江苏省南通市海安高级中学2020-2021学年高三上学期12月测试数学试题含答案
江苏省南通市海安市2020-2021学年高三上学期期末数学试题(含答案解析)

【分析】
分别求出每个选项中对应的 即可判断.
【详解】
对A, , ,联立解得 ,不满足 ,故A不可能,符合题意;
对B, , ,联立解得 ,满足 , ,故B可能,不符合题意;
对C, , ,联立解得 ,满足 , ,故D可能,不符合题意;
对D, , ,联立解得 ,满足 , ,故D可能,不符合题意;
故选:A.
江苏省南通市海安市2020-2021学年高三上学期期末数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知集合 ,集合 ,则 ()
A. B. C. D.
2.若复数 满足 ,其中 为虚数单位,则 对应的点 满足方程()
(2)若 , ,求直线 与平面 所成角的正弦值的最大值.
20.2020年8月,教育部发布《关于深化体教融合,促进青少年健康发展的意见》,要求体育纳入高中学业水平考试范围.《国家学生体质健康标准》规定高三男生投掷实心球6.9米达标,高三女生6.2米达标.某地初步拟定投掷实心球的考试方案为每生可以投掷3次,一旦通过无需再投,为研究该方案的合理性,到某校任选4名学生进行测试,如果有2人不达标的概率超过0.1,该方案需要调整;否则就定为考试方案.已知该校男生投掷实心球的距离 服从 ,女生投掷实心球的距离 服从 ( , 的单位:米).
10.ACD
【分析】
对A,由线面平行的判定定理即可判断;对B,可得四边形EFGH为边长为1的正方形,且为截面,即可判断;对C,可得EG即为 与 的公垂线段,求出即可;对D,可得 即为二面角 的平面角, 即为 与平面 所成角,求出即可比较.
【详解】
对A, 点 , 为棱 , 的中点, , 平面 , 平面 , 平面 ,故A正确;
2020年12月江苏省南通市四校联盟2021届高三上学期第二次调研联考数学试题及答案

绝密★启用前 江苏省南通市四校联盟 2021届高三毕业班上学期第二次调研联考数学试题2020年12月一.单选题(本大题共8小题,每小题5分,共计40分.在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案填涂在答题卡相应的位置上)1. 已知集合A ={a |a 2-4a <5},B ={a |a <2}正确的是 ( )A .-1,2∈AB . 15∉BC .B ⊆AD .A ∪B ={a |-5<a <4}2. 若a >0,b >0,则“a +b ≤4”是“ab ≤4”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3. 已知f (x )=⎩⎪⎨⎪⎧c os πx x ≤1f (x -1)+1 x >1 则f (43)+f (-43)的值为 ( ) A .12 B .- 12 C .-1 D .14. 已知函数f (x )=⎩⎪⎨⎪⎧a x x >1(4-a 2)x +2 x ≤1 是R 上的单调递增函数,则实数a 的取值范围是 ( )A .(1,+∞)B .[4,8)C .(4,8)D .(1,8)5. 根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N 最接近的是(参考数据:lg 3≈0.48) ( )A .1033B .1053C .1073D .10936. 已知函数f (x )的图象如图所示,则f (x )的解析式可以是 ( )A .f (x )=ln|x |xB .f (x )=e x xC .f (x )=1x 2-1D .f (x )=x -1x 7. 已知函数f (x )=x +2+k ,若存在区间[a ,b ][-2,+∞)使得函数f (x )在区间[a ,b ]上的值域为[a +2,b +2],则实数k 的取值范围为( )A .( -1,+∞)B .(-14,0]C . (-14,+∞)D . ( -1,0]8. 已知函数f (x )= ⎩⎪⎨⎪⎧-x 2+2x x ≤0ln(x +1) x>0 ,若| f (x )|≥kx ,则k 的取值范围是( ) A . (-∞,0] B . (-∞,1] C .[-2,1] D . [-2,0]二.多选题(本大题共4小题,每小题5分,共计20分.在每小题给出的四个选项中,至少有两个是符合题目要求的,请把答案填涂在答题卡相应的位置上)9. 给出下列命题:A .∃a ∈R,ln(a 2+1)<0;B .∀a >2,a 2>2a ;C .∀α,β∈R,sin(α-β)=sin α-sin β;D .a >b 是2a >2b 的充要条件.其中假.命题为 ( ) 10. 对于函数f (x )=x1+|x |,下列判断正确的是( )A . f (-x +1)+ f (x -1)=0B . 当m ∈(0,1)时,方程f (x )=m 有唯一实数解C . 函数f (x )的值域为(-∞, ∞)D . ∀x 1≠x 2,f (x 1)-f (x 2)x 1-x 2>0。
2020届江苏省南通市海安高级中学高三阶段测试三数学试题(解析版)

2020届江苏省南通市海安高级中学高三阶段测试三数学试题一、填空题1.设全集{1,2,3,4,5}U =,若{1,2,4}U A =ð,则集合A =_________. 【答案】{3,5}.【解析】直接求根据{1,2,4}U A =ð求出集合A 即可. 【详解】解:因为全集{1,2,3,4,5}U =若{1,2,4}U A =ð, 则集合A ={3,5}. 故答案为:{3,5}. 【点睛】本题考查补集的运算,是基础题.2.已经复数z 满足(2)1z i i -=+(i 是虚数单位),则复数z 的模是________. 10 【解析】【详解】(2)1z i i -=+Q ,11323,i iz i i i++∴=+==- 10z =10.3.已知一组数据123,,a a a ,…,n a 的平均数为a ,极差为d ,方差为2S ,则数据121,a +221,a +321a +,…,21n a +的方差为___________.【答案】24S【解析】根据在一组数据的所有数字上都乘以同一个数字,得到的新数据的方差是原来数据的平方倍,得到结果. 【详解】解: ∵数据123,,a a a ,…,n a 的方差为2S ,∴数据121,a +221,a +321a +,…,21n a +的方差是22224S S ⨯=, 故答案为:24S . 【点睛】此题主要考查了方差,关键是掌握方差与数据的变化之间的关系. 4.如图是一个算法的伪代码,其输出的结果为_______.【答案】1011【解析】由题设提供的算法流程图可知:1111101122310111111S =++⋅⋅⋅+=-=⨯⨯⨯,应填答案1011. 5.从0,2 中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为______。
【答案】18【解析】试题分析:分类讨论:从0、2中选一个数字0,则0只能排在十位;从0、2中选一个数字2,则2排在十位或百位,由此可得结论.解:从0、2中选一个数字0,则0只能排在十位,从1、3、5中选两个数字排在个位与百位,共有23A =6种;从0、2中选一个数字2,则2排在十位,从1、3、5中选两个数字排在个位与百位,共有23A =6种; 2排在百位,从1、3、5中选两个数字排在个位与十位,共有23A =6种;故共有323A =18种,故答案为18. 【考点】计数原理点评:本题考查计数原理的运用,考查分类讨论的数学思想,正确分类是关键6.在平面直角坐标系xOy 中,若双曲线()2222:10,0x y C a b a b-=>>10,则双曲线C 的渐近线方程为_______. 【答案】3y x =±【解析】10,可以得到10ca=222a b c +=求出,a b 的关系,从而得出渐近线的方程. 【详解】解:因为双曲线()2222:10,0x y C a b a b-=>>10,所以10ca= 故2210c a=, 又因为222a b c +=,所以22210a b a +=,即229b a=,即3=b a , 所以双曲线的渐近线3y x =±. 【点睛】本题考查了双曲线渐近线的问题,解题的关键是由题意解析出,a b 的关系,从而解决问题. 7.将函数f(x)的图象向右平移π6个单位后得到函数()π4sin 23y x =-的图象,则()π4f 为 .【答案】4【解析】试题分析:将函数f(x)的图象向右平移π6个单位后得到函数()π4sin 23y x =-的图象,即将函数()π4sin 23y x =-的图象向左平移π6个单位得y=4sin[2(x+π6)π3-]=4sin2x ,所以()π4f =4sin 42π=. 故答案为:4.【考点】三角函数的图象平移.8.设定义在R 上的奇函数()f x 在区间[0,)+∞上是单调减函数,且()23(2)0f x x f -+>,则实数x的取值范围是_________ 【答案】(1,2)【解析】根据题意,由函数的奇偶性和单调性分析可得函数()f x 在R 上为减函数,则()23(2)0f x x f -+>可以转化为232x x -<-,解可得x 的取值范围,即可得答案.【详解】解:根据题意,()f x 是在R 上的奇函数,且在区间[0,)+∞上是单调减函数, 则其在区间(,0)-∞上递减, 则函数()f x 在R 上为减函数,()()22223(2)03(2)(3)(2)32f x x f f x x f f x x f x x -+>⇒->-⇒->-⇒-<-,解得:12x <<;即实数x 的取值范围是(1,2); 故答案为:(1,2). 【点睛】本题考查函数的单调性与奇偶性的综合应用,关键是分析函数在整个定义域上的单调性. 9.在锐角三角形ABC 中3sin 5A =,1tan()3A B -=-,则3tan C 的值为_________.【答案】79【解析】由题意可得tan A ,进而可得tan B ,而tan tan()C A B =-+,由两角和与差的正切公式可得. 【详解】解:∵在锐角三角形ABC 中3sin 5A =, 24cos 1sin 5A A ∴=-=, sin 3tan cos 4A A A ∴==, 31tan tan()1343tan tan[()]311tan tan()9143A A B B A A B A A B +--∴=--===+--⨯, 313tan tan 7949tan tan()3131tan tan 3149A B C A B A B ++∴=-+=-=-=--⨯, 3tan 79C ∴=故答案为:79. 【点睛】本题考查两角和与差的正切公式,属中档题.10.已知n S 为数列{}n a 的前n 项和3(1)(*)n n S na n n n N =--∈且211a =.则1a 的值________ 【答案】5【解析】由3(1)(*)n n S na n n n N =--∈,且211a =.取2n =即可得出. 【详解】解:∵3(1)(*)n n S na n n n N =--∈,且211a =.12226a a a ∴+=-,即1265a a =-=.故答案为:5. 【点睛】本题考查了递推式的简单应用,是基础题. 11.设正实数x ,y 满足x yxy x y+=-,则实数x 的最小值为______. 21.【解析】由正实数x ,y 满足x y xy x y +=-,化为()2210xy x y x +-+=,可得()222212121401010x x x y y x y y ⎧∆=--≥⎪⎪-⎪+=>⎨⎪=>⎪⎪⎩,计算即可. 【详解】解:由正实数x ,y 满足x yxy x y+=-, 化为()2210xy xy x +-+=,∴()222212121401010x x x y y x y y ⎧∆=--≥⎪⎪-⎪+=>⎨⎪=>⎪⎪⎩,化为426101x x x ⎧-+≥⎨>⎩, 解得21x ≥.因此实数x 21.故答案为:21+. 【点睛】本题考查了一元二次方程的实数根与判别式、根与系数的关系、一元二次不等式的解法,考查了推理能力和计算能力,属于中档题.12.如图正四棱柱1111ABCD A B C D -的体积为27,点E ,F 分别为棱11,B B C C 上的点(异于端点)且//EF BC ,则四棱锥1A AEFD -的体积为___________.【答案】9【解析】由11113A AED E A AD A AD V V S AB --∆==⋅,由此能求出四棱锥1A AEFD -的体积. 【详解】 解:连接DE ,∵正四棱柱1111ABCD A B C D -的体积为27,点E ,F 分别为棱11,B B C C 上的点(异于端点),且//EF BC ,11A AED A FED V V --∴=,1111111111193662A AED E A AD A AD A ADD ABCD A C D V V S AB S AB V --∆-∴==⋅=⋅==,∴四棱锥1A AEFD -的体积19A AEFD V -=.故答案为:9. 【点睛】本题考查四棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、运算求解能力,是中档题.13.已知向量,,a b c r r r 满足0a b c ++=r r r 且a r 与b r 的夹角的正切为12-,b r 与c r 的夹角的正切为13-,||2b =r ,则a c ⋅r r的值为___________.【答案】45【解析】可设,,AB a BC b CA c ===u u u r u u u r u u u r r r r ,由题意可得11tan ,tan 23B C ==,由两角和的正切公式,可得tan A ,再由同角的基本关系式可得sin ,sin B C ,再由正弦定理可得AB ,AC ,由数量积的定义即可得到所求值. 