数据包络分析(DEA)讲义PPT课件

合集下载

DEA数据包络分析ppt课件

DEA数据包络分析ppt课件
DEA資料包絡分析法與選股 應用之探討
1
資料包絡分析法之基本模式與應用
基本概念 CCR模式
•投入導向 •產出導向 比率式、原問題、對偶問題 BCC模式 •投入導向 •產出導向 DEA執行程序 生產效率(整體技術效率)、(純)技術效率與 規模效率 交叉效率、FPI與A&P效率概念 案例討論與研析
c
SI2
S’
S
I2 I’b2
X2 I’2 a
µ¥ »ù ®æ ½u
A =P1X1+P2X2
A”
A’ S’µ¥ ²£ ¶q ½u
O
X1
I’1 I1
X1
5
基本觀念—生產前緣與包絡分析(續)
X2(I)
E B
D
C
A
X1(I)
6
CCR(Charnes, Cooper&Rhodes)模式—概念
理想假設 生產過程屬固定規模報酬,既是當投入量以等 比例增加時,產出亦應等比增加。
n
率), ek Ekj /(n 1) 如此便可得出一個平均 j 1, j k
效率值,再依此平均效率值比較其效率之大小,此乃
所謂的交叉效率之分析。
28
交叉效率&FPI(False positive index)
但為證明此交叉效率之誤差性極大,筆者便以 Lindo所解出之權重與DEA Excel所得出的權重(兩 者權重不同),以上述定義計算其效率,相互比較, 發現其差異甚大,故其結果並不可靠,必須加以 參考另一數值FPI(假正效率), 即 M k (k ek ) ek ,依此評估其效率並相互比較,
其 值e越k 大越好, 越M小k 越好。
29

数据包络分析(DEA)详细教程44页PPT

数据包络分析(DEA)详细教程44页PPT
Thank you
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 ห้องสมุดไป่ตู้顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧勤 勉。
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
数据包络分析(DEA)详细教程
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。

第四讲2数据包络分析法(DEA)

第四讲2数据包络分析法(DEA)





三、数据包络分析法应用的一般步骤
1)明确评价目的。 2)选择DMU。 3)建立输入/输出评价体系。 4)收集和整理数据。 5)选择适当的DEA模型。 6)进行计算、分析评价结果,并提出决策意见。
滨Leabharlann 州学院2. 决策单元(decision making units, DMU) 决策单元(
特点:具有一定的输入和输出, 特点:具有一定的输入和输出,在输入和输 出过程中,努力实现自身的决策目标。 出过程中,努力实现自身的决策目标。 同类型的DMU:相同的目标和任务;相同的外 :相同的目标和任务; 同类型的 部环境;相同的输入和输出指标。 部环境;相同的输入和输出指标。
0




Th4:1)DUMj 为弱DEA有效的充分必要条件为线性规划(D)
0
的最优解 θ * = 1 2) DUMj 为DEA有效的充分必要条件为线性规划(D)
0
的最优解 θ * = 1 ,并且对于每一个最优解 λ* , s *− , s *+ , θ *
都有s *− = 0, s *+ = 0




5. 数据包络分析法的优点
1)DEA一决策单元输入、输出的权重为变量, DEA一决策单元输入、输出的权重为变量, 一决策单元输入 从最有利于决策单元的角度进行评价啊从而避免 了确定个指标在优先意义下的权重 2)假定每个单元的输入和输出之间确实存在某 ) 种关系,使用DEA方法不必去定这种关系的显 种关系,使用 方法不必去定这种关系的显 示表达式。 示表达式。




线性规划模型
max h j0 = µ T y j0 s.t. ω T x j − µ T y j ≥ 0, j = 1,2,L, n ( P)

