-=⎩有正整数解,则正整数a=_______. 6.从一升酒精中倒出13升,再加上等量的水,液体中还有酒精__________升;搅匀后,再倒 出13升混合液,并加入等量的水, 搅匀后,再倒出13升混合液, 并加入等量的水,这时,所得混合液中还有______升酒精.7.如图31,在四边形ABCD 中.AB=6厘米,BC=8厘米,CD=24厘米,DA=26厘米.且∠ABC=90°,则四边形ABCD 的面积是______.8.如图32,∠1+∠2+∠3∠4+∠5+∠6=______.9.2x x +++______.10.已知两数积ab ≠1.且2a2+1234567890a+3=0,3b2+1234567890b+2=0,则ab=______.三、解答题:(每题5分,共10分,要求:写出完整的推理、计算过程,语言力求简明,字迹与绘图力求清晰、工整)1.已知两个正数的立方和是最小的质数.求证:这两个数之和不大于2.2.一块四边形的地(如图33)(EO∥FK,OH∥KG)内有一段曲折的水渠,现在要把这段水渠EOHGKF改成直的.(即两边都是直线)但进水口EF的宽度不能改变,新渠占地面积与原水渠面积相等,且要尽可能利用原水渠,以节省工时.那么新渠的两条边应当怎么作?写出作法,并加以证明.答案与提示一、选择题提示:3.由y>0,可知x<0.故选(C).4.容易看到a=b=c时,原式成为3(x+a)2,是完全平方式.故选(B).5.△ACD是等边三角形,△BCA和△ADE均为等腰三角形.故知∠BAC=30°,而∠BAE=120°,所以选(A).6.以等边三角形为例,当D为BC边上的中点时,有AD2>BD2+CD2,当D为BC边的端点时,有AD2=BD2+CD2,故有2AD2>BD2+CD2.故选(D).故选(C).∴选(C).9.∵x=4,y=5,z=4,u=4.∴选(A).10.由a+b=21,a,b质数可知a,b必为2与19两数.二、填空题提示:1.1989×19911991-1991×19891988=1989 (1991×104+1991)-1991(1989×104+1988)=1989×1991-1991×1988=1991.2.原式=a2+b2+c2+2ab+2bc+2ca+b2+2c2+ab+2ac+3bc=(a+b+c)2+(b+c)(b+2c)+a(b+2c)=(a+b+c)2+(b+2c)(a+b+c)=(a+b+c)(a+2b+3c).3.原式=(a+c)(a+b)∶[(b+a)(b+c)∶(c+a)(c+b)]∴平方根为±(a+c).4.正多边形中,最小内角为60°,只有a,b,c均为3时,所取的内角和才可能为180°.5.两式相加有(1+a)y=6,因为a,y均为正整数,故a的可能值为5,这时y=1,这与y-x=1矛盾,舍去;可能值还有a=2,a=1,这时y=2,y=3与y-x=1无矛盾.∴a=1或2.7.在直角三角形ABC中,由勾股定理可知AC=10cm,在△ADC中,三边长分别是10,24,26,由勾股定理的逆定理可△ADC为直角三角形.从而有面积为8.∠1+∠2+∠3+∠4+∠5+∠6,正好是以∠2,∠3,∠5为3个内角的四边形的4个内角之和.∴和为360°.10.由已知条件可知a是方程2x2+1234567890x+3=0的一个根,b是方程3y2+1234567890y+2=0的一个根,后者还可以看成:三、解答题1.设这两个正数为a,b.则原题成为已知a3+b3=2,求证a+b≤2.证明(反证法):若a+b>2由于a3+b3=2,必有一数小于或等于1,设为b≤1,→a>,这个不等式两边均为正数,→a3>(2-b)3.→a3>8-12b+6b2-b3.→a3+b3>8-12b+6b2.→6b2-12b+6<0.→b2-2b+1<0.→(b-1)2<0.矛盾.