【详解】解:可设,,AB a BC b CA c ===u u u r u u u r u u u r r r r,由题意可得11tan ,tan 23B C ==, 则11tan tan 23tan tan()1111tan tan 123B C A B C B C ++=-+=-=-=---⨯, 即为135A ︒=,又,B C 为锐角,22sin 1sin cos 1,cos 2B B B B +==, 可得5sin 5B =, 同理可得10sin C =, 由正弦定理可得2sin135510︒==r r,即有2102555c a ==r r ,则2102524||||cos 4525a c c a ︒⋅=⋅⋅==u u rr r r .故答案为:45. 【点睛】本题考查向量的数量积的定义,考查正弦定理和三角函数的化简和求值,以及运算求解能力,属于中档题.14.已知()(2)(3),()22x f x m x m x m g x =-++=-,若同时满足条件:①,()0x R f x ∀∈<或()0<g x ;②(,4),()()0x f x g x ∃∈-∞-<.则m 的取值范围是________________.【答案】()4,2m ∈--【解析】根据()220xg x =-<可解得x<1,由于题目中第一个条件的限制,导致f(x)在1x ≥是必须是()0f x <,当m=0时,()0f x =不能做到f(x)在1x ≥时()0f x <,所以舍掉,因此,f(x)作为二次函数开口只能向下,故m<0,且此时2个根为122,3x m x m ==--,为保证条件成立,只需1221{31x m x m =<=--<1{24m m <⇒>-,和大前提m<0取交集结果为40m -<<;又由于条件2的限制,可分析得出在(,4),()x f x ∃∈-∞-恒负,因此就需要在这个范围内g(x)有得正数的可能,即-4应该比12x x 两个根中较小的来的大,当(1,0)m ∈-时,34m --<-,解得交集为空,舍.当m=-1时,两个根同为24->-,舍.当(4,1)m ∈--时,24m <-,解得2m <-,综上所述,(4,2)m ∈--.【考点定位】本题考查学生函数的综合能力,涉及到二次函数的图像开口,根大小,涉及到指数函数的单调性,还涉及到简易逻辑中的“或”,还考查了分类讨论思想.二、解答题15.已知ABC ∆的面积为3()18AC AB CB ⋅-=u u u r u u u r u u u r ,向量(tan tan ,sin 2)m A B C =+u r和向量(1,cos cos )n A B =r是共线向量.(1)求角C ;(2)求ABC ∆的边长c .【答案】(1) 3C π=(2) 36【解析】(1)利用向量共线的条件,建立等式,再利用和角的正弦公式化简等式,即可求得角C ;(2)由()18AC AB CB ⋅-=u u u r u u u r u u u r 得:2()18AC AB BC AC ⋅+==u u u r u u u r u u u r u u u r ,进而利用ABC ∆的面积为93,及余弦定理可求ABC ∆的边长c . 【详解】(1)因为向量(tan tan ,sin 2)m A B C =+r 和(1,cos cos )n A B =r是共线向量, 所以cos cos (tan tan )sin 20A B A B C +-=, 即sin cos cos sin 2sin cos 0A B A B C C +-=, 化简sin 2sin cos 0C C C -=, 即sin (12cos )0C C -=.因为0C π<<,所以sin 0C >,从而1cos ,2C =3C π=.(2)()18AC AB CB ⋅-=u u u r u u u r u u u r Q ,18()AC AB CB ∴=⋅-u u u r u u u r u u u r 2||AC AC AC =⋅=u u u r u u u r u u u r 则||1832AC ==u u u r32AC =因为ABC V 的面积为93, 所以1sin 932CA CB C ⋅= 即132sin 9323CB π⨯=解得62CB =在ABC V 中,由余弦定理得2222cos AB CA CB CA CB C =+-⋅221(32)(62)232622=+-⨯54=,所以5436AB ==【点睛】本题重点考查正弦、余弦定理的运用,考查向量知识的运用,解题的关键是正确运用正弦、余弦定理求出三角形的边.16.如图,四棱锥P-ABCD的底面为矩形,且AB=2,BC=1,E,F分别为AB,PC中点.(1)求证:EF∥平面PAD;(2)若平面PAC⊥平面ABCD,求证:平面PAC⊥平面PDE.【答案】证明:(1)方法一:取线段PD的中点M,连结FM,AM.因为F为PC的中点,所以FM∥CD,且FM=12 CD.因为四边形ABCD为矩形,E为AB的中点,所以EA∥CD,且EA=12 CD.所以FM∥EA,且FM=EA.所以四边形AEFM为平行四边形.所以EF∥AM.……………………… 5分又AM⊂平面PAD,EF⊄平面PAD,所以EF∥平面PAD.………7分方法二:连结CE并延长交DA的延长线于N,连结PN.因为四边形ABCD为矩形,所以AD∥BC,所以∠BCE=∠ANE,∠CBE=∠NAE.又AE=EB,所以△CEB≌△NEA.所以CE=NE.又F为PC的中点,所以EF∥NP.………… 5分又NP⊂平面PAD,EF⊄平面PAD,所以EF∥平面PAD.……………7分方法三:取CD的中点Q,连结FQ,EQ.在矩形ABCD中,E为AB的中点,所以AE=DQ,且AE∥DQ.所以四边形AEQD为平行四边形,所以EQ∥AD.又AD⊂平面PAD,EQ⊄平面PAD,所以EQ∥平面PAD.………………2分因为Q,F分别为CD,CP的中点,所以FQ∥PD.又PD⊂平面PAD,FQ⊄平面PAD,所以FQ∥平面PAD.又FQ,EQ⊂平面EQF,FQ∩EQ=Q,所以平面EQF∥平面PAD.…………… 5分因为EF⊂平面EQF,所以EF∥平面PAD.……………………………… 7分(2)设AC,DE相交于G.在矩形ABCD中,因为AB=2BC,E为AB的中点.所以DAAE=CDDA=2.又∠DAE=∠CDA,所以△DAE∽△CDA,所以∠ADE=∠DCA.又∠ADE+∠CDE=∠ADC=90°,所以∠DCA+∠CDE=90°.由△DGC的内角和为180°,得∠DGC=90°.即DE⊥AC.……………………… 10分因为平面PAC⊥平面ABCD 因为DE⊂平面ABCD,所以DE⊥平面PAC,又DE⊂平面PDE,所以平面PAC⊥平面PDE.………………………… 14分【解析】略17.如图,OM,ON是两条海岸线,Q为海中一个小岛,A为海岸线OM上的一个码头.已知,,Q到海岸线OM,ON的距离分别为3 km,km.现要在海岸线ON上再建一个码头,使得在水上旅游直线AB经过小岛Q.(1)求水上旅游线AB的长;(2)若小岛正北方向距离小岛6 km处的海中有一个圆形强水波P,从水波生成t h时的半径为(a 为大于零的常数).强水波开始生成时,一游轮以km/h的速度自码头A开往码头B,问实数a在什么范围取值时,强水波不会波及游轮的航行.【答案】(1)(2)【解析】试题分析:(1)由条件建立直角坐标系较为方便表示:,直线的方程为.由Q到海岸线ON的距离为km,得,解得,再由两直线交点得,利用两点间距离公式得(2)由题意是一个不等式恒成立问题:设小时时,游轮在线段上的点处,而不等式恒成立问题往往利用变量分离将其转化为对应函数最值问题:试题解析:(1)以点为坐标原点,直线为轴,建立直角坐标系如图所示.则由题设得:,直线的方程为.由,及得,∴.∴直线的方程为,即,由得即,∴,即水上旅游线的长为.(2)设试验产生的强水波圆,由题意可得P(3,9),生成小时时,游轮在线段上的点处,则,∴.强水波不会波及游轮的航行即,当时 ,当.,,当且仅当时等号成立,所以,在时恒成立,亦即强水波不会波及游轮的航行.【考点】函数实际应用,不等式恒成立18.在平面直角坐标系xOy 中已知椭圆222:1(0)3x y E a b a +=>>过点61,2⎛ ⎝⎭,其左、右焦点分别为12F F 、,离心率为22.(1)求椭圆E 的方程;(2)若A ,B 分别为椭圆E 的左、右顶点,动点M 满足MB AB ⊥,且MA 交椭圆E 于点P . (i )求证:OP OM ⋅uu u r uuu r为定值;(ii )设PB 与以PM 为直径的圆的另一交点为Q ,问:直线MQ 是否过定点,并说明理由.【答案】(1) 22142x y += (2) (i )证明见解析,定值为4 (ii )直线MQ 过定点(0,0)O .【解析】(1)由题意得离心率公式和点满足的方程,结合椭圆的,,a b c 的关系,可得,a b ,进而得到椭圆方程;(2)(i )设()02,,M y ()11,P x y ,求得直线MA 的方程,代入椭圆方程,解得点P 的坐标,再由向量的数量积的坐标表示,计算即可得证;(ii )直线MQ 过定点O (0,0).先求得PB 的斜率,再由圆的性质可得MQ ⊥PB ,求出MQ 的斜率,再求直线MQ 的方程,即可得到定点. 【详解】解:(1)易得22312122a b c a⎧⎪+=⎪⎨⎪=⎪⎩,且222c a b =-, 解得2242a b ⎧=⎨=⎩,,所以椭圆E 的方程为22142x y +=(2)设()02,,M y ()11,P x y , ①易得直线MA 的方程为:0042y yy x =+, 代入椭圆22142x y +=得,2222000140822y y y x x ⎛⎫+++-= ⎪⎝⎭, 由()201204828y x y --=+得,()20120288y x y --=+,从而012088y y y =+, 所以示()()20002200288,2,88y y OP OM y y y ⎛⎫-- ⎪⋅=⋅ ⎪++⎝⎭u u u r u u u u r ()22002200488488y y y y --=+=++, ②直线MQ 过定点(0,0)O ,理由如下:依题意,()2020020882288PBy y k y y y +==---+, 由MQ PB ⊥得,02MQ y k =, 则MQ 的方程为:00(2)2y y y x -=-,即02yy x =,所以直线MQ 过定点(0,0)O . 【点睛】本题考查椭圆的方程和性质,主要考查椭圆的离心率公式和方程的运用,注意联立直线方程和椭圆方程,运用韦达定理,同时考查向量的数量积的坐标表示和直线和圆的位置关系,属于中档题. 19.已知数列{}n a 满足:123a a a k ===(常数0k >),111n n n n K a a a a -+-+=()*3,n n N ≥∈.数列{}n b 满足:21n n n n a a b a +++=()*n N ∈. (1)求1,b 2,b 3,b 4b 的值; (2)求出数列{}n b 的通项公式;(3)问:数列{}n a 的每一项能否均为整数?若能,求出k 的所有可能值;若不能,请说明理由.【答案】(1) 132b b ==,2421k b b k +==;(2) 41122nn k b k k+-=+(); (3) k 为1,2时数列{}n a 是整数列.【解析】(1)经过计算可知:45621,2,4a k a k a k k=+=+=++,由数列{}n b 满足:21n n n n a a b a +++=(n=1,2,3,4…),从而可求1,b 2,b 3,b 4b ;(2)由条件可知121n n n n a a k a a +--=+.得211n n n n a a k a a +-+=+,两式相减整理得2n n b b -=,从而可求数列{}n b 的通项公式;(3)假设存在正数k ,使得数列{}n a 的每一项均为整数,则由(2)可知:2122122222211n n n n n n a a a k a a a k +-+=-⎧⎪+⎨=+-⎪⎩,由1a k Z =∈,624Z a k k =++∈,可求得1,2k =.证明1,2k =时,满足题意,说明1,2k =时,数列{}n a 是整数列. 【详解】(1)由已知可知:45621,2,4a k a k a k k=+=+=++, 把数列{}n a 的项代入21n n n n b a a a =+++求得132b b ==,2421k b b k+==; (2)由121n n n n k a a a a --++=3,n n N ≥∈*() 可知:121n n n n a a k a a +--=+① 则:211n n n n a a k a a +-+=+② ①−②有:2211n n n nn n a a a a a a +-+-++=,即:2n n b b -=2123n n b b --∴==…13122a a b a +===,222n n b b -== (242321)a a kb a k++===,41122nn k b k k+-∴=+(); (3)假设存在正数k 使得数列{}n a 的每一项均为整数,则由(2)可知:2122122222211n n n n n n a a a k a a a k +-+=-⎧⎪+⎨=+-⎪⎩③, 由1a k Z =∈,624Z a k k=++∈,可知1k =,2. 当1k =时,213k k+=为整数,利用123,,a a a Z ∈结合③式可知{}n a 的每一项均为整数; 当2k =时,③变为2122122222512n n n n n n a a a a a a +-+=-⎧⎪⎨=+-⎪⎩④ 用数学归纳法证明21n a -为偶数,2n a 为整数.1n =时结论显然成立,假设n k =时结论成立,这时21n a -为偶数,2n a 为整数,故212212n n n a a a +-=-为偶数,22n a +为整数,1n k ∴=+时,命题成立.故数列{}n a 是整数列.综上所述k 为1,2时数列{}n a 是整数列. 【点睛】本题考查了等差数列的基本性质和数列的递推公式,考查了学生的计算能力和对数列的综合掌握,注意分类讨论思想和转化思想的运用,属于难题. 20.设函数()()ln ,f x x a x x a =--+a R ∈. (1)若0a =求函数()f x 的单调区间;(2)若0a <试判断函数()f x 在区间()22,e e -内的极值点的个数,并说明理由;(3)求证:对任意的正数a 都存在实数t 满足:对任意的(,)x t t a ∈+,()1f x a <-. 