精品 高中三角函数知识点复习总结
高中数学三角函数知识点总结(珍藏版)

高中数学三角函数知识点总结1.特殊角的三角函数值:2.角度制与弧度制的互化:,23600π= ,1800π=1rad =π180°≈57.30°=57°18ˊ1°=180π≈0.01745〔rad 〕3.弧长及扇形面积公式(1)弧长公式:r l .α= α----是圆心角且为弧度制(2)扇形面积公式:S=r l .21r-----是扇形半径4.任意角的三角函数设α是一个任意角,它的终边上一点p 〔x,y 〕, r=22y x +(1)正弦sin α=r y 余弦cos α=r x 正切tan α=xy(2)各象限的符号:记忆口诀:一全正,二正弦,三两切,四余弦sin α cos α tan α 5.同角三角函数的根本关系: 〔1〕平方关系:s in 2α+ cos 2α=1 〔2〕商数关系:ααcos sin =tan α〔z k k ∈+≠,2ππα〕 6.诱导公式:记忆口诀:把2k πα±的三角函数化为α的三角函数,概括为:奇变偶不变,符号看象限。
()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+=⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.xy+O— —+x yO — ++— +y O— + + —7正弦函数、余弦函数和正切函数的图象与性质8、三角函数公式:(3) 降幂公式: 升幂公式 : 1+cos α=2cos 22α cos 2α22cos 1α+=1-cos α=2sin 22αsin 2α22cos 1α-=9、正弦定理 :2sin sin sin a b cR A B C===.余弦定理:2222cos a b c bc A =+-;2222cos b c a ca B =+-; 2222cos c a b ab C =+-.三角形面积定理:111sin sin sin 222S ab C bc A ca B ===.。
高中三角函数知识点总结《精华版》

高中三角函数知识点总结《精华版》一、三角函数的定义:1. 正弦函数(sin):在单位圆上,其中一角的正弦值等于该角顶点的对边与斜边的比值。
2. 余弦函数(cos):在单位圆上,其中一角的余弦值等于该角顶点的邻边与斜边的比值。
3. 正切函数(tan):在单位圆上,其中一角的正切值等于该角顶点的对边与邻边的比值。
二、基本性质:1.三角函数的值域:正弦和余弦的值域为[-1,1],正切的值域为实数集。
2. 正弦函数和余弦函数的关系:sin²θ + cos²θ = 13.三角函数的周期性:正弦和余弦函数的周期为2π,正切函数的周期为π。
三、三角函数与四象限:1. 在第一象限,sinθ和cosθ均为正数。
2. 在第二象限,sinθ为正,cosθ为负。
3. 在第三象限,sinθ和cosθ均为负数。
4. 在第四象限,sinθ为负,cosθ为正。
四、三角函数的图像及性质:1.正弦函数的图像:从原点出发向右为起始点,振动幅度为1,曲线在零点上下交替。
2.余弦函数的图像:从峰值(1或-1)出发向右为起始点,振动幅度为1,曲线在零点上下交替。
3.正切函数的图像:振动幅度无限增加,从0开始。
五、常见角的正弦、余弦和正切值的计算:1. 0度:sin0 = 0,cos0 = 1,tan0 = 0。
2. 30度:sin30° = 1/2,cos30° = √3/2,tan30° = 1/√33. 45度:sin45° = √2/2,cos45° = √2/2,tan45° = 14. 60度:sin60° = √3/2,cos60° = 1/2,tan60° = √35. 90度:sin90° = 1,cos90° = 0,tan90° = 无穷大。
六、三角函数的基本性质:1.奇偶性:正弦函数是奇函数,余弦函数是偶函数,正切函数是奇函数。
高考三角函数知识点总结

高考三角函数知识点总结一、基本概念和性质1.弧度制:单位圆上的弧所对应的圆心角的大小定义为该弧的弧度。
1弧度等于圆周的1/2π。
2. 三角函数:正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)、余切函数cot(x)、正割函数sec(x)和余割函数csc(x)。
3.三角恒等式:包括同角三角恒等式、余角三角恒等式、反三角函数同角恒等式等。
4.周期性:正弦函数、余弦函数、正割函数和余割函数的周期都是2π;正切函数和余切函数的周期是π。
二、基本关系式1.正弦函数:在直角三角形中,正弦函数是指对于一个锐角三角形,三角形的对边和斜边的比值。
- sin(x) = a / c,其中a是对边,c是斜边。
- sin(x) = y / r,其中y是斜边在y轴上的投影,r是半径。
2.余弦函数:在直角三角形中,余弦函数是指对于一个锐角三角形,三角形的邻边和斜边的比值。
- cos(x) = b / c,其中b是邻边,c是斜边。
- cos(x) = x / r,其中x是斜边在x轴上的投影,r是半径。
3.正切函数:在直角三角形中,正切函数是指对于一个锐角三角形,三角形的对边和邻边的比值。
- tan(x) = a / b,其中a是对边,b是邻边。
- tan(x) = y / x,其中y是斜边在y轴上的投影,x是斜边在x轴上的投影。
4.余切函数:余切函数是正切函数的倒数。
- cot(x) = 1 / tan(x)。
5.正割函数:在直角三角形中,正割函数是指对于一个锐角三角形,三角形的斜边和邻边的比值的倒数。
- sec(x) = 1 / cos(x)。
6.余割函数:在直角三角形中,余割函数是指对于一个锐角三角形,三角形的斜边和对边的比值的倒数。
- csc(x) = 1 / sin(x)。
三、平面内角与弧度制之间的关系1.弧度制与度数之间的转换:-弧度=度数×π/180-度数=弧度×180/π2.弧度制下的角的性质:-一个圆上的圆心角的弧度数等于该弧所对应的弧的弧度数。
高中重点数学知识:三角函数