∴a+b≤2.即本题的结论是正确的.2.本题以图33为准.由图34知OK∥AB,延长EO和FK,即得所求新渠.这时,HG=GM(都等于OK),且OK∥AB,故△OHG的面积和△KGM的面积相同.即新渠占地面积与原渠面积相等.而且只挖了△KGM这么大的一块地.我们再看另一种方法,如图35.作法:①连结EH,FG.②过O作EH平行线交AB于N,过K作FG平行线交于AB于M.③连结EN和FM,则EN,FM就是新渠的两条边界线.又:EH∥ON∴△EOH面积=△FNH面积.从而可知左半部分挖去和填出的地一样多,同理,右半部分挖去和填出的地也一样多.即新渠面积与原渠的面积相等.由图35可知,第二种作法用工较多(∵要挖的面积较大).故应选第一种方法。
历届希望杯全国中学生数学竞赛试题

———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
ﻫ
ﻫ
ﻫ
第三届“希望杯”全国数学邀请赛初一第1试
ﻫ
第三届“希望杯”全国数学邀请赛初一第2试
ﻫ
第四届“希望杯”全国数学邀请赛初一第1试
ﻫ
第十六届“希望杯”全国数学邀请赛初一第1试
ﻫ
第十六届“希望杯”全国数学邀请赛初一第2试
ﻫ
第十七届“希望杯”全国数学邀请赛初一第1试
ﻫHale Waihona Puke ﻫ第十七届“希望杯”全国数学邀请赛初一第2试
ﻫ ﻫ ﻫ
第十七届“希望杯”全国数学邀请赛初二第1试
ﻫ ﻫ
第十七届“希望杯”全国数学邀请赛初二第2试
ﻫ ﻫ ﻫ
ﻫ
第八届“希望杯”全国数学邀请赛初一第2试
第九届“希望杯”全国数学邀请赛初一第1试
ﻫ
第九届“希望杯”全国数学邀请赛初一第2试
第十届“希望杯”全国数学邀请赛初一第1试
ﻫ
第十届“希望杯”全国数学邀请赛初一第2试
第十一届“希望杯”全国数学邀请赛初一第1试
ﻫ
第十一届“希望杯”全国数学邀请赛初一第2试
ﻫ ﻫ
第十二届“希望杯”全国数学邀请赛初一第1试
ﻫ ﻫ
第十二届“希望杯”全国数学邀请赛初一第2试
ﻫ ﻫ
第十三届“希望杯”全国数学邀请赛初一第1试
ﻫ
第十三届“希望杯”全国数学邀请赛初一第2试
ﻫ ﻫ
第十四届“希望杯”全国数学邀请赛初一第1试
ﻫ
第十四届“希望杯”全国数学邀请赛初一第2试
历届1-24“希望杯”全国数学邀请赛八年级-真题及答案

5.如图7按同心圆分成面积相等的四部分.在最外面一部分中显然可以找到三个点, 组成边长大于1的正三角形.如果三个圆换成任意的封闭曲线,只要符合分成的 四部分面积相等,那么最外面部分中,仍然可以找到三个点,使得组成边长大于 1的正三角形.故选(D). 二、填空题
12.如果 2x 3x 1, 那么 3 (x 2)3 (x 3)2 等于[ ]
A.2x+5 B.2x-5; C.1 D.1
9.已知 x2 2xy 2y 1
y2 1
y 1 等于一个固定的值,
x2 1
2y2 xy y x 1 x 1
则这个值是( ) A.0. B.1.
C.2.
D.4.
把f1990化简后,等于 ( )
A. x . B.1-x. C. 1 . D.x.
x 1
x
二、填空题(每题1分,共10分)
1. 1302 662 ________.
9.方程x2+|x|+1=0有[ ]个实数根.
A.4; B.2; C.1; D.0 10.一个两位数,用它的个位、十位上的两个数之和的3倍减去-2,仍得原数,这个两
位数是[ ] A.26; B.28; C.36; D.38 11.若11个连续奇数的和是1991,把这些数按大小顺序排列起来,第六个数是[ ] A.179; B.181; C.183; D.185
∠A'BE=∠A'CF=45°. 又,当A'B'与A'B重合时,必有A'D'与A'C重合,故知∠EA'B=∠FA'C. 在△A'FC和△A'EB中,
∴SA'EBF=S△A'BC.