【答案】(1) 单调递减区间为(0,1)单调递增区间为(1,)+∞. (2) 见解析 (3)证明见解析【解析】(1)求解()ln f x x '=,利用()0,()0f x f x ''><,解不等式求解单调递增区间,单调递减区间;(2)'()ln af x x x=-,其中0x >, 再次构造函数令()ln g x x x a =-,分析()g x 的零点情况.()ln 1g x x '=+,令1()0,g x x e'==,列表分析得出()g x 单调性,求其最小值, 分类讨论求解①若1a e≤-,②若212a e e -<<-,③若220,()a f x e -≤<的单调性,()f x 最大值,最小值,确定有无零点问题;(3)先猜想(1,1),()1x a f x a ∈+<-恒成立.再运用导数判断证明.令'1()ln 1,1,()10G x x x x G x x=-+≥=-≤,求解最大值,得出()(1)0G x G <=即可. 【详解】(1)当0a =时,()ln f x x x x =-,()ln f x x '=, 令()0f x '=,1x =,列表分析x (0,1)1(1,)+∞()f x '− 0 + ()f x单调递减单调递增故()f x 的单调递减区间为(0,1)单调递增区间为(1,)+∞.(2)()()ln f x x a x x a =--+,()ln f x x ax '=-,其中0x >, 令()ln g x x x a =-,分析()g x 的零点情况.()ln 1g x x '=+ 令()0g x '=,1x e=,列表分析 x(0,1e)1e(1,)e +∞()g x '− 0 +()g x单调递减 单调递增min 11()()g x g a e e ==--,而11()1n 1f ae ae e e'=-=--,222()2(2)f e ae ae -'=--=-+22221()2(2)a f e e a e e '=-=-,①若1a e≤-则()ln 0af x x x '=-≥,故()f x 在22(,)e e -内没有极值点;②若212a e e -<<-,则11()1n 0f ae e e '=-<,22()(2)0f e ae -'=-+> 2221()(2)0f e e a e'=->因此()f x '在22(,)e e -有两个零点,()f x 在22(,)e e -内有两个极值点;③若220a e -≤<则11()10f n ae e e '=-<,22()(2)0f e ae -'=-+≤,2221()(2)0f e e a e'=->, 因此()f x '在22(,)e e -有一个零点,()f x 在22(,)e e -内有一个极值点;综上所述当1(,]a e∈-∞-时,()f x 在22(,)e e -内没有极值点;当212,a e e ⎛⎫∈--⎪⎝⎭时,()f x 在22(,)e e -内有两个极值点; 当22,0a e ⎡⎫∈-⎪⎢⎣⎭时,()f x 在22(,)e e -内有一个极值点. (3)猜想:(1,1)x a ∈+,()1f x a <-恒成立. 证明如下:由(2)得()g x 在1(,)e+∞上单调递增,且(1)0g a =-<,(1)(1)ln(1)g a a a a +=++-. 因为当1x >时,1ln 1(*)x x>-,所以1(1)(1)(1)01g a a a a +>+--=+ 故()g x 在(1,1)a +上存在唯一的零点,设为0x .由x 0(1,)x0x0(,1)x a +()f x '− 0 + ()f x单调递减单调递增知(1,1)x a ∈+,()max{(1),(1)}f x f f a <+.又(1)ln(1)1f a a +=+-,而1x >时,ln 1(**)x x <-, 所以(1)(1)111(1)f a a a f +<+--=-=. 即(1,1)x a ∈+,()1f x a <-.所以对任意的正数a ,都存在实数1t =, 使对任意的(,)x t t ∈+∞, 使()1f x a <-. 补充证明(*): 令1()1n 1F x x x =+-,1x ≥.22111()0x F x x x x-'=-=≥, 所以()F x 在[1,)+∞上单调递增.所以1x >时,()(1)0F x F >=,即1ln 1x x>-. 补充证明(**)令()ln 1G x x x =-+,1x ≥.1()10G x x'=-≤, 所以()G x 在[1,)+∞上单调递减.所以1x >时,()(1)0G x G <=,即ln 1x x <-. 【点睛】本题主要考查导数与函数单调性的关系,会熟练运用导数解决函数的极值与最值问题.求函数的单调区间,应该先求出函数的导函数,令导函数大于0得到函数的递增区间,令导函数小于0得到函数的递减区间,考查了不等式与导数的结合,难度较大. 21.已知二阶矩阵,矩阵属于特征值的一个特征向量为,属于特征值的一个特征向量为.求矩阵.【答案】【解析】运用矩阵定义列出方程组求解矩阵 【详解】由特征值、特征向量定义可知,,即,得 同理可得解得,,,.因此矩阵【点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单 22.在极坐标系中,已知1,,9,33A B ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,线段AB 的垂直平分线l 与极轴交于点C ,求l 的极坐标方程及ABC ∆的面积.【答案】l 的极坐标方程及cos 53πρθ⎛⎫-= ⎪⎝⎭,203ABC ∆的面积. 【解析】将1,,9,33A B ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭转化为直角坐标系下的坐标形式,然后求出线段AB 的中点与直线AB 的斜率,进而求出直线l 在直角坐标系下的方程,再转化为极坐标方程;在直角坐标系下,求出点C 到直线AB 的距离、线段AB 的长度,从而得出ABC ∆的面积. 【详解】解:以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系xoy 在平面直角坐标系xoy 中,1,,9,33A B ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭ 的坐标为13993(),(22A B线段AB 的中点为553(2A ,3AB k =故线段AB 中垂线的斜率为133AB k k --==, 所以AB 的中垂线方程为:5335)2y x --=- 化简得:3100x +-=, 所以极坐标方程为cos 3sin 100ρθρθ+-=, 即cos()53πρθ-=,令0y =,则10x =,故在平面直角坐标系xoy 中,C (10,0)点C 到直线AB :3y x =的距离为1035331d ==+ 线段8AB =,故ABC ∆的面积为15382032S =⨯=【点睛】本题考查了直线的极坐标方程问题,解题时可以将极坐标系下的问题转化为平面直角坐标系下的问题,从而转化为熟悉的问题.23.已知实数,a b 满足2a b +≤,求证:22224(2)a a b b a +-+≤+.【答案】证明见解析【解析】对2222a a b b +-+进行转化,转化为含有2a b +≤形式,然后通过不等关系得证.【详解】 解:因为2a b +≤, 所以2222a a b b +-+ 2222a b a b =-++()()()2a b a b a b =-+++2a b a b=+-+()22a b a a b=+-++22a b a a b≤++++()22222244242a a a a≤++=+=+≤+,得证.【点睛】本题考查了绝对值不等式问题,解决问题的关键是要将要证的形式转化为已知的条件,考查了学生转化与化归的能力.24.如图,在四棱锥P ABCD-中,已知棱AB,AD,AP两两垂直,长度分别为1,2,2.若DC ABλ=u u u r u u u r (Rλ∈),且向量PCuuu r与BDu u u r夹角的余弦值为1515.(1)求λ的值;(2)求直线PB与平面PCD所成角的正弦值.【答案】(1)2λ=;(210.【解析】试题分析:(1)以A为坐标原点,AB、AD、AP分别为x、y、z轴建立空间直角坐标系A xyz-,写出,PCu u u r,BDu u u r的坐标,根据空间向量夹角余弦公式列出关于λ的方程可求;(2)设岀平面PCD的法向量为(),,n x y z=r,根据n PCn DC⎧⊥⎪⎨⊥⎪⎩r u rr u r,进而得到⎧⋅=⎪⎨⋅=⎪⎩r u rr u rn PCn DC,从而求出nr,向量PBu r的坐标可以求出,从而可根据向量夹角余弦的公式求出cos,n PB<>r u r,从而得PB和平面PCD所成角的正弦值.试题解析:(1)依题意,以A为坐标原点,AB、AD、AP分别为x、y、z轴建立空间直角坐标系A xyz-(1,0,0),(0,2,0),(0,0,2)B D P,因为DC ABλ=u u u r u u u r,所以(,2,0)Cλ,从而(,2,2)PCλ=-u u u r,则由15cos,15PC BD=u u u r u u u r,解得10λ=(舍去)或2λ=.(2)易得(2,2,2)PC=-u u u r,(0,2,2)PD=-u u u r,设平面PCD的法向量(,,)n x y z=r,则0⋅=r u u u rn PC,0⋅=r u u u rn PD,即0x y z+-=,且0y z-=,所以0x=,不妨取1y z==,则平面PCD 的一个法向量(0,1,1)n=r,又易得(1,0,2)PB=-u u u r,故10cos,5=⋅=-u u u r rPB n PB n,所以直线PB与平面PCD所成角的正弦值为105.考点: 1、空间两向量夹角余弦公式;2、利用向量求直线和平面说成角的正弦.25.已知数列{}n a的通项公式为1515225n nna⎡⎤⎛⎫⎛⎥=-⎪⎪ ⎥⎝⎭⎝⎭⎦,n N∈,记1212n n nS C a C a=++…nn nC a+.(1)求1,S2S的值;(2)求所有正整数n,使得n S能被8整除.【答案】(1) 11S=;23S=;(2) {}*|3,n n k k N=∈【解析】(1)运用二项式定理,化简整理,再代入计算即可得到所求值;(2)通过化简得到213n n nS S S++=-,再由不完全归纳找规律得到结论,即可得到所求结论.【详解】解:(1)1212n n n n n n S C a C a C a =++⋯+2121515225n n C C ⎡⎛⎛+ =⋅+⋅+ ⎝⎭⎝…212151515n n n n n C C C ⎫⎛+--⎪ +⋅-⋅+⎪ ⎝⎭⎝⎭⎭⎝…15n n n C ⎤⎫-⎥⎪+⋅⎥⎪⎝⎭⎭⎦1515115n n ⎡⎤⎛⎛+-⎥=-+ ⎥⎝⎭⎝⎭⎦ 3535225n n ⎡⎤⎛⎛+⎢⎥=- ⎢⎥⎝⎭⎝⎭⎣⎦, 即有1S 515==; 2S 3535==; (2)35355n n S n ⎡⎤+-⎢⎥=-⎢⎥⎝⎭⎝⎭⎣⎦, 23535225n S n n +⎡⎤+-=+-+⎥⎥⎝⎭⎝⎭⎦ 3535353535352222225n n n n ⎡⎤⎡⎤⎛⎛⎫⎛⎫⎛⎫⎛+⎢⎥⎢⎥-⋅+-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦13n n S S +=-,即213n n n S S S ++=-,*n N ∈,因此2n S +除以8的余数,完全由1,n n S S +除以8的余数确定,因为11,a =21a =,所以11111S C a ==,12221223S C a C a =+=,3213918S S S =-=-=,432324321,S S S =-=-=543363855S S S =-=-=,654316521144,S S S =-=-=7535643255377S S =-=-=,87631131144987,S S S =-=-=987329613772584S S S =-=-= 由以上计算及213n n n S S S ++=-可知,数列{}n S 各项除以8的余数依次是: 1,3,0,5,7,0,1,3,0,5,7,0,…,它是一个以6为周期的数列,从而n S 除以8的余数等价于n 除以3的余数, 所以3,n k =*k N ∈,即所求集合为:{}*|3,n n k k N=∈.【点睛】本题考查数列通项的运用,解决问题的关键是运用二项式定理,本题属于难题.。
江苏省南通市海安高级中学2024届高三上学期12月月考数学试题

江苏省南通市海安高级中学2024届高三上学期12月月考数学试题学校:___________姓名:___________班级:___________考号:___________则216=+,l r①当Δ0£,即02k <£时,()0g x ¢³恒成立,故()g x 在()0,1及()1,¥+上单调递增.于是当01x <<时,()()10g x g <=,又210x -<,故()()210x g x ->,即()221ln (1)xx k x ->-.当1x >时,()()10g x g >=,又210x ->,故()()210x g x ->,即()221ln (1)x x k x ->-.又当1x =时,()221ln (1)x x k x -=-.因此当02k <£时,()221ln (1)x x k x -³-对一切正实数x 恒成立.②当Δ0>,即2k >时,设()22110x k x +-+=的两个不等实根分别为()1212,x x x x <.函数()()2211x x k x j =+-+图像的对称轴为11x k =->,又()1420k j =-<,于是1211x k x <<-<.故当()1,1x k Î-时,()0x j <,即()0g x ¢<,从而()g x 在()1,1k -上单调递减;而当()1,1x k Î-时,()()10g x g <=,此时210x ->,于是()()210x g x -<,即()221ln (1)x x k x -<-,因此当2k >时,()221ln (1)x x k x -³-对一切正实数x 不恒成立.综上,当()()221(1)x f x k x -³-对一切正实数x 恒成立时,2k £,即k 的取值范围是(],2-¥.【点睛】本题考查利用导函数研究函数的单调性、不等式恒成立求参数问题,考查考生运算求解能力、推理论证能力、分类和整合思想.。