高中重点数学知识:三角函数
高中重点数学知识:三角函数
高中最重要的阶段,大家一定要把握好高中,多做题,多练习,为高考奋战,下面小编为大家带来了三角函数的高中重点数学知识,希望对大家有帮助。
一、三角函数
三角函数的定义域是研究其他一切性质的前提,求三角函数的定义域实际上就是解最简单的三角不等式,通常可用三角函数的图像或三角函数线来求解,注意数形结合思想的`应用,如何运用三角函数的图像解决问题能够帮助对数形结合思想的掌握。
二、三角函数诱导公式
1.公式一:设α为任意角,终边相同的角的同一三角函数的值相等运用同角三角函数的基本关系式求值
2.公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=—sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
三、锐角三角函数
在△ABC中,∠C为直角,∠A和∠B是锐角。
高中数学三角函数知识点完整总结

高中数学三角函数知识点完整总结1.弧度若一圆的半径为r,则弧长s所对应的圆心角θ为θ=sr弧度。
2.度与弧度的换算(1) 1 弧度=180π︒。
(2) 1°=180π弧度。
3.扇形的弧长与面积公式若圆半径为r,扇形COD的圆心角∠COD=θ(弧度),0 ≤ θ≤ 2π,如右图,令扇形的弧长为s,面积为A,则(1) s=rθ。
(2) A=12r2θ=12rs。
4.三角函数的定义sin θ=對邊長斜邊長,称为θ的正弦,cos θ=鄰邊長斜邊長,称为θ的余弦,tan θ=對邊長鄰邊長,称为θ的正切,cot θ=鄰邊長對邊長,称为θ的余切,sec θ=斜邊長鄰邊長,称为θ的正割,csc θ=斜邊長對邊長,称为θ的余割。
5.广义角三角函数的定义设θ是一个标准位置角,在角θ的终边上任取一点P(x,y),x,y不同时为0,且22==+OP r x y>0,如右图,则定义角θ的六个三角函数值如下:sin θ=yr,cos θ=xr,tan θ=yx,cot θ=xy,sec θ=rx,csc θ=ry。
6.倒数关系对于任意角θ,在下列各项均有意义时,有(1) sin θ‧csc θ=1。
(2) cos θ‧sec θ=1。
(3) tan θ‧cot θ=1。
7.商数关系对于任意角θ,在下列各项均有意义时,有(1) tan θ=sincosθθ。
(2) cot θ=cossinθθ。
8.平方关系对于任意角θ,在下列各项均有意义时,有(1) sin2θ+cos2θ=1。
(2) 1+tan2θ=sec2θ。
(3) 1+cot2θ=csc2θ。
9.正弦函数(y=sin x)(1) 定义域为{x|x为实数}。
(2) 值域为{y|y为实数,-1 ≤ y≤ 1}。
(3) 周期为 2π。
10. 余弦函数(y =cos x )(1) 定义域为{x|x 为实数}。
(2) 值域为{y|y 为实数,-1 ≤ y ≤ 1}。
(3) 周期为 2π。
高中三角函数知识点归纳总结(通用10篇)

高中三角函数知识点归纳总结(通用10篇)高中数学三角函数知识点总结:三倍角公式篇一sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)高中数学三角函数知识点总结:三倍角公式推导篇二sin3a=sin(2a+a)=sin2acosa+cos2asina高中数学三角函数知识点总结:半角公式篇三tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)高中数学三角函数知识点总结:辅助角公式篇四Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))高中数学三角函数知识点总结:和差化积篇五sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)高中三角函数知识点归纳篇六1.做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。
2024届全国新高考数学精准复习三角函数知识点总结