∴两个正方形的重合部分面积必然是一个定值. 3.可能的四位数有9种:
2024希望杯冬令营比赛试题——八年级

2024IHCD-8中文卷1∙计算:Vy-丁4一"4一16JT除以〃一/44一16:押商是----------------------24名男同学和2名女同学打算寒假去公园游玩,他们商定要拍下6名同学站成一排且两名女同学不相邻的所有排序的照片各一张。
那么他们一共要拍张照片。
3 .如图,图中直角三角形两条直角边的长分别为2和4,左边正方形的面积在数值上和直角三角形的周长相等,则右边梯形的面积为O4 .小明的生日月份数乘以21,生日日期数乘以5,相加后得83,小明生日的月份数与日期数之积是O5 .五名大学生要去越秀公园、流花湖公园、中心湖公园做义工,每个公园至少去一人,有种分派方法。
6 .方程J-T+√x3+χ2=1的实数解为o7 .12个连续的正整数,其和可以表示为7个连续正整数的和,也可以表示为5个连续正整数的和。
那么,这12个连续的正整数中最大数的最小值是8 .平面内有80条直线,其中有10条互相平行,这80条直线最多可以将平面分为部分。
9 .若二次函数/(%)=N+a%+b 满足f(α+b)=/(-I-Q2),/(1)>1,则b -老的最小值是 ________ O410 .从1,2, 2024这2024个正整数中,最多可以取出个数,使得所取出的数中任意四个数之和都能被44整除。
的值是 _______12.在幸福中学校园乒乓球比赛中,小林和小王战成了5:5平,已知在比赛过程中小林从没落后,则比分上升的方式有种。
如图,EF 垂直长方形ABCD 的对角线BD,垂足是B 。
EH 、FG 分别过A 、C 平行且平行于BD,GH 过顶点D 且平行于EF 。
已知AB=60,3080,BD=1000那么图中阴影部分三角形4。
H 的面积是,11.如图,已知AABC 的三边长分别为〃,b,c o ZC=90o ,则 y∣C+a+y∣c+b13.14 .从9颗不同的珠子中选出6颗串成一串手链(选出的6颗珠子围成一圈),可以串出种不同的手链。
第24届希望杯全国数学竞赛八年级决赛试题(含答案)

初二奥数题一、选择题(本大题共10小题,每小题4分,菜40分。
)1、红丝带是关注艾滋病防治问题的国际性标志,人胶将红丝带剪成小段,并用别针将折叠好的红丝带加紧在胸前,如图1所示,红丝带重叠部分形成的图形是( )(A )正方形 (B )矩形 C )菱形 (D )梯形 2、设a 、b 、C 是不为零的实数,那么||||||a b cx a b c =+-的值有( ) (A )3种 (B )4种 (C )5种 (D )6种3、ABC ∆的边长分别是21a m =-,21b m =+,()20c m m =>,则ABC ∆是( )(A )等边三角形 (B )钝角三角形 (C )直角三角形 (D )锐角三角形4、古人用天干和地支记序,其中天干有10个;甲乙丙丁戊己庚辛壬癸,地支有12个;子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字对应排列成如下两行; 甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁…… 子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……,我国的农历纪年就是按这个顺序得来的,如公历2007年是农历丁亥年,那么从今年往后,农历纪年为甲亥年的那一年在公历中( ) (A )是2019年, (B )是2031年, (C )是2043年, (D )没有对应的年号 5、实数 a 、b 、m 、n 满足a <b , -1<n <m , 若1a mb M m +=+,1a nbN n+=+,则M 与N 的大小关系是( )(A )M >N (B)M =N (C)M <N (D)无法确定的。
6、若干个正方形和等腰直角三角形拼接成如图2所示的图形,若最大的正方形的边长是7cm ,则正方形A 、B 、C 、D 的面积和是( )(A )214cm (B )242cm (C )249cm (D )264cm 7、已知关于x 的不等式组230320a x a x +>⎧⎨-≥⎩恰有3个整数解,则a 的取值范围是( )(A )23≤a ≤32 (B)43≤a ≤32 (C)43<a ≤32 (D)43≤a <329、某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图3所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,则服药一次治疗疾病有效的时间为( )(A )16小时 (B )7158小时 (C )151516小时 (D )17小时 10、某公司组织员工一公园划船,报名人数不足50人,在安排乘船时发现,每只船坐6人,就剩下18人无船可乘;每只船坐10人,那么其余的船坐满后内参有一只船不空也不满,参加划船的员工共有( ) (A )48人 (B )45人 (C )44人 (D )42人图2二、填空题(本大题共10小题,每小题4分,共40分)11、已知a b c ⋅⋅o 为ABC ∆三边的长,则化简|a b c -+的结果是___12、自从扫描隧道显微镜发明后,世界上便诞生了一间新科学,这就是“纳米技术”,已知1毫米微米,1微米纳米,那么2007纳米的长度用科学记数法表示为__米。
第二十四届希望杯初二第2试试题及答案解析

第二十四届“希望杯”全国数学邀请赛初二 第2试试题2013年4月14日 上午9:00至11:00竞赛结束时,只交答题卡,试卷可带走。
答案于今日11:00在以下网站和微博公布:“希望杯”官方网站:http ://www .hopecup .org “希望杯”微博:http ://e .weibo .com /xiwangbei 《数理天地》官方网站:http ://www .mpw 《数理天地》微博:http ://e .weibo .com /shulitiandi 未经“希望杯”组委会授权,任何单位和个人均不准翻印或销售此试卷,也不准以任何形式(包括网络)转载。
一、选择题(每小题4分,共40分)1.在无理数5、6、7、8中,介于8+12与26+12之间的数有( ) (A )1个. (B )2个. (C )3个.(D )4个. 2.已知x +1x =6(0<x <1),则x -1x的值是( ) (A )-5. (B )-2. (C )5. (D )2.3.有3个正整数a ,b ,c ,并且a >b >c ,从中任取2个,有3种不同的取法,将每一种取法取出的2个数分别作和及作差,得到如下6个数:42,45,64,87,109,151,则a 2+b 2+c 2的值是( )(A )12532 . (B )12533. (C )12534 . (D )12535.4.已知有理数a ,b ,x ,y 满足ax +by =3,ay -bx =5,那么(a 2+b 2)(x 2+y 2)的值是( )(A )225. (B )75. (C )54. (D )34.5.Among all the following points ,which one is on the graph of function y =x 2-2x -3?( )(A )(1,-3) (B )(0,3) (C )(-1,0) (D )(-2,1)6.下列命题中,正确的是( )(A )如果三角形三个内角的度数比是3:4:5,那么这个三角形是直角三角形.(B )如果直角三角形的两条直角边的长分别是a 和b ,那么斜边的长是a 2+b 2.(C )如果三角形三条边长的比是1:2:3,那么这个三角形是直角三角形.(D )如果直角三角形的两条直角边的长分别是a 和b ,斜边长是c ,那么斜边上的高的长是ab c. 7.甲、乙、丙、丁4名跑步运动员的速度依次是v 1,v 2,v 3,v 4 ,且v 1>v 2>v 3>v 4>0,他们沿直跑道进行追逐赛,规则如下:①4人在同一起跑线上,同时同向出发;②经过一段时间后,甲、乙、丙同时反向,谁先遇到丁谁就是冠军.则( )(A )冠军是甲. (B )冠军是乙. (C )冠军是丙. (D )甲、乙、丙同时遇到丁.8.已知直线y =kx +b (k ≠0)与x 轴的交点在x 的正半轴上,则( )(A )k >0,b >0. (B )k <0,b <0. (C )kb >0. (D )kb <0.9.如图1,函数y 1=k 1x +b 和y 2=k 2x 的图象交于点(-1,-2),则关于x 的不等式k 1x +b >k 2x 的解集是( )(A )x >-1. (B )x <-1. (C )x <-2. (D )x >-2.10.设q =mn ,p =q +n +q -m ,其中m ,n 是两个连续的自然数(m <n ).则p ( )(A )总是奇数. (B )总是偶数.(C )有时是奇数,有时是偶数. (D )有时是有理数,有时是无理数.二、填空题(每小题4分,共40分) 11.已知a =5+2,b =5-2,则a 2+b 2+7的平方根的值是 .12.60名学生参加英语测试,若优秀的学生占45%,则在统计图中,表示优秀的扇形的圆心角是 图1度;若表示良好的扇形的圆心角是120°,则良好的学生有 人.13.