南通市海安高级中学高三数学上学期12月检测试卷(含解析)

2012-2013学年江苏省南通市海安高级中学高三(上)12月检测数学试卷一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填在答题卡相应的位置上)1.(5分)复数(i为虚数单位)的实部是﹣1 .考点:复数的基本概念;复数代数形式的乘除运算.专题:计算题.分析:把给出的复数分子分母同时乘以1+i,整理成a+bi(a,b∈R)的形式,则实部可求.解答:解:.所以复数(i为虚数单位)的实部是﹣1.故答案为﹣1.点评:本题考查了复数的基本概念,考查了复数代数形式的乘除运算,复数的除法采用分组分母同时乘以分母的共轭复数,此题是基础题.2.(5分)(2012•泉州模拟)集合A={3,2a},B={a,b},若A∩B={2},则A∪B={1,2,3} .考点:并集及其运算;交集及其运算.分析:根据题意,若A∩B={2},则2∈A,则可得2a=2,可得a的值,进而可得b的值,再由并集的意义,可得答案.解答:解:根据题意,若A∩B={2},则2∈A,2∈B,而已知A={3,2a},则必有2a=2,故a=1,又由2∈B,且a=1则b=2,故A∪B={1,2,3},故答案为{1,2,3}.点评:本题综合考查并集、交集的意义与运算,要求学生有一定的逻辑分析能力.3.(5分)已知等比数列{a n}的各项都为正数,它的前三项依次为1,a+1,2a+5,则数列{a n}的通项公式a n= 3n﹣1.考点:等比数列的性质.专题:计算题.分析:因为此等比数列的前三项依次为1,a+1,2a+5,根据等比数列的性质可得,第2项的平方等于第1第3项之积,列出关于a的方程,由各项都大于0,求出满足题意的方程的解即可得到a的值,然后把a的值代入得到前3项的值,根据前3项的值分别求出等比数列的首项和公比,根据首项和公比即可写出等比数列的通项公式.解答:解:由1,a+1,2a+5为等比数列的前3项,得到(a+1)2=2a+5,化简得:a2=4,由a+1>0得到a>﹣1,所以解得a=2,所以等比数列的前3项依次为:1,3,9,则a1=1,q=3,则数列{a n}的通项公式a n=3n﹣1.故答案为:3n﹣1点评:此题考查学生掌握等比数列的性质,灵活运用等比数列的通项公式化简求值,是一道综合题.4.(5分)若θ∈(,),sin2θ=,则cosθ﹣sinθ的值是﹣.考点:三角函数的恒等变换及化简求值.专题:计算题.分析:求出表达式的平方的值,根据角的范围确定表达式的符号,求出值即可.解答:解:(cosθ﹣sinθ)2=1﹣sin2θ=,又,cosθ<sinθ所以cosθ﹣sinθ=,故答案为:.点评:本题是基础题,考查三角函数的化简求值,注意角的范围三角函数的符号的确定,是本题的关键.5.(5分)(2013•哈尔滨一模)设,,是单位向量,且,则向量,的夹角等于60°.考点:数量积表示两个向量的夹角.专题:计算题.分析:根据,,是单位向量,且,可得,两边平方,即可求得向量,的夹角.解答:解:∵,,是单位向量,且,∴∴两边平方可得:1+1﹣2cos=1∴cos=∵∴故答案为:60°点评:本题考查向量知识的运用,考查向量的数量积,解题的关键是等式两边平方.6.(5分)若函数y=lnx+2x﹣6的零点为x0,则满足k≤x0的最大整数k= 2 .考点:函数的零点.专题:函数的性质及应用.分析:利用函数零点的判定定理即可得出.解答:解:∵f(2)=ln2﹣2<0,f(3)=ln3>0,∴函数y=lnx+2x﹣6的零点x0∈(2,3).∴满足k≤x0的最大整数k=2.故答案为2.点评:熟练掌握函数零点的判定定理是解题的关键.7.(5分)定义在R上的可导函数y=f(x)满足f(x+5)=f(﹣x),(2x﹣5)f′(x)>0.已知x1<x2,则“f(x1)>f(x2)”是“x1+x2<5”的充分必要条件.考点:必要条件、充分条件与充要条件的判断.专题:计算题;函数的性质及应用.分析:求出函数y=f(x)图象的对称轴,然后根据(2x﹣5)f'(x)>0,判定函数在对称轴两侧的单调性,最后根据函数的单调性对充分性和必要性分别加以验证,即可得到本题答案.解答:解:∵f(5+x)=f(﹣x),∴函数y=f(x)的图象关于x=对称∵(2x﹣5)f'(x)>0,∴x>时,f'(x)>0,可得函数f(x)单调递增;当x<时,f'(x)<0,可得函数f(x)单调递减①当f(x1)>f(x2)时,结合x1<x2,由函数单调性可得≤x2<5﹣x1或x1<x2<∴x1+x2<5成立,故充分性成立;②当x1+x2<5时,因为x1<x2,必有x1<5﹣x2≤成立,所以结合函数的单调性,可得f(x1)>f(x2)成立,故必要性成立综上所述,“f(x1)>f(x2)”是“x1+x2<5”的充分必要条件.故答案为:充分必要点评:本题给出函数单调性的命题,要我们进行充分必要性的判断,主要考查函数的单调性、用导函数的正负判断函数单调和充分必要条件的判定等知识,属于属中档题.8.(5分)已知函数f(x)=x3+ax2+bx+c的图象过点A(2,1),且在点A处的切线方程2x ﹣y+a=0,则a+b+c= 0 .考点:利用导数研究曲线上某点切线方程.专题:计算题;导数的概念及应用.分析:由函数f(x)=x3+ax2+bx+c的图象过点A(2,1),推导出8+4a+2b+c=1,由f(x)在点A处的切线方程2x﹣y+a=0,推导出f′(2)=3×4+2a×2+b=2,a=﹣3,由此能求出a+b+c的值.解答:解:∵函数f(x)=x3+ax2+bx+c的图象过点A(2,1),∴8+4a+2b+c=1,且f′(x)=3x2+2ax+b,∵f(x)在点A处的切线方程2x﹣y+a=0,∴f′(2)=3×4+2a×2+b=12+4a+b=2,f(x)在点A处的切线方程为y﹣1=2(x﹣2),即2x﹣y﹣3=0,∴,解得a=﹣3,b=2,c=1,∴a+b+c=﹣3+2+1=0.故答案为:0.点评:本题考查利用导数研究曲线上某点处的切线方程的求法及其应用,解题时要认真审题,注意等价转化思想的合理运用.9.(5分)在平面直角坐标系中,两条平行直线的横截距相差20,纵截距相差15,则这两条平行直线间的距离为12 .考点:两条平行直线间的距离.专题:计算题;空间位置关系与距离.分析:作出图形,利用等面积,即可得到结论.解答:解:由题意,如图所示,设两条平行直线间的距离为d,则AB=20,BC=15,AB⊥BC∴BC=25由等面积可得×15×20=×25×d,∴d=12故答案为:12.点评:本题考查两条平行直线间的距离,考查学生的计算能力,属于基础题.10.(5分)(2012•桂林一模)半径为4的球面上有A,B,C,D四点,且满足AB⊥AC,AC⊥AD,AD⊥AB,则S△ABC+S△ACD+S△ADB的最大值为(S为三角形的面积)32 .考点:基本不等式;球内接多面体.专题:计算题;压轴题.分析:设AB=a,AC=b,AD=c,根据AB⊥AC,AC⊥AD,AD⊥AB,可得a2+b2+c2=4R2=64,而S△ABC+S△ACD+S△ADB=(ab+ac+bc),利用基本不等式,即可求得最大值为.解答:解:设AB=a,AC=b,AD=c,∵AB⊥AC,AC⊥AD,AD⊥AB,∴a2+b2+c2=4R2=64∴S△ABC+S△ACD+S△ADB=(ab+ac+bc)≤(a2+b2+c2)=32∴S△ABC+S△ACD+S△ADB的最大值为32故答案为:32.点评:本题考查求内接几何体,考查基本不等式的运用,属于基础题.11.(5分)已知A(3,),O是原点,点P的坐标为(x,y)满足条件,则z=的取值范围是[﹣3,3] .考点:向量的投影;简单线性规划.专题:计算题.分析:由已知,z即为在上的投影.先根据约束条件画出可行域,再利用z的几何意义求范围.只需求出向量和的夹角的余弦值的取值范围,从而得到z的取值范围.解答:解:==,∵,∴当时,=3,当时,=﹣3,∴z的取值范围是[﹣3,3].故答案为:[﹣3,3].点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.巧妙识别目标函数的几何意义是我们研究规划问题的基础,纵观目标函数包括线性的与非线性,非线性问题的介入是线性规划问题的拓展与延伸,使得规划问题得以深化.12.(5分)若对x,y∈[1,2],xy=2,总有不等式成立,则实数a的取值范围是a≤0.考点:基本不等式在最值问题中的应用.专题:计算题.分析:先根据均值不等式求得:(2﹣x)(4﹣y)的最大值,要使不等式成立,需(2﹣x)(4﹣y)≥a成立.求出(2﹣x)(4﹣y)的最小值即可.解答:解:,即a≤(2﹣x)(4﹣y)恒成立,只需a≤(2﹣x)(4﹣y)的最小值而(2﹣x)(4﹣y)=8﹣4x﹣2y+xy=8﹣(4x+2y)+2=10﹣(4x+2y)=10﹣(4x+)令f(x)=10﹣(4x+) x∈[1,2]则导数f'(x)=﹣(4﹣)=≤0故f(x)在x∈[1,2]是减函数所以当x=2时取最小值0即(2﹣x)(4﹣y)的最小值为0所以a≤0点评:本题主要考查了本题主要考查了基本不等式在最值问题中的应用.属基础题.13.(5分)给出下列四个命题:①“k=1”是“函数y=cos2kx﹣sin2kx的最小正周期为π”的充要条件;②函数y=sin(2x﹣)的图象沿x轴向右平移个单位所得的函数表达式是y=cos2x;③函数y=lg(ax2﹣2ax+1)的定义域是R,则实数a的取值范围是(0,1);④设O是△ABC内部一点,且,则△AOB与△AOC的面积之比为1:2;其中真命题的序号是④(写出所有真命题的序号).考点:命题的真假判断与应用;充要条件;函数y=Asin(ωx+φ)的图象变换.专题:应用题.分析:①当k=﹣1时,函数y=cos2kx﹣sin2kx=cos2x的最小正周期也为π;②函数y=sin(2x ﹣)的图象沿x轴向右平移个单位所得的函数表达式是y=sin[2(x)﹣]化简即可③由函数y=lg(ax2﹣2ax+1)的定义域是R可得ax2﹣2ax+1>0恒成立,分类讨论①若a=0,②可判断;④设AC边上的中线为BD,由O是△ABC内部一点,且,可得O为BD的中点,=可求解答:解:①当k=﹣1时,函数y=cos2kx﹣sin2kx=cos2x的最小正周期也为π,故①错误②函数y=sin(2x﹣)的图象沿x轴向右平移个单位所得的函数表达式是y=sin[2(x)﹣]==﹣cos2x,故②错误③由函数y=lg(ax2﹣2ax+1)的定义域是R可得ax2﹣2ax+1>0恒成立,①若a=0,满足条件②解可得0<a<1,从而有0≤a<1,故③错误④设AC边上的中线为BD,由O是△ABC内部一点,且,可得O为BD的中点,==,正确故答案为:④点评:本题主要考查了必要条件、充分条件与充要条件的判断,函数图象的平移及对数函数的定义域,函数的恒成立问题的求解,是一道综合题.14.(5分)(2010•崇文区一模)定义在R上的函数满足f(0)=0,f(x)+f(1﹣x)=1,,且当0≤x1<x2≤1时,f(x1)≤f(x2),则= .考点:函数的值.专题:计算题;综合题.分析:先由已知条件f(0)=0,f(x)+f(1﹣x)=1,求出一些特值,f(1)=1,,可得f()=,再由当0≤x1<x2≤1时,f(x1)≤f(x2),结合=f()可以看出x∈时,f(x)=,再利用条件将逐步转化到内,代入求解即可.解答:解:由f(x)+f(1﹣x)=1可知f(x)的图象关于对称,由f(0)=0得f(1)=1,,中令x=1可得f()=,又因为0≤x1<x2≤1时,f(x1)≤f(x2),所以x∈时,f(x)=,由可得=,因为,所以,所以故答案为:点评:本题考查抽象函数的性质的应用问题及转化思想,综合性较强,难度较大.二、解答题:(本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)15.(14分)(2010•陕西)如图,A,B是海面上位于东西方向相距5(3+)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B 点南偏西60°且与B点相距20海里的C点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?考点:解三角形的实际应用.专题:应用题.分析:先根据内角和求得∠DAB和,∠DBA及进而求得∠ADB,在△ADB中利用正弦定理求得DB的长,进而利用里程除以速度即可求得时间.解答:解:由题意知AB=5(3+)海里,∠DBA=90°﹣60°=30°,∠DAB=90°﹣45°=45°,∴∠ADB=180°﹣(45°+30°)=105°,在△ADB中,有正弦定理得=∴DB===10又在△DBC中,∠DBC=60°DC2=DB2+BC2﹣2×DB×BC×cos60°=900∴DC=30∴救援船到达D点需要的时间为=1(小时)答:该救援船到达D点需要1小时.点评:本题主要考查了解三角形的实际应用.考查了学生运用所学知识解决实际问题的能力.16.(14分)如图,M,N,K分别是正方体ABCD﹣A1B1C1D1的棱AB,CD,C1D1的中点.(1)求证:AN∥平面A1MK;(2)求证:平面A1B1C⊥平面A1MK.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:证明题.分析:对于(1),要证明AN∥平面A1MK,只需证明AN平行于平面A1MK内的一条直线,容易证明AN∥A1K,从而得到证明;对于(2),要证明平面A1B1C⊥平面A1MK,只需证明平面A1MK内的直线MK垂直于平面A1B1C即可,而BC1∥MK容易证明,从而问题得以解决.解答:证明:(1)连接KN,由于K、N为CD,C1D1、CD的中点,所以KN平行且等于AA1,AA1KN 为平行四边形⇒AN∥A1K,而A1K⊂平面A1MK,AN⊄平面A1MK,从而AN∥平面A1MK.(2)连接BC1,由于K、M为AB、C1D1的中点,所以KC1与MB平行且相等,从而KC1MB为平行四边形,所以MK∥BC1,而BC1⊥B1C,BC1⊥A1B1,从而BC1⊥平面A1B1C,所以:⇒MK⊥面A1B1C⇒面A1B1C⊥面A1MK.