数据包络分析DEA

数据包络分析DEA

算法优化
并行计算
针对大规模数据的DEA分析,可以采用并行计算技术, 以提高计算效率。通过将数据分成若干个子集,并行计 算可以同时处理多个子集,显著缩短计算时间。
智能优化算法
将智能优化算法应用于DEA模型的求解过程,可以找到 更优的解。例如,遗传算法、粒子群算法等智能优化算 法可以用于求解DEA模型,以获得更准确的分析结果。
05
DEA实践案例
案例一:某制造企业的DEA分析
总结词
提高生产效率
详细描述
某制造企业通过DEA分析,评估了各生产车间的效率 ,找出了瓶颈环节,并针对性地优化了生产流程,提 高了整体生产效率。
案例二:某金融机构的DEA分析
总结词
优化资源配置
详细描述
某金融机构利用DEA分析,对各业务部门进行了效率 评估,根据评估结果调整了资源分配,使得资源能够更 加合理地配置到高效率部门,提高了整体业绩。
数据包络分析(DEA
目 录
• DEA概述 • DEA模型 • DEA的优缺点 • DEA的改进方向 • DEA实践案例
01
DEA概述
DEA定义
总结词
数据包络分析(DEA)是一种非参数的线性规划方法,用于评估一组决策单元(DMU)的相对效率。
详细描述
DEA使用数学规划模型,通过输入和输出数据,对一组决策单元进行相对效率评估。它不需要预先设 定函数形式,能够处理多输入和多输出的情况,并且可以对每个决策单元进行效率评分。
规模收益与技术效率
总结词
规模收益与技术效率是DEA分析中重要的概 念。
详细描述
规模收益指的是随着投入的增加,产出的增 加比例。技术效率则是指在给定投入下,实 际产出与最优产出之间的比率。在DEA分析 中,技术效率可以进一步分解为配置效率和 纯技术效率。

《数据包络分析》课件

《数据包络分析》课件
《数据包络分析》PPT课件
目录
• 引言 • 数据包络分析的基本概念 • 数据包络分析的方法 • 数据包络分析的优化策略 • 数据包络分析的案例研究 • 数据包络分析的未来展望
01
引言
数据包络分析的定义
总结词
简明扼要地定义数据包络分析
详细描述
数据包络分析(Data Envelopment Analysis,简称DEA)是一种非参数的效率评估方法,用于评估决策单元( DMU)的相对效率。它通过比较输入和输出的比率来评估效率,无需预先设定函数形式。
数据包络分析的应用领域
总结词
列举数据包络分析的应用领域
详细描述
数据包络分析广泛应用于各个领域,如金融、医疗、教育、供应链管理等。例如,在银 行业评估银行的相对效率,在医疗行业评估医院的医疗服务效率,以及在供应链管理中
评估供应商的相对效率。此外,DEA还可用于政策评估、环境影响评估等领域。
02
数据包络分析的基本概念
公共部门效率评估
总结词
通过数据包络分析评估公共部门的效率,提高公共服 务的水平和质量。
详细描述
数据包络分析可以用于评估公共部门的效率,通过构建 公共部门效率评估模型,利用公共部门的历史数据和公 共服务信息,计算出公共部门的效率值。根据效率值的 大小和变化趋势,可以分析公共部门在提供公共服务方 面的效率和存在的问题。同时,通过比较不同地区或不 同部门的效率值,可以发现公共服务的优势和不足,为 政策制定者和公共部门提供改进公共服务的建议和依据 。
04
数据包络分析的优化策略
决策单元的优化
01
决策单元选择
选择具有代表性的决策单元,确 保其涵盖了所有重要的变量和特 征。
02

DEA数据包络分析简明易懂ppt

DEA数据包络分析简明易懂ppt

通过输入输出指标的选择和模型计算,了解企业在各个层级的相对效
率,为企业决策提供有力支持。
DEA在政府决策中的应用案例
政策评估
DEA可以用于政策执行后的效果评估,通过输入输出 指标的选择和模型计算,评价政策的相对效率和效果 ,为未来政策制定和调整提供参考。
资源配置
政府可以利用DEA进行资源配置的优化,通过评估不 同部门或地区的相对效率和资源使用情况,进行资源 的合理调配和布局,实现资源的最大化利用。
06
总结与展望
DEA研究的主要结论
DEA模型的准确性和 效率
DEA模型在准确性和效率方面具有一 定的优势,能够有效地对多投入、多 产出的决策单元进行相对效率评价。
DEA模型的经济学含 义
DEA模型具有深刻的经济学含义,基 于生产前沿面的概念,可以很好地解 决多个输入和多个输出之间的权重问 题,避免了人为的主观判断。
01 02
小型企业
对于小型企业而言,DEA可以用于企业的相对效率评估,通过对比自 身和其他企业的效率,寻找提高效率的途径,促进企业的成长和发展 。
中型企业
中型企业可以利用DEA进行生产线的效率评估和优化,通过调整生产 线上的要素投入,追求更高的产出效率。
03
大型企业
对于大型企业而言,DEA可以用于企业的战略决策和资源配置优化。
DEA数据包络分析简明易 懂
xx年xx月xx日
contents
目录
• 引言 • DEA基本概念 • DEA模型的分析步骤 • DEA模型的拓展 • DEA的实践应用 • 总结与展望
01
引言
什么是DEA
• DEA(Data Envelopment Analysis,数据包络分析)是一种以相对效率评价为基础,用于评价一组多输 入、多输出决策单元(DMU)的相对效率或绩效的非参数方法。它广泛应用于不同行业和领域的效率评估 、决策制定等领域。