若x 1,x 2都满足|2x -1|+|2x +3|=4,且x 1<x 2,则x 1-x 2的取值范围是 .14.若直线y =2x +b 与坐标轴围成的三角形的面积是4,则b = .15.已知a ,b 都是有理数,若不等式(2a -b )x +3a -b <0的解集是x >14,则不等式(a +3b )x +a -2b >0的解集是 .16.如图2,点P 在正方形ABCD 内,△PBC 是正三角形,若△BPD 的面积是3-1,则正方形ABCD 的边长是 . 17.直线y =x -1与x 轴、y 轴分别交于A 、B 两点,点C 在坐标轴上,△ABC 是等腰三角形,则满足条件的点C 有 个.18.已知x 2-x -1=0,则x 3+x +1x 4= . 19.如图3,矩形纸片ABCO 平放在xOy 坐标系中,将纸片沿对角线CA向左翻折,点B 落在点D 处,CD 交x 轴于点E .若CE =5,直线AC 的解析式为y =-12x +m ,则点D 的坐标的坐标是 . 20.已知正整数x ,y 满足59<y x <35,则x -y 的最小值是 . 三、解答题每题都要写出推算过程.21.(本题满分10分)已知m 2=n +2,n 2=m +2(m ≠n ),求m 3-2mn +n 3的值.22.(本题满分15分)As in Figure 4 ,both ∠D =∠E =90° in trapezoid ABCD .△ABC is an equilateraltriangle with C on DE .If AD =7 and BE =11,find the area of △ABC .(英汉词典:trapezoid 梯形;equilateral 等边三角形;area 面积)23.(本题满分15分)有n (n ≥2)个整数a 1<a 2<a 3<…<a n ,它们满足下列条件:①如果对于其中的任意一个整数a m 都有-a m 不在这n 个整数中,则称这n 个整数满足性质P ; ②若在这n 个整数中选两个不同的整数a i ,a j ,使它们成为一个有序整数对(a i ,a j ),并恰好a i +a j 也在这n 个整数中,则这样的整数对为“和整数对”;③若在这n 个整数中选两个不同的整数a i ,a j ,使它们成为一个有序整数对(a i ,a j ),并恰好a i -a j 也在这n 个整数中,则这样的整数对为“差整数对”.回答下列问题:⑴3个整数-1,2,3是否满足性质P ?如果满足性质P ,请写出其中所有的“和整数对”和“差整数对”;⑵若n (n ≥2)个整数a 1<a 2<a 3<…<a n 满足性质P ,其中“差整数对”有k 个,试证明k ≤12n (n -1); ⑶若n (n ≥2)个整数a 1<a 2<a 3<…<a n 满足性质P ,其中“和整数对”有l 个,“差整数对”有k 个,试证明l =k图2图3Fig .4第二十四届“希望杯”全国数学邀请赛初二第2试答案与解析一、选择题(每小题4分,共40分)1.选:D ;【解析】8+12<9+12=2与26+12>25+12=3 2.选:B ;【解析】∵0<x <1,则x -1x <0,(x -1x )2= x +1x -2=4,x -1x =-2 3.选:C ;【解析】分析大小可得a +b 最大,即a +b =151,a +c 第二大,即a +c =109,而a -b 和b -c 都可能最小,由于a -b 与a +b 具有相同的奇偶性,所以a -b =45,可解得,a =98,b =53,c =114.选:D ;【解析】(ax +by )2=9,(ay -bx )2=25,两式相加得:a 2x 2+b 2y 2+ a 2y 2+b 2x 2=34,而(a 2+b 2)(x 2+y 2)= a 2x 2+b 2y 2+ a 2y 2+b 2x 2.5.选:C ; 6.选:D ;7.选:C ;【解析】同时反向跑的时候,从前向后依次是丙、乙、甲,而它们三人应该同时相遇于出发地.所以在遇上丁时,丙还在前面.8.选:D ;【解析】-b k>0,kb <0;9.选:B ; 10.选:A ;【解析】p =q +n +q -m =mn +n +mn -m = n (m +1)+m (n -1) = n 2+m 2=m +n ,连续整数的和一定是奇数.二、填空题(第小题4分,共40分)11.±5; 12.162,20;13.-2≤x 1-x 2<0;【解析】|x -12|+|x +32|=2,|x -12|+|x +32|可以表示数轴上表示x 的点与12和-32的两点距离的和.