点评:本题考查线面平行的判定定理、面面垂直的判定定理的使用,要注意其中的转化思想的应用,即:将线面平行转化为线线平行,将面面垂直转化为线面垂直.17.(14分)如图:在平面直角坐标系中,锐角α和钝角β的终边分别与单位圆交于A、B 两点.(1)若A、B两点的纵坐标分别为、,求cos(β﹣α)的值;(2)已知点,求函数的值域.考点:平面向量数量积的坐标表示、模、夹角.专题:平面向量及应用.分析:(1)由三角函数的定义可得sinα,sinβ,再由同角三角函数的基本关系可得cosαcosβ,代入两角差的余弦公式可得;(2)由数量积的运算可得f(α)=,由α得范围,逐步求范围可得答案.解答:解:(1)根据三角函数的定义,得,.又α是锐角,所以,因为β是钝角,所以.所以.(2)由题意可知,,.所以,因为,所以,从而,因此函数的值域为.点评:本题考查平面向量的数量积的运算,以及三角函数的运算公式和值域,属中档题.18.(16分)已知O为平面直角坐标系的原点,过点M(﹣2,0)的直线l与圆x2+y2=1交于P,Q两点.(I)若,求直线l的方程;(Ⅱ)若△OMP与△OPQ的面积相等,求直线l的斜率.考点:直线与圆的位置关系;直线与圆相交的性质.专题:计算题.分析:(Ⅰ)利用两个向量的数量积的定义求出,∠POQ=120°,得到O到直线l的距离等于,根据点到直线的距离公式求出直线l的斜率,从而得到直线l的方程.(Ⅱ)因为△OMP与△OPQ的面积相等,可得,再由P,Q两点在圆上,可解得点P的坐标,由两点式求得直线l的斜率.解答:解:(Ⅰ)依题意,直线l的斜率存在,因为直线l过点M(﹣2,0),可设直线l:y=k(x+2).因为P、Q两点在圆x2+y2=1上,所以,,因为,所以,所以,∠POQ=120°,所以,O到直线l的距离等于.所以,,得,所以直线l的方程为,或.(Ⅱ)因为△OMP与△OPQ的面积相等,所以,,设P(x1,y1),Q(x2,y2),所以,,.所以,,即(*);因为,P,Q两点在圆上,所以,把(*)代入,得,所以,,所以,直线l的斜率,即.点评:本题考查两个向量的数量积的定义,直线和圆相交的性质,求出点P的坐标是解题的难点.19.(16分)(2009•浙江)已知函数f(x)=x3﹣(k2﹣k+1)x2+5x﹣2,g(x)=k2x2+kx+1,其中k∈R.(I)设函数p(x)=f(x)+g(x).若p(x)在区间(0,3)上不单调,求k的取值范围;(II)设函数是否存在k,对任意给定的非零实数x1,存在惟一的非零实数x2(x2≠x1),使得q′(x2)=q′(x1)?若存在,求k的值;若不存在,请说明理由.考点:利用导数研究函数的单调性;函数的单调性与导数的关系.专题:计算题;压轴题;分类讨论.分析:(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)x﹣1,先求导数:p′(x),因p(x)在区间(0,3)上不单调,得到p′(x)=0在(0,3)上有实数解,且无重根,再利用分离参数的方法得出,最后再利用导数求出此函数的值域即可;(II)先根据题意得出当k=0时不合题意,因此k≠0,下面讨论k≠0的情形,分类讨论:(ⅰ)当x1>0时,(ⅱ)当x1<0时,最后综合(ⅰ)(ⅱ)即可得出k值.解答:解析:(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)x﹣1,p′(x)=3x2+2(k﹣1)x+(k+5),因p(x)在区间(0,3)上不单调,所以p′(x)=0在(0,3)上有实数解,且无重根,由p′(x)=0得k(2x+1)=﹣(3x2﹣2x+5),∴,令t=2x+1,有t∈(1,7),记,则h(t)在(1,3]上单调递减,在[3,7)上单调递增,所以有h(t)∈[6,10),于是,得k∈(﹣5,﹣2],而当k=﹣2时有p′(x)=0在(0,3)上有两个相等的实根x=1,故舍去,所以k∈(﹣5,﹣2);(II)当x<0时有q′(x)=f′(x)=3x2﹣2(k2﹣k+1)x+5;当x>0时有q′(x)=g′(x)=2k2x+k,因为当k=0时不合题意,因此k≠0,下面讨论k≠0的情形,记A=(k,+∞),B=(5,+∞)(ⅰ)当x1>0时,q′(x)在(0,+∞)上单调递增,所以要使q′(x2)=q′(x1)成立,只能x2<0且A⊆B,因此有k≥5,(ⅱ)当x1<0时,q′(x)在(﹣∞,0)上单调递减,所以要使q′(x2)=q′(x1)成立,只能x2>0且A⊆B,因此k≤5,综合(ⅰ)(ⅱ)k=5;当k=5时A=B,则∀x1<0,q′(x1)∈B=A,即∃x2>0,使得q′(x2)=q′(x1)成立,因为q′(x)在(0,+∞)上单调递增,所以x2的值是唯一的;同理,∀x1<0,即存在唯一的非零实数x2(x2≠x1),要使q′(x2)=q′(x1)成立,所以k=5满足题意.点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,同时考查了分析与解决问题的综合能力,属于中档题.20.(16分)(2010•丰台区一模)设集合W由满足下列两个条件的数列{a n}构成:①;②存在实数M,使a n≤M.(n为正整数)(Ⅰ)在只有5项的有限数列{a n}、{b n}中,其中a1=1,a2=2,a3=3,a4=4,a5=5;b1=1,b2=4,b3=5,b4=4,b5=1;试判断数列{a n}、{b n}是否为集合W中的元素;(Ⅱ)设{c n}是各项为正数的等比数列,S n是其前n项和,,,试证明{S n}∈W,并写出M的取值范围;(Ⅲ)设数列{d n}∈W,对于满足条件的M的最小值M0,都有d n≠M0(n∈N*).求证:数列{d n}单调递增.考点:元素与集合关系的判断;数列的函数特性;等比数列的前n项和;等比数列的性质.分析:(Ⅰ)检验这2个数列中的各项是否满足①②2个条件.(Ⅱ){c n}是各项为正数的等比数列,求出公比和首项,得到通项公式,再计算其前n项和S n,判断S n是否满足①②2个条件.(Ⅲ)用反证法证明,若数列{d n}非单调递增,推出与题设矛盾,所以假设不对,命题得到证明.解答:解:(Ⅰ)对于数列{a n},取=a2,显然不满足集合W的条件①,故{a n}不是集合W中的元素.(2分)对于数列{b n},当nÎ{1,2,3,4,5}时,不仅有,,,而且有b n≤5,显然满足集合W的条件①②,故{b n}是集合W中的元素.(4分)(Ⅱ)∵{c n}是各项为正数的等比数列,S n是其前n项和,,,设其公比为q>0,∴,整理得,6q2﹣q﹣1=0∴q=,∴(7分)对于“n∈N*,有,且S n<2,故{S n}∈W,且M∈[2,+∞).(9分)(Ⅲ)证明:(反证)若数列{d n}非单调递增,则一定存在正整数k,使d k≥d k+1 成立,当n=m+1时,由得 d m+2<2d m+1﹣d m,而d m+1﹣d m+2>d m+1﹣(2d m+1﹣d m)=d m﹣d m+1≥0,所以d m+1>d m+2 .显然在d 1,d2,…,d k这k项中一定存在一个最大值,不妨记为,所以,从而.这与题设d n≠M0(n∈N*)相矛盾.所以假设不成立,故命题得证.(14分)点评:本题考查数列的函数特性,等比数列的性质,等比数列的前n项和公式,用反证法证明数学命题,属于中档题.。
江苏省南通中学2020-2021学年高三上学期12月考前热身练数学答案

2021届高三新高考统一适应性考试江苏省南通中学12月考前热身练数学试题参考答案1.A 【解析】{}{}21,,1,,2x y x y =,则(1)201002x x x x y y y y ==⎧=⎧⎧⇒⎨⎨⎨===⎩⎩⎩或 , 当00x y =⎧⎨=⎩时,与集合的元素互异性矛盾,故舍去; 当10x y =⎧⎨=⎩时,与集合的元素互异性矛盾,故舍去; (2)22x y y x =⎧⎨=⎩ ,00x y =⎧⎨=⎩ (舍去)或1214x y ⎧=⎪⎪⎨⎪=⎪⎩, 当1214x y ⎧=⎪⎪⎨⎪=⎪⎩时,111,,24A ⎧⎫=⎨⎬⎩⎭ ,111,,42B ⎧⎫=⎨⎬⎩⎭符合题意,因此x 的取值集合为1{}2,选A.2.C 【解析】由于()f x 是偶函数,故()()33a f f=-=,()331log log 22b f f ⎛⎫== ⎪⎝⎭,43c f ⎛⎫= ⎪⎝⎭由于()f x 在(0,)+∞是增函数,所以()()34log 233f f f ⎛⎫<< ⎪⎝⎭,即b <c <a . 故选:C3.B 【解析】由题意得,e 2i =cos 2+isin 2, ∴复数在复平面内对应的点为(cos 2,sin 2). ∵2∈,∴cos 2∈(-1,0),sin 2∈(0,1),∴e 2i 表示的复数在复平面中对应的点位于第二象限, 故选B.4.C【详解】由于一天有1440分钟,所以有1440种不同的结果,其中符合要求的有19:49,19:58,18:59,09:59共四种,所以所求概率为41. 1440360=5.A【解析】因为函数()f x 的定义域是{}0x x≠,且()()x x x xx x x xe e e ef x f xe e e e----++-==-=---,所以函数()f x是奇函数,故排除选项D;又22()11x xx x xe ef xe e e--+==+--,所以()f x在(0,)+∞上单调递减,且(1)1f>,故排除选项B,C;故选:A.6.A【解析】如图,记COPα∠=,在Rt OBC中,2cosOBα=,2sinBCα=,在Rt OAD中,3323OA DA BCα===,所以232cosAB OB OAαα=-=,设矩形ABCD的面积为S,223(2cos)2sin3334sin cos2sin2cos23334323)6S AB BCααααααααπα=⋅=-⋅=-=+-=+-由03πα<<,所以当262ππα+=,即6πα=时,S 取最大值,为432323-=, 故选:A.7.D 【解析】由条件可得2212c e a ==1+2222b e a ,=1+2b m a m +⎛⎫ ⎪+⎝⎭, 当a>b 时,b m b a m a +>+,则2212e e <,所以e 1<e 2; 当a<b 时,b m b a m a+<+,则2212e e >,所以e 1>e 2. 所以当a>b 时,e 1<e 2;当a<b 时,e 1>e 2.选D . 8.D 【解析】设()()21xg x ex =-,()1y a x =-,由题意知,函数()y g x =在直线y ax a =-下方的图象中只有一个点的横坐标为整数,()()21x g x e x '=+,当12x <-时,()0g x '<;当12x >-时,()0g x '>.所以,函数()y g x =的最小值为12122g e -⎛⎫-=- ⎪⎝⎭.又()01g =-,()10g e =>.直线y ax a =-恒过定点()1,0且斜率为a , 故()01a g ->=-且()31g a a e -=-≥--,解得312a e≤<,故选D. 9.AD 【解析】由茎叶图中的数据,我们可得甲、乙甲,乙两地某月14时的气温抽取的样本温度分别为: 甲:26,28,29,31,31 乙:28,29,30,31,32;可得:甲地该月14时的平均气温:15(26+28+29+31+31)=29, 乙地该月14时的平均气温:15(28+29+30+31+32)=30, 故甲地该月14时的平均气温低于乙地该月14时的平均气温; 由方差公式可得:甲地该月14时温度的方差为:()()()()()22222226292829292931313131=3.65s -+-+-+-+-=甲乙地该月14时温度的方差为:()()()()()2222222830293030303130323025s -+-+-+-+-==乙,所以甲地该月14时的气温的标准差大于乙地该月14时的气温标准差. 故选:AD10.ACD 【解析】由于BC 固定,所以倾斜的过程中,始终有AD //EH //FG //BC , 且平面AEFB //平面DHGC ,故水的部分始终呈现棱柱状(三棱柱、四棱柱、五棱柱); 当水是四棱柱或者五棱柱时,水面面积与上下底面面积相等,当水是三棱柱时,则水面四边形EFGH 的面积可能变大,也可能变小,水面的面积改变;BC 为棱柱的一条侧棱,随着倾斜度的不同, 但水的部分始终呈棱柱状, 且棱11//B C 平面EFGH ,棱1111//B C A D ,∴11//A D 平面EFGH ; ∵体积是定值,高BC 为定值,则底面积EABF 为定值, 即EA BF +为定值, 综上ACD 正确. 故选:ACD.11.ACD 【解析】解:设等比数列的公比为q ,则2132a a a a q q+=+, 当20a >,0q <时,1322a a a +<,故A 不正确;2222221322()()2a a a a q a q+=+,∴2221322a a a +当且仅当13a a =时取等号,故B 正确; 若13a a =,则211a a q =,21q ∴=,1q ∴=±,12a a ∴=或12a a =-,故C 不正确;若31a a >,则211a q a >,2421(1)a a a q q ∴-=-,其正负由q 的符号确定,故D 不正确 故选:ACD .12.ABC 【解析】先证明结论:当O 为直线EF 外一点时,E 、F 、M 三点共线(),OM xOE yOF x y R ⇔=+∈,1x y +=.充分性:若E 、F 、M 三点共线,则存在k ∈R ,使得=EM k EF ,即()OM OE k OF OE -=-,所以,()1OM k OE kOF =-+,因为(),OM xOE yOF x y R =+∈,则()11x y k k +=-+=,充分性成立; 必要性:因为(),OM xOE yOF x y R =+∈且1x y +=,所以,()1OM xOE x OF =+-,即()OM OF x OE OF -=-,所以,FM xFE =, 所以,E 、F 、M 三点共线.