数据包络分析DEAppt课件

数据包络分析DEAppt课件

经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
2.1基本C2R模型
基本原理:设有n个决策单元,每个决策单 元均有m个输入指标和k个输出指标,记第j 个决策单元的第i个输入指标为xij,第j个决策 单元的第k个输出指标为ykj,vi为第i个输入 指标的权重,ui为第i个输出指标的权重,且 xij>0, ykj>0, vi ,ui≥0, 初始数据见表
对建筑业的线性规划模型为 max V 3573 1 6970 2 s.t.8124 1 12560 2 8420 3 3573 1 6970 2 0 60611 5230 2 4320 3 3510 1 5870 2 0 10130 1 4260 2 5820 3 4210 1 9120 2 0 20342 1 2310 2 12560 3 12680 1 21680 2 0 20561 1 1210 2 13510 3 21760 1 43250 2 0 4632 1 1790 2 12640 3 7920 1 21320 2 0 8124 1 12560 2 8420 3 1 1,2 ,3, 1, 2 0
生产函数上的B*点为技术有效性,弱有效 性。A点为规模有效性和技术有效性,有效 性。
生产可能集满足凸性、锥性、无效性、最小 性
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
DEA有效: 最优目标值h0= 1. DEA有效: 若存在最优解ω0,μ0满足ω0 >0,μ0 >0,h0 = μ0y0 = 1.