而12和-32的距离是2,所以-32≤x ≤12,所以,x ≥-32-12=-2,又因为x 1<x 2,x 1-x 2<0,所以-2≤x 1-x 2<014.±4;【解析】与两轴的交点为(0,b ),(,0),12×|b |×|-12b |=4,14b 2=4,b =±4 15.x >2347;【解析】由题意得,2a -b <0,b -3a 2a -b =14,b =145a ,2a -145a <0,a >0, (a +3b )x +a -2b >0,475ax -235a >0,x >234716.2;【解析】设正方形的边长为a ,S △BDP = S △BCP + S △CDP -S △BCD =34a 2+14a 2-12a 2=3-1,a 2=4,a =2 17.7;18.1;【解析】x 2= x +1,x 3+x +1x 4 = x (x +1)+x +1(x +1)2 = (x +1)2(x +1)2= 1 19.(245,-125);【解析】OC =m ,OA =2m ,AE =CE =5,由m 2+(2m -5)2=52,得m =4,AD =OC =4,DE =EO =3,可得D (245,-125) 20.3;【解析】59x <y <35x ,当x =1时,59<y <35,y 无整数解;当x =2时,119<y <115,y 无整数解;当x =3时,123<y <145,y 无整数解;当x =4时,229<y <225,y 无整数解;当x =5时,279<y <3,y 无整数解;当x =6时,313<y <335,y 无整数解;当x =7时,379<y <415, y =4,x -y =3 三、解答题每题都要写出推算过程.21.(本题满分10分)解:⎩⎨⎧m 2=n +2……①n 2=m +2……② ①-②=(m -n )(m +n )=n -m ,∵m ≠n ,∴m +n =-1 m 3-2mn +n 3=m (n +2)-2mn +n (m +2)=2m +2n =-222.(本题满分15分)解:作AF ⊥BE 于F ,DC =x ,CE =y .∵AB =AC =BC ,根据勾股定理:x 2+72=y 2+112=(x +y )2+42 ⎩⎨⎧2xy +y 2=33……①2xy +x 2=105……② ①×35-②×11得:35x 2+48xy -11y 2=0,(5y -x )(7y +11x )=0,∵x >0,y >0∴x =5y 代入:得y 2=3,y =3,x =53,AB 2=(63)2+42=124,S △ABC =34AB 2=31 3 23.(本题满分15分)解:⑴ -1,2,3的相反数分别是1,-2,-3,它们都不在这3个整数中,所以满足性质P .其中“和整数对”为(-1,3)和(3,-1);“差整数对”为(2,-1)和(2,3)⑵ 设a m 是这n 个整数中的任意一个,(a m ,a p )是一个有序数对,其中p ≠m ,这样的数对共有n -1个.所以,这n 个数一共有n (n -1)个有序数对.若(a m ,a p )是一个差整数对,则(a p ,a m )一定不是差整数对,否则不满足性质P .所以,差整数对至多有12 n (n -1),即k ≤12n (n -1) ⑶ 若任意a m 、a n 、a p 是这n 个整数中的三个,且满足a m +a n =a p ,则(a m ,a n )、(a n ,a m )是两个和整数对记为一组,而(a p ,a m )、(a p ,a n )是对应的两个差整数对也记为一组,那么每一组和整数对都对应着一组差整数对,若和整数对有x 组,l =2x ,则差整数对也一定有x 组,k =2x ,所以l =k 图5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二奥数题一、选择题(本大题共10小题,每小题4分,菜40分。