本题中,取OC 的中点N ,连接DN ,如下图所示:D 、N 分别为OB 、OC 的中点,则DN //BC 且12DN BC =, 14OC OA =,67AC AN ∴=,即67AC AN =,//BC DN ,即//CM DN ,67AM AC AD AN ∴==,67AM AD ∴=, 12AD OD OA OB OA =-=-,6611377277OM OA AM OA AD OA OB OA OA OB ⎛⎫=+=+=+-=+ ⎪⎝⎭, E 、F 、M 三点共线,O 为直线EF 外一点,则(),OM xOE yOF x y R =+∈且1x y +=.OE OA λ=,(),0OB OF μλμ=>,则OM xOE yOF xOA yOB λμ=+=+,所以,1737x y λμ⎧=⎪⎪⎨⎪=⎪⎩,可得1737x y λμ⎧=⎪⎪⎨⎪=⎪⎩,由1x y +=可得13177λμ+=, 由基本不等式可得()1313134247777μλμλλμλμλμλμλμ⎛⎫⎛⎫⎛⎫+=++=++≥⋅+ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭423+=. 当且仅当3μλ=时,等号成立.所以,λμ+的最小值为423+,ABC 选项均不满足423λμ++≥. 故选:ABC.13.平面ABC ⊥平面ACD ,平面ABC ⊥平面BCD ,平面ABD ⊥平面BCD .【解析】解:画出图形如下,AB 是平面α的垂线,AB 平面ABD ,AB 平面ABC ,所以平面ABD ⊥平面BCD . 平面ABC ⊥平面BCD ,CD ⊂平面α,所以AB CD ⊥,又CD AC ⊥,AB AC A ⋂=,所以CD ⊥平面ABC ,CD ⊂平面ACD ,所以平面ABC ⊥平面ACD , 故答案为:平面ABC ⊥平面ACD ,平面ABC ⊥平面BCD ,平面ABD ⊥平面BCD . 14.-2 -1094 1093 2187 【解析】当1x =时,701234567(12)1x a a a a a a a a -=+++++++=-;当1x =-时,7701234567(12)3x a a a a a a a a -=-+-+-+-=;当0x =时,01a =;故1234567112a a a a a a a ++++++=--=-;7135********a a a a --+++==-;7024613=10932a a a a -++++=;由展开式可知1357a a a a ,,,均为负值,0246a a a a ,,,均为正值,012702461357()()1093(1094)2187a a a a a a a a a a a a ++++=+++-+++=--=故答案为:-2;-1094;1093;2187.15.1,12⎡⎤⎢⎥⎣⎦【解析】如图,过D 作DG ⊥AF ,垂足为G ,连接GK ,平面ABD ⊥平面ABC ,DK ⊥AB ,DK ∴⊥平面ABC ,DK AF ∴⊥.又DG AF ⊥,AF ∴⊥平面DKG ,AF GK ∴⊥.容易得到,当F 运动到E 点时,K 为AB 的中点,t =AK =2AB=1;当F 运动到C 点时,在Rt ADF 中,易得AF 5AG 5GF 5, 又易知Rt AGK Rt ABF ∽,则AG AB AK AF=, 又AB =2,AK =t ,则t =12. t ∴的取值范围是1,12⎡⎤⎢⎥⎣⎦.16.1k ≥【解析】∵当0x >时,()222112e x f x e x e x x +==+≥=,当且仅当21e x x =,即1=x e时等号成立. ∴当()0,x ∈+∞时,函数()f x 的最小值为2e .∵()2x e x g x e=,∴()222()(1)x x x xe e xe e x g x e e--==', ∴当1x <时,()0,()x g g x '>单调递增, 当1x >时,()0,()x g g x '<单调递减,∴当1x =时,()g x 有最大值,且最大值为(1)g e =. ∵对任意1x ,2x ∈(0,+∞),不等式()()121g x f x kk ≤+恒成立,∴21e ek k ≤+,解得1k ,∴正数k 的取值范围是[1,)+∞. 故答案为[1,)+∞.17.【解析】(1)由222sin sin sin sin sin A B C A B +-=,利用正弦定理化简得222a b c ab +-=,∴()2221cos 0,,222a b c ab C C ab ab π+-===∈,即3C π=,∵sin sin()sin()sin()2sin 2C B A B A B A A +-=++-=, ∴sin cos 2sin cos B A A A =,当cos 0A =,即2A π=,3C π=,2,3c b ==,此时12=233ABCS =⨯⨯; 当cos 0A ≠,得到sin 2sin B A =,利用正弦定理得2b a =, 由已知222a b c ab +-=可得222442a a a +-=,即24=3a ,此时2114sin 2223ABCSab C a ==⨯==(2)AB 边上的中线为CD,则1()2CD CA CB =+, ∴222222cos3||44a b ab a b ab CD π++++==,∵1cos 2C =,2c =, ∴由余弦定理得:2222cos c a b ab C =+-,即224a b ab +-=,2242a b ab ab ab ab =+-≥-=,当a=b=2时取等号,∴22242144a b ab ab CD +++==>,且2424+8||=344ab CD +=≤, 则||CD的范围为.18.【解析】(1)由1*3(1),2n n b n N -+-=∈,可得2,,1,,n n b n ⎧=⎨⎩为奇数为偶数 又()1121nn n n n b a b a +++=-+,当1n =时,1221a a +=-,由12a =可得:232a =-, 当2n =时,2325a a +=,可得:38a =.(2)因为21212221n n n a a --+=-+①, 2221221n n n a a ++=+②,②-①,得21212132-+--=⨯n n n a a ,即2132-=⨯n n c . 于是14n nc c +=,所以{}n c 是等比数列. (3)因为12a =,由(2)知,当*k N ∈且2k ≥时,2113153752123()()()()k k k a a a a a a a a a a ---=+-+-+-++-13523212(14)23(2222)23214k k k ----=+++++=+⨯=-故对任意*2121,2.k k k N a --∈=由①得212122221--+=-+k k k a ,所以21*212,2-=-∈k k a k N . 因此,21234212()()().2k k k kS a a a a a a -=++++++=于是,21212212.2---=-=+k k k k k S S a 故21221221222121212121221.1222144(41)22k k k kk k k k k kk k kk kS S k k k a a ------+-++=+=-=----- 所以,对任意*n N ∈,21221212121221212212----⎛⎫⎛⎫++++=++++ ⎪ ⎪⎝⎭⎝⎭n n n n n n n n S S S S S S S S a a a a a a a a ()()2221112111141244441441⎛⎫⎛⎫⎛⎫ ⎪ ⎪=--+--++-- ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭n n nn()()2221112141244441441⎛⎫⎛⎫⎛⎫ ⎪ ⎪=-+-+--+ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭n n nnn ()()22211121111=412444123441441⎛⎫⎛⎫ ⎪=-+++++≤-+- ⎪ ⎪--⎝⎭⎝⎭n n nn n n n ()*n N ∈. 19.【详解】(1)以A 为坐标原点,建立如图空间直角坐标系A xyz -,设),0Db ,则()0C ,,()002P ,,,233E ⎛⎫ ⎪ ⎪⎝⎭,)0B b -,,∴()22PC =-,,22 ,,33BE b ⎛⎫= ⎪ ⎪⎝⎭,22 33DE b ⎛⎫=- ⎪ ⎪⎝⎭,, ∴44033PC BE ⋅=-=,0PC DE ⋅=, ∴PC BE ⊥,PC DE ⊥,BE DE E ⋂=, ∴PC ⊥平面BED .(2)()002AP =,,,()2,,0AB b =-,设平面PAB 的法向量为() ,,x y z m =,则2020m AP z m AB x by ⎧⋅==⎪⎨⋅=-=⎪⎩,取()20b m =,,, 设平面PBC 的法向量为() ,,p n q r =,则222032023n PC p r n BE p bq r ⎧⋅=-=⎪⎨⋅=++=⎪⎩, 取21,,2b n ⎛⎫=-⎪ ⎪⎝, ∵平面PAB ⊥平面PBC ,∴ 20m n bb =-=⋅,故2b =, ∴()1,1,2n =-,()222DP =--,,, ∴1cos ,2n DP DP n n DP⋅==⋅, 设PD 与平面PBC 所成角为θ,02⎡⎤∈⎢⎥⎣⎦,πθ,则1sin 2θ=, ∴30θ=︒,∴PD 与平面PBC 所成角的大小为30.20.【解析】设A ,B ,C ,D 分别为第一,二,三,四个问题.用Mi (i =1,2,3,4)表示甲同学第i 个问题回答正确,用Ni (i =1,2,3,4)表示甲同学第i 个问题回答错误,则Mi 与Ni是对立事件(i =1,2,3,4).由题意得,P (M 1)=34,P (M 2)=12,P (M 3)=13,P (M 4)=14,所以P (N 1)=14,P (N 2)=12,P (N 3)=23,P (N 4)=34.(1)记“甲同学能进入下一轮”为事件Q ,Q =M 1M 2M 3+N 1M 2M 3M 4+M 1N 2M 3M 4+M 1M 2N 3M 4+N 1M 2N 3M 4, P (Q )=P (M 1M 2M 3+N 1M 2M 3M 4+M 1N 2M 3M 4+M 1M 2N 3M 4+N 1M 2N 3M 4) =P (M 1M 2M 3)+P (N 1M 2M 3M 4)+P (M 1N 2M 3M 4)+P (M 1M 2N 3M 4)+P (N 1M 2N 3M 4) =34×12×13+14×12×13×14+34×12×13×14+34×12×23×14+14×12×23×14=14. (2)由题意,随机变量ξ的可能取值为2,3,4.由于每题答题结果相互独立,所以P (ξ=2)=18, P (ξ=3)=34×12×13+34×12×23=38,P (ξ=4)=1-P (ξ=1)-P (ξ=2)=12. 随机变量ξ的分布列为所以E (ξ)=2×18+3×38+4×12=278. 21.【解析】(1)由题意得2412a =⎧=,,解得a 2=4,b 2=3.所以椭圆C 的方程为24x +23y =1.(2)①点A ,B 的坐标分别为(2,0),(0.设点P 的坐标为(m ,n ),由对称性知点Q 的坐标为(-m ,-n ).所以k 1=2n m -,k 2=2n m +.所以k 1k 2=2n m -·2n m +=224n m -. 又因为点P 在椭圆C :24x +23y =1上,所以24m +23n =1,即m 2-4=-43n 2,所以k 1k 2=2243n n -=-34.同理k 3k 4=-34.所以k 1k 2+k 3k 4=34⎛⎫- ⎪⎝⎭+34⎛⎫- ⎪⎝⎭=-32,为定值. ②由题意,A (2,0),B (0.设l :y+t . 由点A (2,0),B (0)位于直线l的两侧,得20022t t ⎛⎫⎛⎫⨯⨯ ⎪⎪ ⎪⎪⎝⎭⎝⎭-+<0,<t.由222143y x t x y ⎧=+⎪⎪⎨⎪+=⎪⎩,,,消去y 并整理,得3x 2++2t 2-6=0. 由判别式∆=)2-4×3×(2t 2-6)>0,得t 2<6.t时,显然,判别式∆>0. 设P (x 1,y 1),Q (x 2,y 2).由根与系数的关系得,x 1+x 2x 1x 2=2263t -. |PQ |点A (2,0)到直线l:y x +t 的距离d 1.<t,所以d 12t点B (0,3)到直线l :y =32x +t 的距离d 2=3032314t ⨯+-+=237t-.因为-3<t <3,所以d 2=()237t -.因此,四边形APBQ 的面积APQBPQAPBQ S SS=+四边形=12·|PQ |·(d 1+d 2) =12×73×2183t -×()()232377t t ⎡⎤+-⎢⎥+⎢⎥⎣⎦=226t-.因为-3<t <3,显然,当t =0时,(S 四边形APBQ )max =26. 22.【解析】(Ⅰ)由题意知,曲线在点(1,(1))f 处的切线斜率为2,所以'(1)2f =,又'()ln 1,af x x x=++所以1a =. (Ⅱ)1k =时,方程()()f x g x =在(1,2)内存在唯一的根.设2()()()(1)ln ,x x h x f x g x x x e=-=+-当(0,1]x ∈时,()0h x <. 又2244(2)3ln 2ln8110,h e e =-=->-= 所以存在0(1,2)x ∈,使0()0h x =. 因为所以当(1,2)x ∈时,1'()10h x e>->,当(2,)x ∈+∞时,'()0h x >,所以当(1,)x ∈+∞时,()h x 单调递增.所以1k =时,方程()()f x g x =在(,1)k k +内存在唯一的根.(Ⅲ)由(Ⅱ)知,方程()()f x g x =在(1,2)内存在唯一的根0x ,且0(0,)x x ∈时,()()f x g x <,0(,)x x ∈+∞时,()()f x g x >,所以020(1),(0,](){,(,)x x lnx x x m x x x x e+∈=∈+∞.当0(0,)x x ∈时,若(0,1],()0;x m x ∈≤若0(1,),x x ∈由1'()ln 10,m x x x=++>可知00()();m x m x <≤故0()().m x m x ≤ 当0(,)x x ∈+∞时,由(2)'(),xx x m x e-=可得0(,2)x x ∈时,'()0,()m x m x >单调递增;(2,)x ∈+∞时,'()0,()m x m x <单调递减;可知24()(2),m x m e≤=且0()(2)m x m <. 综上可得函数()m x 的最大值为24e.。