通俗易懂_数据包络分析(DEA)讲义

通俗易懂_数据包络分析(DEA)讲义


衡量一个单位的绩效,通常是用投入产 出比这个指标,当所有投入和产出指标 均分别可折算成同一单位时(例如货币 值),容易根据投入产出比大小对要评 定的决策单元进行绩效排序。
6-1 几个基本概念
例 有4个银行储蓄所,每月完成10000笔人民币的 存款、取款业务,但其投入情况不同,见下表,试 分析这4个储蓄所的绩效。 储蓄所
用LINDO求解,得1 1, 2 3 4 0, min 1,故H1为DEA有效。
对于H 2:
min 2851 1622 2753 2304 162 0 100 64 90 85 64 0 1 2 3 4 80001 65002 85003 75004 6500 0 s.t 355001 280002 330003 300004 28000 250001 180002 240003 210004 18000 j 0( j 1, 2,3, 4)
职员数
营业面积(m 2)
B1
6
100
B2
3
120
B3
10
50
B4
7
70
解:为了进行分析,以职员数为横坐标,营业面 积为纵坐标将4个储蓄所的投入标记于下图中:
营业面积 120 90 60 30 0 3 6 9 12 职员数 生产可行解
B2
D
B1
B4
生产前沿面 DEA有效
B3
折线 B2 B4 B3 和折线右上方所有点组成的集合为 生产可行集。 即这些点多对应的职员数和营业面积所组成的储 蓄所均有能力完成每月10000笔的存款业务。
, s)
这是一个分式规划问题,可通过下述变换,转化为 一个等价的线性规划问题。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 对于每一个决策单元DMUj都有相应的效率评价指数:
s
hj
uT yi vTxj
ur yrj
r1 mn
, j 1,2,,n
vi xij
i1
我们总可以适当的取权系数v和u,使得 hj≤1, j=1,…,n
• 对第j0个决策单元进行效率评价,一般说来,hj0越大表 明DUMj0能够用相对较少的输入而取得相对较多的输出。 这样我们如果对DUMj0进行评价,看DUMj0在这n个 DMU中相对来说是不是最优的,我们可以考察当尽可能 的变化权重时, hj0的最大值究竟是多少。
剩余变量s-,将上面的不等式约束变为等式约束,可
变成:
min
n
s .t .
jx j s x0
j1
(D)
n
jy j s y0 j1
j 0 , j 1,2 , n
无约束,
s 0,s 0
将上述规划(D)直接定义为规划(P)的对偶规划
几个定理和定义:
• 定理 1 线性规划(P)和对偶规划(D)均存在可行解, 所以都存在最优值。假设它们的最优值为别为hj0*与θ*, 则有hj0*= θ*
vi
.. .
.
. Xij … .
. . . . . . ….
vm
m xm1 xm2 xm3 … xmj … xmn
n个 决策单元 (DMU)
m种输入
y11 y12 y13 … y1j … y1n
1
u1
y21 y22 y23 … y2j … y2n 2
u2
. . . . . …. .
...
. yrj … .
应用DEA方法对经济体 效率的评价
目 录:
一、 DEA方法简介 二、 DEA基本原理和模型 三、 DEA应用案例 四、 DEA软件介绍 五、 DEA主要应用领域 六、 DEA最新研究进展 七、DEA主要参考文献
一、 DEA方法简介
数据包络分析方法( DEA,Data Envelopment Analysis )由Charnes、Coopor和Rhodes于1978年提出, 该方法的原理主要是通过保持决策单元(DMU, Decision Making Units) 的输入或者输入不变,借助于数 学规划和统计数据确定相对有效的生产前沿面,将各个决 策单元投影到DEA的生产前沿面上,并通过比较决策单元 偏离DEA前沿面的程度来评价它们的相对有效性。
• 对于CCR模型可以用规划P表达,而线性规划一个重要 的有效理论是对偶理论,通过建立对偶模型更容易从理论 和经济意义上作深入分析
• 规划P的对偶规划为规划D/:
(D/)
min
n
s . t .
jx j x0
j1
n
jy j y0 j1
j 0 , j 1,2 , n
无约束
• 为了讨论和计算应用方便,进一步引入松弛变量s+和
输出-多输入的有效性评价方面具有绝对优势 ➢ DEA方法并不直接对数据进行综合,因此决策单元的最优
效率指标与投入指标值及产出指标值的量纲选取无关,应 用DEA方法建立模型前无须对数据进行无量纲化处理(当 然也可以)
DEA方法的特点:
➢ 无须任何权重假设,而以决策单元输入输出的实际数据求 得最优权重,排除了很多主观因素,具有很强的客观性
➢ DEA方法假定每个输入都关联到一个或者多个输出,且输 入输出之间确实存在某种联系,但不必确定这种关系的显 示表达式
二、 DEA基本原理和模型
定义:
权系数
1 2 3 … j …n
v1
1 x11 x12 x13 … x1j … x1n
v2
2 x21 x22 x23 … x2j … x2n
. . . . . . ….
• 如以第j0个决策单元的效率指数为目标,以所有决策单元 的效率指数为约束,就构造了如下的CCR(C2R)模型:
s
u r y rj o
max
h jo
r 1 m
v i x ij o
i1
s
u r y rj
s .t.
r 1 m
1, j 1,2, n
v i x ij
i1
u 0,v 0
• 上述规划模型是一个分式规划,使用Charnes-Cooper变 化,令:
DEA有效性的定义:
我们能够用CCR模型判定是否同时技术有效和规模有效:
• (1)θ*=1,且s*+=0,s*-=0。则决策单元j0为DEA有 效,决策单元的经济活动同时为技术有效和规模有效
定义1 若线性规划(P)的最优值hj0*=1,则称决策单元 DMUj0为弱DEA有效
定义2 若线性规划(P)的解中存在w*>0,μ* >0, 并且最优值hj0*=1,则称决策单元DMUj0为DEA有效的
• 定理2 DMUj0 为弱DEA有效的充要条件是线性规划 (D)的最优值θ*=1; DMUj0为DEA有效的充要条件是 线性规划(D)的最优值θ*=1,并且对于每个最优解λ*, 都有s*+=0,s*-=0
.Байду номын сангаас
ur
. . . . . …. .
ys1 ys2 ys3 … ysj … ysn s
us
权系数 s种输出
各字母定义如下:
• xij-------- 第j个决策单元对第i种类型输入的投入总量.xij〉0 • yrj-------- 第j个决策单元对第r种类型输出的产出总量.yrj〉0 • vi -------- 对第i种类型输入的一种度量,权系数 • ur -------- 对第r种类型输出的一种度量,权系数 • i ----------1,2,…,m • r ----------1,2,…,s • j ----------1,2,…,n
t
1 vTx0
,wtv,tu
由t vt1x0 wtx0 1
可变成如下的线性规划模型P:
maxhj0 T yo
(P) s.t.wT x j T y j 0, j 1,2,n
wT x0 1
w 0, 0
• 利用线性规划的最优解来定义决策单元j0的有效性,从 模型可以看出,该决策单元j0的有效性是相对其他所有决 策单元而言的。
DEA方法以相对效率概念为基础,以凸分析和线形规 划为工具的一种评价方法,应用数学规划模型计算比较决 策单元之间的相对效率,对评价对象做出评价,它能充分 考虑对于决策单元本身最优的投入产出方案,因而能够更 理想地反映评价对象自身的信息和特点;同时对于评价复 杂系统的多投入多产出分析具有独到之处。
DEA方法的特点: ➢ 适用于多输出-多输入的有效性综合评价问题,在处理多
相关文档
最新文档