)1、红丝带是关注艾滋病防治问题的国际性标志,人胶将红丝带剪成小段,并用别针将折叠好的红丝带加紧在胸前,如图1所示,红丝带重叠部分形成的图形是( )(A )正方形 (B )矩形 C )菱形 (D )梯形 2、设a 、b 、C 是不为零的实数,那么||||||a b cx a b c =+-的值有( ) (A )3种 (B )4种 (C )5种 (D )6种3、ABC ∆的边长分别是21a m =-,21b m =+,()20c m m =>,则ABC ∆是( )(A )等边三角形 (B )钝角三角形 (C )直角三角形 (D )锐角三角形4、古人用天干和地支记序,其中天干有10个;甲乙丙丁戊己庚辛壬癸,地支有12个;子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字对应排列成如下两行; 甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸甲乙丙丁…… 子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……,我国的农历纪年就是按这个顺序得来的,如公历2007年是农历丁亥年,那么从今年往后,农历纪年为甲亥年的那一年在公历中( ) (A )是2019年, (B )是2031年, (C )是2043年, (D )没有对应的年号 5、实数 a 、b 、m 、n 满足a <b , -1<n <m , 若1a mb M m +=+,1a nbN n+=+,则M 与N 的大小关系是( )(A )M >N (B)M =N (C)M <N (D)无法确定的。
6、若干个正方形和等腰直角三角形拼接成如图2所示的图形,若最大的正方形的边长是7cm ,则正方形A 、B 、C 、D 的面积和是( )(A )214cm (B )242cm (C )249cm (D )264cm 7、已知关于x 的不等式组230320a x a x +>⎧⎨-≥⎩恰有3个整数解,则a 的取值范围是( )(A )23≤a ≤32 (B)43≤a ≤32 (C)43<a ≤32 (D)43≤a <329、某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图3所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,则服药一次治疗疾病有效的时间为( )(A )16小时 (B )7158小时 (C )151516小时 (D )17小时 10、某公司组织员工一公园划船,报名人数不足50人,在安排乘船时发现,每只船坐6人,就剩下18人无船可乘;每只船坐10人,那么其余的船坐满后内参有一只船不空也不满,参加划船的员工共有( ) (A )48人 (B )45人 (C )44人 (D )42人图2二、填空题(本大题共10小题,每小题4分,共40分)11、已知a b c ⋅⋅o 为ABC ∆三边的长,则化简|a b c -+的结果是___12、自从扫描隧道显微镜发明后,世界上便诞生了一间新科学,这就是“纳米技术”,已知1毫米微米,1微米纳米,那么2007纳米的长度用科学记数法表示为__米。
13、若不等式组2123x a x b -<⎧⎨->⎩中的未知数x 的取值范围是11x -<<,那么(1a +)(1b -)的值等于___14、已知123a a a ⋅⋅⋅…⋅2007a 是彼此互不相等的负数,且122006232007()()M a a a a a a =++++++ ,122007232006()()N a a a a a a =++++++ 那么M 与N 的大小关系是M __N15、∣a c bd|叫做二阶行列式,它的算法是:ad bc -,将四个数2、3、4、5排成不同的二阶行列式,则不同的计算结果有__个,其中,数值最大的是___。
16、如图4,一只小猫沿着斜立在墙角的木板往上爬,木板底端距离墙角0。
7米,当小猫从木板底端爬到顶端时,木板底端向左滑动了1.3米,木板顶端向下滑动了0.9米,则小猫在木板上爬动了__米。
17、Xiao Ming says to Xiao Hua that my age add your age .add your age when Lwas your age is 48. The age of Xiao Hua is __ now .(英汉词典:age 年龄:add 加上;when 当……时)18、长方体的长、宽、高分别为正整数a b c ⋅⋅,且满足2006a b c ab bc ac abc ++++++=那么这个长方体的体积为__。
19、已知a 为实数,且a +与1a-都是整数,则a 的值是__。
20、为确保信息安全,信息传输需加密,发送方由明文→密文(加密)。
现规定英文26个字母的加密规则是:26年字母按顺序分别对应整数0到25,例子如,英文a b c d ⋅⋅⋅,写出它们的明文(对应整数0,1,2,3),然后将这4个字母对应的整数(分别为 1.2,3,4x x x x )按1231112323x x x x x x ++⋅ 计算,得到密文,即a b c d四个字母对应的密文分别是2.3.8.9.现在接收方收到的密文为35.42.23.12.则解密得到的英文单词为___。