江苏省南通市海安高级中学高三数学上学期12月检测试卷(含解析)

-江苏省南通市海安高级中学高三(上)12月检测数学试卷一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填在答题卡相应的位置上)1.(5分)复数(i 为虚数单位)的实部是﹣1 .考点:复数的基本概念;复数代数形式的乘除运算.专题:计算题.分析:把给出的复数分子分母同时乘以1+i,整理成a+bi(a,b∈R )的形式,则实部可求.解答:解:.所以复数(i为虚数单位)的实部是﹣1.故答案为﹣1.点评:本题考查了复数的基本概念,考查了复数代数形式的乘除运算,复数的除法采用分组分母同时乘以分母的共轭复数,此题是基础题.2.(5分)(•泉州模拟)集合A={3,2a},B={a,b},若A∩B={2},则A∪B={1,2,3} .考点:并集及其运算;交集及其运算.分析:根据题意,若A∩B={2},则2∈A,则可得2a=2,可得a的值,进而可得b的值,再由并集的意义,可得答案.解答:解:根据题意,若A∩B={2},则2∈A,2∈B,而已知A={3,2a},则必有2a=2,故a=1,又由2∈B,且a=1则b=2,故A∪B={1,2,3},故答案为{1,2,3}.点评:本题综合考查并集、交集的意义与运算,要求学生有一定的逻辑分析能力.3.(5分)已知等比数列{a n}的各项都为正数,它的前三项依次为1,a+1,2a+5,则数列{a n}的通项公式a n= 3n﹣1.考点:等比数列的性质.专题:计算题.分析:因为此等比数列的前三项依次为1,a+1,2a+5,根据等比数列的性质可得,第2项的平方等于第1第3项之积,列出关于a的方程,由各项都大于0,求出满足题意的方程的解即可得到a的值,然后把a的值代入得到前3项的值,根据前3项的值分别求出等比数列的首项和公比,根据首项和公比即可写出等比数列的通项公式.解答:解:由1,a+1,2a+5为等比数列的前3项,得到(a+1)2=2a+5,化简得:a2=4,由a+1>0得到a>﹣1,所以解得a=2,所以等比数列的前3项依次为:1,3,9,则a1=1,q=3,则数列{a n}的通项公式a n=3n﹣1.故答案为:3n﹣1点评:此题考查学生掌握等比数列的性质,灵活运用等比数列的通项公式化简求值,是一道综合题.4.(5分)若θ∈(,),sin2θ=,则cosθ﹣sinθ的值是﹣.考点:三角函数的恒等变换及化简求值.专题:计算题.分析:求出表达式的平方的值,根据角的范围确定表达式的符号,求出值即可.解答:解:(cosθ﹣sinθ)2=1﹣sin2θ=,又,cosθ<sinθ所以cosθ﹣sinθ=,故答案为:.点评:本题是基础题,考查三角函数的化简求值,注意角的范围三角函数的符号的确定,是本题的关键.5.(5分)(•哈尔滨一模)设,,是单位向量,且,则向量,的夹角等于60°.考点:数量积表示两个向量的夹角.专题:计算题.分析:根据,,是单位向量,且,可得,两边平方,即可求得向量,的夹角.解答:解:∵,,是单位向量,且,∴∴两边平方可得:1+1﹣2cos=1∴cos=∵∴故答案为:60°点评:本题考查向量知识的运用,考查向量的数量积,解题的关键是等式两边平方.6.(5分)若函数y=lnx+2x﹣6的零点为x0,则满足k≤x0的最大整数k= 2 .考点:函数的零点.专题:函数的性质及应用.分析:利用函数零点的判定定理即可得出.解答:解:∵f(2)=ln2﹣2<0,f(3)=ln3>0,∴函数y=lnx+2x﹣6的零点x0∈(2,3).∴满足k≤x0的最大整数k=2.故答案为2.点评:熟练掌握函数零点的判定定理是解题的关键.7.(5分)定义在R上的可导函数y=f(x)满足f(x+5)=f(﹣x),(2x﹣5)f′(x)>0.已知x1<x2,则“f(x1)>f(x2)”是“x1+x2<5”的充分必要条件.考点:必要条件、充分条件与充要条件的判断.专题:计算题;函数的性质及应用.分析:求出函数y=f(x)图象的对称轴,然后根据(2x﹣5)f'(x)>0,判定函数在对称轴两侧的单调性,最后根据函数的单调性对充分性和必要性分别加以验证,即可得到本题答案.解答:解:∵f(5+x)=f(﹣x),∴函数y=f(x)的图象关于x=对称∵(2x﹣5)f'(x)>0,∴x>时,f'(x)>0,可得函数f(x)单调递增;当x<时,f'(x)<0,可得函数f(x)单调递减①当f(x1)>f(x2)时,结合x1<x2,由函数单调性可得≤x2<5﹣x1或x1<x2<∴x1+x2<5成立,故充分性成立;②当x1+x2<5时,因为x1<x2,必有x1<5﹣x2≤成立,所以结合函数的单调性,可得f(x1)>f(x2)成立,故必要性成立综上所述,“f(x1)>f(x2)”是“x1+x2<5”的充分必要条件.故答案为:充分必要点评:本题给出函数单调性的命题,要我们进行充分必要性的判断,主要考查函数的单调性、用导函数的正负判断函数单调和充分必要条件的判定等知识,属于属中档题.8.(5分)已知函数f(x)=x3+ax2+bx+c的图象过点A(2,1),且在点A处的切线方程2x﹣y+a=0,则a+b+c= 0 .考点:利用导数研究曲线上某点切线方程.专题:计算题;导数的概念及应用.分析:由函数f(x)=x3+ax2+bx+c的图象过点A(2,1),推导出8+4a+2b+c=1,由f(x)在点A处的切线方程2x﹣y+a=0,推导出f′(2)=3×4+2a×2+b=2,a=﹣3,由此能求出a+b+c的值.解答:解:∵函数f(x)=x3+ax2+bx+c的图象过点A(2,1),∴8+4a+2b+c=1,且f′(x)=3x2+2ax+b,∵f(x)在点A处的切线方程2x﹣y+a=0,∴f′(2)=3×4+2a×2+b=12+4a+b=2,f(x)在点A处的切线方程为y﹣1=2(x﹣2),即2x﹣y﹣3=0,∴,解得a=﹣3,b=2,c=1,∴a+b+c=﹣3+2+1=0.故答案为:0.点评:本题考查利用导数研究曲线上某点处的切线方程的求法及其应用,解题时要认真审题,注意等价转化思想的合理运用.9.(5分)在平面直角坐标系中,两条平行直线的横截距相差20,纵截距相差15,则这两条平行直线间的距离为12 .考点:两条平行直线间的距离.专题:计算题;空间位置关系与距离.分析:作出图形,利用等面积,即可得到结论.解答:解:由题意,如图所示,设两条平行直线间的距离为d,则AB=20,BC=15,AB⊥BC∴BC=25由等面积可得×15×20=×25×d,∴d=12故答案为:12.点评:本题考查两条平行直线间的距离,考查学生的计算能力,属于基础题.10.(5分)(•桂林一模)半径为4的球面上有A,B,C,D四点,且满足AB⊥AC,AC⊥AD,AD⊥AB,则S△ABC+S△ACD+S△ADB 的最大值为(S为三角形的面积)32 .考点:基本不等式;球内接多面体.专题:计算题;压轴题.分析:设AB=a,AC=b,AD=c,根据AB⊥AC,AC⊥AD,AD⊥AB,可得a2+b2+c2=4R2=64,而S△ABC+S△ACD+S△ADB=(ab+ac+bc),利用基本不等式,即可求得最大值为.解答:解:设AB=a,AC=b,AD=c,∵AB⊥AC,AC⊥AD,AD⊥AB,∴a2+b2+c2=4R2=64∴S△ABC+S△ACD+S△ADB =(ab+ac+bc )≤(a2+b2+c2)=32∴S△ABC+S△ACD+S△ADB的最大值为32故答案为:32.点评:本题考查求内接几何体,考查基本不等式的运用,属于基础题.11.(5分)已知A(3,),O是原点,点P的坐标为(x,y )满足条件,则z=的取值范围是[﹣3,3] .考点:向量的投影;简单线性规划.专题:计算题.分析:由已知,z即为在上的投影.先根据约束条件画出可行域,再利用z的几何意义求范围.只需求出向量和的夹角的余弦值的取值范围,从而得到z 的取值范围.解答:解:==,∵,∴当时,=3,当时,=﹣3,∴z的取值范围是[﹣3,3].故答案为:[﹣3,3].点评:本题主要考查了用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属中档题.巧妙识别目标函数的几何意义是我们研究规划问题的基础,纵观目标函数包括线性的与非线性,非线性问题的介入是线性规划问题的拓展与延伸,使得规划问题得以深化.12.(5分)若对x,y∈[1,2],xy=2,总有不等式成立,则实数a的取值范围是a≤0.考点:基本不等式在最值问题中的应用.专题:计算题.分析:先根据均值不等式求得:(2﹣x)(4﹣y)的最大值,要使不等式成立,需(2﹣x)(4﹣y)≥a成立.求出(2﹣x)(4﹣y)的最小值即可.解答:解:,即a≤(2﹣x)(4﹣y)恒成立,只需a≤(2﹣x)(4﹣y)的最小值而(2﹣x)(4﹣y)=8﹣4x﹣2y+xy=8﹣(4x+2y)+2=10﹣(4x+2y)=10﹣(4x+)令f(x)=10﹣(4x+) x∈[1,2]则导数f'(x)=﹣(4﹣)=≤0故f(x)在x∈[1,2]是减函数所以当x=2时取最小值0即(2﹣x)(4﹣y)的最小值为0所以a≤0点评:本题主要考查了本题主要考查了基本不等式在最值问题中的应用.属基础题.13.(5分)给出下列四个命题:①“k=1”是“函数y=cos2kx﹣sin2kx的最小正周期为π”的充要条件;②函数y=sin(2x﹣)的图象沿x轴向右平移个单位所得的函数表达式是y=cos2x;③函数y=lg(ax2﹣2ax+1)的定义域是R,则实数a的取值范围是(0,1);④设O是△ABC内部一点,且,则△AOB与△AOC的面积之比为1:2;其中真命题的序号是④(写出所有真命题的序号).考点:命题的真假判断与应用;充要条件;函数y=Asin(ωx+φ)的图象变换.专题:应用题.分析:①当k=﹣1时,函数y=cos2kx﹣sin2kx=cos2x的最小正周期也为π;②函数y=sin(2x﹣)的图象沿x轴向右平移个单位所得的函数表达式是y=sin[2(x)﹣]化简即可③由函数y=lg(ax2﹣2ax+1)的定义域是R可得ax2﹣2ax+1>0恒成立,分类讨论①若a=0,②可判断;④设AC边上的中线为BD,由O是△ABC内部一点,且,可得O为BD 的中点,=可求解答:解:①当k=﹣1时,函数y=cos2kx﹣sin2kx=cos2x的最小正周期也为π,故①错误②函数y=sin(2x ﹣)的图象沿x 轴向右平移个单位所得的函数表达式是y=sin[2(x )﹣]==﹣cos2x,故②错误③由函数y=lg(ax2﹣2ax+1)的定义域是R可得ax2﹣2ax+1>0恒成立,①若a=0,满足条件②解可得0<a<1,从而有0≤a<1,故③错误④设AC边上的中线为BD,由O是△ABC 内部一点,且,可得O为BD 的中点,==,正确故答案为:④点评:本题主要考查了必要条件、充分条件与充要条件的判断,函数图象的平移及对数函数的定义域,函数的恒成立问题的求解,是一道综合题.14.(5分)(•崇文区一模)定义在R上的函数满足f(0)=0,f(x)+f(1﹣x)=1,,且当0≤x1<x2≤1时,f(x1)≤f(x2),则= .考点:函数的值.专题:计算题;综合题.分析:先由已知条件f(0)=0,f(x)+f(1﹣x)=1,求出一些特值,f(1)=1,,可得f ()=,再由当0≤x1<x2≤1时,f(x1)≤f(x2),结合=f()可以看出x ∈时,f(x)=,再利用条件将逐步转化到内,代入求解即可.解答:解:由f(x)+f(1﹣x)=1可知f(x)的图象关于对称,由f(0)=0得f(1)=1,,中令x=1可得f ()=,又因为0≤x1<x 2≤1时,f(x1)≤f(x2),所以x∈时,f(x)=,由可得=,因为,所以,所以故答案为:点评:本题考查抽象函数的性质的应用问题及转化思想,综合性较强,难度较大.二、解答题:(本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)15.(14分)(•陕西)如图,A,B是海面上位于东西方向相距5(3+)海里的两个观测点,现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20海里的C点的救援船立即即前往营救,其航行速度为30海里/小时,该救援船到达D点需要多长时间?考点:解三角形的实际应用.专题:应用题.分析:先根据内角和求得∠DAB和,∠DBA及进而求得∠ADB,在△ADB中利用正弦定理求得DB的长,进而利用里程除以速度即可求得时间.解答:解:由题意知AB=5(3+)海里,∠DBA=90°﹣60°=30°,∠DAB=90°﹣45°=45°,∴∠ADB=180°﹣(45°+30°)=105°,在△ADB中,有正弦定理得=∴DB===10又在△DBC中,∠DBC=60°DC2=DB2+BC2﹣2×DB×BC×cos60°=900∴DC=30∴救援船到达D点需要的时间为=1(小时)答:该救援船到达D点需要1小时.点评:本题主要考查了解三角形的实际应用.考查了学生运用所学知识解决实际问题的能力.16.(14分)如图,M,N,K分别是正方体ABCD﹣A1B1C1D1的棱AB,CD,C1D1的中点.(1)求证:AN∥平面A1MK;(2)求证:平面A1B1C⊥平面A1MK.考点:平面与平面垂直的判定;直线与平面平行的判定.专题:证明题.分析:对于(1),要证明AN∥平面A1MK,只需证明AN平行于平面A1MK内的一条直线,容易证明AN∥A1K,从而得到证明;对于(2),要证明平面A1B1C⊥平面A1MK,只需证明平面A1MK内的直线MK垂直于平面A1B1C即可,而BC1∥MK容易证明,从而问题得以解决.解答:证明:(1)连接KN,由于K、N为CD,C1D1、CD的中点,所以KN平行且等于AA1,AA1KN为平行四边形⇒AN∥A1K,而A1K⊂平面A1MK,AN⊄平面A1MK,从而AN∥平面A1MK.(2)连接BC1,由于K、M为AB、C1D1的中点,所以KC1与MB平行且相等,从而KC1MB为平行四边形,所以MK∥BC1,而BC1⊥B1C,BC1⊥A1B1,从而BC1⊥平面A1B1C,所以:⇒MK⊥面A1B1C⇒面A1B1C⊥面A1MK.点评:本题考查线面平行的判定定理、面面垂直的判定定理的使用,要注意其中的转化思想的应用,即:将线面平行转化为线线平行,将面面垂直转化为线面垂直.17.(14分)如图:在平面直角坐标系中,锐角α和钝角β的终边分别与单位圆交于A、B两点.(1)若A、B 两点的纵坐标分别为、,求cos(β﹣α)的值;(2)已知点,求函数的值域.考点:平面向量数量积的坐标表示、模、夹角.专题:平面向量及应用.分析:(1)由三角函数的定义可得sinα,sinβ,再由同角三角函数的基本关系可得cosαcosβ,代入两角差的余弦公式可得;(2)由数量积的运算可得f(α)=,由α得范围,逐步求范围可得答案.解答:解:(1)根据三角函数的定义,得,.又α是锐角,所以,因为β是钝角,所以.所以.(2)由题意可知,,.所以,因为,所以,从而,因此函数的值域为.点评:本题考查平面向量的数量积的运算,以及三角函数的运算公式和值域,属中档题.18.(16分)已知O为平面直角坐标系的原点,过点M(﹣2,0)的直线l与圆x2+y2=1交于P,Q两点.(I )若,求直线l的方程;(Ⅱ)若△OMP与△OPQ的面积相等,求直线l的斜率.考点:直线与圆的位置关系;直线与圆相交的性质.专题:计算题.分析:(Ⅰ)利用两个向量的数量积的定义求出,∠POQ=120°,得到O到直线l 的距离等于,根据点到直线的距离公式求出直线l的斜率,从而得到直线l的方程.(Ⅱ)因为△OMP与△OPQ 的面积相等,可得,再由P,Q两点在圆上,可解得点P的坐标,由两点式求得直线l的斜率.解答:解:(Ⅰ)依题意,直线l的斜率存在,因为直线l过点M(﹣2,0),可设直线l:y=k(x+2).因为P、Q两点在圆x2+y2=1上,所以,,因为,所以,所以,∠POQ=120°,所以,O到直线l 的距离等于.所以,,得,所以直线l的方程为,或.(Ⅱ)因为△OMP与△OPQ 的面积相等,所以,,设P(x1,y1),Q(x2,y2),所以,,.所以,,即(*);因为,P,Q两点在圆上,所以,把(*)代入,得,所以,,所以,直线l 的斜率,即.点评:本题考查两个向量的数量积的定义,直线和圆相交的性质,求出点P的坐标是解题的难点.19.(16分)(•浙江)已知函数f(x)=x3﹣(k2﹣k+1)x2+5x﹣2,g(x)=k2x2+kx+1,其中k∈R.(I)设函数p(x)=f(x)+g(x).若p(x)在区间(0,3)上不单调,求k的取值范围;(II )设函数是否存在k,对任意给定的非零实数x1,存在惟一的非零实数x2(x2≠x1),使得q′(x2)=q′(x1)?若存在,求k的值;若不存在,请说明理由.考点:利用导数研究函数的单调性;函数的单调性与导数的关系.专题:计算题;压轴题;分类讨论.分析:(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)x﹣1,先求导数:p′(x),因p(x)在区间(0,3)上不单调,得到p′(x)=0在(0,3)上有实数解,且无重根,再利用分离参数的方法得出,最后再利用导数求出此函数的值域即可;(II)先根据题意得出当k=0时不合题意,因此k≠0,下面讨论k≠0的情形,分类讨论:(ⅰ)当x1>0时,(ⅱ)当x1<0时,最后综合(ⅰ)(ⅱ)即可得出k值.解答:解析:(I)因P(x)=f(x)+g(x)=x3+(k﹣1)x2+(k+5)x﹣1,p′(x)=3x2+2(k﹣1)x+(k+5),因p(x)在区间(0,3)上不单调,所以p′(x)=0在(0,3)上有实数解,且无重根,由p′(x)=0得k(2x+1)=﹣(3x2﹣2x+5),∴,令t=2x+1,有t∈(1,7),记,则h(t)在(1,3]上单调递减,在[3,7)上单调递增,所以有h(t)∈[6,10),于是,得k∈(﹣5,﹣2],而当k=﹣2时有p′(x)=0在(0,3)上有两个相等的实根x=1,故舍去,所以k∈(﹣5,﹣2);(II)当x<0时有q′(x)=f′(x)=3x2﹣2(k2﹣k+1)x+5;当x>0时有q′(x)=g′(x)=2k2x+k,因为当k=0时不合题意,因此k≠0,下面讨论k≠0的情形,记A=(k,+∞),B=(5,+∞)(ⅰ)当x1>0时,q′(x)在(0,+∞)上单调递增,所以要使q′(x2)=q′(x1)成立,只能x2<0且A⊆B,因此有k≥5,(ⅱ)当x1<0时,q′(x)在(﹣∞,0)上单调递减,所以要使q′(x2)=q′(x1)成立,只能x2>0且A⊆B,因此k≤5,综合(ⅰ)(ⅱ)k=5;当k=5时A=B,则∀x1<0,q′(x1)∈B=A,即∃x2>0,使得q′(x2)=q′(x1)成立,因为q′(x)在(0,+∞)上单调递增,所以x2的值是唯一的;同理,∀x1<0,即存在唯一的非零实数x2(x2≠x1),要使q′(x2)=q′(x1)成立,所以k=5满足题意.点评:本题主要考查导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减,同时考查了分析与解决问题的综合能力,属于中档题.20.(16分)(•丰台区一模)设集合W由满足下列两个条件的数列{a n}构成:①;②存在实数M,使a n≤M.(n为正整数)(Ⅰ)在只有5项的有限数列{a n}、{b n}中,其中a1=1,a2=2,a3=3,a4=4,a5=5;b1=1,b2=4,b3=5,b4=4,b5=1;试判断数列{a n}、{b n}是否为集合W中的元素;(Ⅱ)设{c n}是各项为正数的等比数列,S n是其前n 项和,,,试证明{S n}∈W,并写出M的取值范围;(Ⅲ)设数列{d n}∈W,对于满足条件的M的最小值M0,都有d n≠M0(n∈N*).求证:数列{d n}单调递增.考点:元素与集合关系的判断;数列的函数特性;等比数列的前n项和;等比数列的性质.分析:(Ⅰ)检验这2个数列中的各项是否满足①②2个条件.(Ⅱ){c n}是各项为正数的等比数列,求出公比和首项,得到通项公式,再计算其前n项和S n,判断S n是否满足①②2个条件.(Ⅲ)用反证法证明,若数列{d n}非单调递增,推出与题设矛盾,所以假设不对,命题得到证明.解答:解:(Ⅰ)对于数列{a n},取=a2,显然不满足集合W的条件①,故{a n}不是集合W中的元素.(2分)对于数列{b n},当nÎ{1,2,3,4,5}时,不仅有,,,而且有b n≤5,显然满足集合W的条件①②,故{b n}是集合W中的元素.(4分)(Ⅱ)∵{c n}是各项为正数的等比数列,S n是其前n项和,,,设其公比为q>0,∴,整理得,6q2﹣q﹣1=0∴q=,∴(7分)对于“n∈N*,有,且S n<2,故{S n}∈W,且M∈[2,+∞).(9分)(Ⅲ)证明:(反证)若数列{d n}非单调递增,则一定存在正整数k,使d k≥d k+1 成立,当n=m+1时,由得 d m+2<2d m+1﹣d m,而d m+1﹣d m+2>d m+1﹣(2d m+1﹣d m)=d m﹣d m+1≥0,所以d m+1>d m+2 .显然在d1,d2,…,d k这k项中一定存在一个最大值,不妨记为,所以,从而.这与题设d n≠M0(n∈N*)相矛盾.所以假设不成立,故命题得证.(14分)点评:本题考查数列的函数特性,等比数列的性质,等比数列的前n项和公式,用反证法证明数学命题,属于中档题.。
江苏省南通市海安高级中学2020-2021学年高三数学文测试题含解析

江苏省南通市海安高级中学2020-2021学年高三数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 如图,从气球A上测得正前方的河流的两岸B、C的俯角分别为75°、30°,此时气球的高是60m,则河流的宽度BC等于()A.240(﹣1)m B.180(﹣1)m C.120(﹣1)m D.30(+1)m参考答案:C【考点】解三角形的实际应用;余弦定理的应用.【专题】解三角形.【分析】由题意画出图形,由两角差的正切求出15°的正切值,然后通过求解两个直角三角形得到DC和DB的长度,作差后可得答案.【解答】解:如图,由图可知,∠DAB=15°,∵tan15°=tan(45°﹣30°)==.在Rt△ADB中,又AD=60,∴DB=AD?tan15°=60×(2﹣)=120﹣60.在Rt△ADC中,∠DAC=60°,AD=60,∴DC=AD?tan60°=60.∴BC=DC﹣DB=60﹣(120﹣60)=120()(m).∴河流的宽度BC等于120()m.故选:C.【点评】本题考查了解三角形的实际应用,考查了两角差的正切,训练了直角三角形的解法,是中档题.2. 将的图象绕坐标原点O逆时针旋转角后第一次与y轴相切,则角满足的条件是A.esin= cos B.sin= ecos C.esin=l D.ecos=1参考答案:B3. 若变量满足约束条件则的最大值等于()A.11 B.10 C.8 D.7参考答案:B解析:本题考查线性规划问题。
在平面直角坐标系中画图,作出可行域,可得该可行域是由(0,0),(0,3),(2,3),(4,2),(4,0)组成的五边形。
由于该区域有限,可以通过分别代这五个边界点进行检验,易知当x=4,y=2时,z=2x+y取得最大值10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省海安高级中学2020年12月测试试卷
数 学
参考公式:
1.随机变量X 的方差()
21()n i i i D X x p μ==-∑,其中μ为随机变量X 的数学期望.
2.球的体积公式:343
V R π=. 一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给岀的四个选项中,只有一项是符合题目要求.
1.已知集合{42}M x x =-<<∣,{}2560N x x x =--<∣,则M
N =( ) A.{12}x x -<<∣ B.{42}x x -<<∣ C.{46}x x -<<∣ D.{26}x
x <<∣ 2.若2z i =+,则22z z -=( )
A.0 3.已知,a b ∈R ,下列四个条件中,使a b <成立的充分不必要的条件是( )
A.1a b <-
B.1a b <+
C.22a b <
D.33a b <
4.赵爽是我国古代数学家、天文学家,约公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方程”,亦称“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如图是一张弦图,已知大正方形的面积为25,小正方形的面积为1,若直角三角形较小的锐角为α,则tan 2α的值为( )
A.34
B.2425
C.127
D.247
5.函数ln ||()x f x x x
=-的图象大致为( )
A. B. C. D.
6.已知随机变量X 的概率分布如表所示.
当a 在(1,1)-内增大时,方差()D X 的变化为( )
A.增大
B.减小
C.先增大再減小
D.先减小再增大
7.在平行四边形ABCD 中,M ,N 分别为AB ,AD 上的点,连接AC ,MN 交于点P .已知13
AP AC =且34
AM AB =,若AN AD λ=,则实数λ的值为( ) A.12 B.35 C.23 D.34
8.三棱锥A BCD -中,60ABC CBD DBA ∠=∠=∠=︒,2BC BD ==,ACD △,则此三棱锥外接球的体积为( )
A.16π
B.4π
C.163π
D.323π 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题绐出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.
9.某城市为了解景区游客人数的变化规律,提高旅游服务质量,收集并整理了2020年2月至7月A ,B 两景区旅游人数(单位:万人),得到如下的折线图,则下列说法正确的是( )
A.根据A 景区的旅游人数折线图可知,该景区旅游人数的平均值在[34,35]内
B.根据B 景区的旅游人数折线图可知,该景区旅游人数总体呈上升趋势
C.根据A ,B 两景区的旅游人数的折线图,可得A 景区旅游人数极差比B 景区大
D.根据A ,B 两景区的旅游人数的折线图,可得B 景区7月份的旅游人数比A 景区多
10.已知F 为抛物线22(0)y px p =>的焦点,过点F l 交抛物线于A 、B 两点(点A 第
一象限),交拋物线的准线于点C ,则下列结论正确的是( )
A.AF FC =
B.||2||AF BF =
C.||3AB p =
D.以AF 为直径的圆与y 轴相切
11.下列命题正确的有( )
A.若a b c >>,0ac >,则()0bc a c ->
B.若0x >,0y >,2x y +=,则22x y +的最大值为4
C.若0x >,0y >,x y xy +=,则2x y xy ++的最小值为5+
D.若实数2a ≥,则12log (2)1
a a a a +++<+ 12.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹布劳威尔(L.E.Brouwer )简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是( )
A.函数()sin f x x =有3个不动点
B.函数2
()(0)f x ax bx c a =++≠至多有两个不动点
C.若定义在R 上的奇函数()f x ,其图像上存在有限个不动点,则不动点个数是奇数
D.若函数()f x =[0,1]上存在不动点,则实数a 满足l a e ≤≤(e 为自然对数的底数)
三、填空题:本题共4小题,每小题5分,共20分
13.已知数列{}n a ,{}n b 满足2log ,n n b a n N +=∈,其中{}n b 是等差数列且1020112a a =,则122020b b b ++⋅⋅⋅+=______.
14.双曲线22
22:1(0,0)x y C a b a b
-=>>的一条渐近线与圆22:(3)8M x y -+=相交于A 、B 两点,
||AB =______.。