三、解答题(本大题共3小题,共40分)要求:写出推算过程如图5,一个大的六角星形(粗实线)的顶点是周围六个全等的小六角星形(细线型)的中心,相邻的两个小六角星形各有一个公共顶点,如果小六角星形的顶点C 到中心A 的距离为a ,求:(1) 大六角星形的顶点A 到其中心O 的距离 (2) 大六角星形的面积(3)大六角星形的面积与六个小六角星形的面积之和的比值(注:本题中的六角星形有12个相同的等边三角形拼接而成的)22、(本题满分15分)甲、乙两车分别从A地将一批物品运往B地,再返回A地,图6表示两车离A地的距离s(千米)随时间t(小时)变化的图象,已知乙车到达B地后以30千米/小时的速度返回。
请根据图象中的数据回答:(1)甲车出发多长时间后被乙车追上?(2)甲车与乙车在距离A地多远处迎面相遇?(3)甲车从A地返回的速度多大时,才能比乙车先回到A地?23、(本题满分15分)平面上有若干个点,其中任意三点都不在同一直线上,将这些点分成三组,并按下面的规则用线段连接:①在同一组的任意两点间都没有线段连接;②不在同一组的任意两点间一定有线段连接。
(1)若平面上恰好有9个点,且平均分成三组,那么平面上有多少条线段?(2)若平面上恰好有9个点,且点数分成2,3,4三组,那么平面上有多少条线段?(3)若平面上共有192条线段,那么平面上至少有多少个点?参考答案一、选择题(每小题4分)二、填空题(每小题4分,第15小题,每个空2分;第19小题,答对一个答案2分)三、解答题21(1)连接CO ,易知△AOC 是直角三角形,90,30ACO AOC ∠=∠=所以22AO AC a ==(2)如图1,大六角星形的面积是等边△AMN 面积的12倍 因为2222()()22AM a AM =+ 解得AM a = 所以大六角星形的面积是21122S a =⨯⨯=(3)小六角星形的顶点C 到其中心A 的距离为a ,大六角星形的顶点A 到其中心O 的距离为2a ,所以大六角星形的面积是一个小六角星形的面积的4倍,所以,大六角星形的面积:六个小六角星形的面积和=2:3 22.(1)由图知,可设甲车由A 地前往B 地的函数解析式为s kt =将(2.4,48)代入,解得20k = 所以20s t =由图可知,在距A 地30千米处,乙车追上甲车,所以当30s =千米时,30 1.52020s t ===(小时)。
即甲车出发1.5小时后被乙车追上 (2)由图知,可设乙车由A 地前往B 地函数的解析式为s pt m =+ 将(1.0,0)和(1.5,30)代入,得030 1.5p m p m =+⎧⎨=+⎩,解得6060p m =⎧⎨=-⎩所以6060s t =-当乙车到达B 地时,48s =千米。
代入6060s t =-,得 1.8t =小时 又设乙车由B 地返回A 地的函数的解析式为30s t n =-+ 将(1.8,48)代入,得4830 1.8n =-⨯+,解得102n = 所以30102s t =-+当甲车与乙车迎面相遇时,有3010220t t -+= 解得 2.04t =小时 代入20s t =,得40.8s =千米 即甲车与乙车在距离A 地40.8千米处迎面相遇(3)当乙车返回到A 地时,有301020t -+= 解得 3.4t =小时 甲车要比乙车先回到A 地,速度应大于48483.4 2.4=-(千米/小时)23.(1)平面上恰好有9个点,且平均分成三组,每组3个点,其中每个点可以与另外两组的6个点连接,共有线段69272⨯=(条) (2)若平面上恰好有9个点,且点数分成2,3,4三组,则平面上共有线段1[2(34)3(24)4(23)]262⨯++⨯++⨯+=(条) (3)设第一组有a 个点,第二组有b 个点,第三组有c 个点,则平面上共有线段1[()()()]2a b c b a c c a b ab bc ac +++++=++(条) 若保持第三组点数不变,将第一组中的一个点划归到第二组,则平面上线段的条数为(1)(1)(1)(1)1a b b c a c ab bc ca a b -++++-=+++--与原来线段的条数的差是1a b --,即当a b >时,10a b --≥,此时平面上的线段条数不减少 当a b ≤时,10a b --<此时平面上的线段条数一定减少由此可见,当平面上由点数较多的一组中划出一个点到点数较少的一组中时,平面上的线段条数不减少,所以当三组中点数一样多(或基本平均)时,平面上线段的条数最多设三组中都有x 个点,则线段条数为23192x = 解得8x = 所以 平面上至少有24个点。