千里之行,始于足下。
2024届全国新高考数学精准复习三角函数知识点总结2024届全国新高考数学考试中,三角函数是一个重要的知识点。
以下是三角函数的主要内容和考点总结:1. 基本概念:- 弧度与角度的转换:1弧度=180°/π,1度=π/180弧度。
- 正弦、余弦、正切、余切、正割、余割的定义与关系。
2. 三角函数的图像与性质:- 正弦函数和余弦函数的图像特点:周期为2π,在x轴上的零点为kπ,振幅为1。
- 正切函数的图像特点:周期为π,在x轴上的零点为kπ,无振幅。
- 三角函数的奇偶性:正弦函数是奇函数、余弦函数是偶函数、正切函数是奇函数。
- 三角函数的周期性:正弦、余弦函数的周期为2π,正切函数的周期为π。
3. 三角函数的性质与关系:- 三角函数的基本关系:tanx=sinx/cosx,cotx=1/tanx,secx=1/cosx,cscx=1/sinx。
- 三角函数的倒数关系:sinx=1/cscx,cosx=1/secx,tanx=1/cotx。
- 三角函数的平方关系:sin^2x+cos^2x=1,1+tan^2x=sec^2x,1+cot^2x=csc^2x。
4. 三角函数的性质与特殊值:- 正弦函数和余弦函数的取值范围:-1≤sinx≤1,-1≤cosx≤1。
第1页/共2页锲而不舍,金石可镂。
- 正切函数和余切函数的取值范围:tanx属于R,cotx属于R。
- 三角函数的特殊值:sin0=0,cos0=1,sin90°=1,cos90°=0,tan45°=1,cot45°=1。
5. 三角函数的解析式与性质:- sin(x±y)=sinxcosy±cosxsiny。
- cos(x±y)=cosxcosy∓sinxsiny。
- tan(x±y)=(tanx±tany)/(1∓tanxtany)。
高中三角函数及解三角形知识点总结(高考复习)

= 2 cos 2 α − 1 = 1 − 2 sin 2 α .
变形如下:
1 + cos 2α = 2 cos 2 α 升幂公式: 2 1 − cos 2α = 2sin α cos 2 α = 1 (1 + cos 2α ) 2 降幂公式: sin 2 α = 1 (1 − cos 2α ) 2
y = sin x 在 x ∈ [0, 2π ] 上的五个关键点为:
π 3π (0, 0) ( , , 1 ) ( , π, 0) ( , ,) -1( , 2π , 0) . 2 2
-1-
§1.4.3、正切函数的图象与性质 1、记住正切函数的图象:
y
2、记住余切函数的图象:
y
y=tanx
y=cotx
y = A sin ω x
横坐标变为原来的 | 平 移
ϕ ω
2− 3
§ 3.1.2 、两角和与差的正弦、余弦、正切公式
1 ω
|倍
个 单 位
1、 sin (α + β ) = sin α cos β + cos α sin β 2、 sin (α − β ) = sin α cos β − cos α sin β
r = x2 + y 2 ) sin α = x y x y , cos α = , tan α = , cot α = y r r x
π sin + α = cos α , 2 π cos + α = − sin α . 2
§1.4.1、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象:
ymax + ymin . 2
ymax − ymin , 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 三角函数
一、三角函数的基本概念 1.角的概念的推广
(1)角的分类:正角(逆转) 负角(顺转) 零角(不转) (2)终边相同角:)(3600Z k k ∈+⋅=αβ
(3)直角坐标系中的象限角与坐标轴上的角. 2.角的度量
(1)角度制与弧度制的概念 (2)换算关系:8157)180(1)
(180'≈==
π
π弧度弧度
(3)弧长公式:r l
⋅=α 扇形面积公式:22
1
21r lr S α==
3.任意角的三角函数
y
x
x y x r
r x y r
r y =
=====
ααααααcot tan sec cos csc sin
注:三角函数值的符号规律“一正全、二正弦、三双切、四余弦” 二、同角三角函数的关系式及诱导公式
(一) 诱导公式:
α±⋅
2
k )(Z k ∈与α的三角函数关系是“立变平不变,符号
看象限”。
如:
()⎪⎭
⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+απαπαπ25sin ;5tan ,27cos 等。
(二)
同角三角函数的基本关系式:①平方关系1
cos sin
22
=+αα;
α
ααα22
22tan 11cos cos 1tan 1+=⇔=
+②商式关系
α
α
α
tan cos sin =;αααcot sin cos =③倒数关系1cot tan =αα;1sec cos ;1csc sin ==αααα。
(三) 关于公式1cos sin
22
=+αα的深化
()
2
cos sin sin 1ααα±=±;
α
ααcos sin sin 1±=±;
2
cos
2
sin
sin 1α
α
α+=+
如:
4cos 4sin 4cos 4sin 8sin 1--=+=+;4cos 4sin 8sin 1-=-
注:1、诱导公式的主要作用是将任意角的三角函数转化为 0~ 90角的三角函数。
2、主要用途: a) 已知一个角的三角函数值,求此角的其他三角函数值(①要注意题设中角的范围,②用三角函数的定义求解会更方便);
b)
化简同角三角函数式; 证明同角的三角恒等式。
三、两角和与差的三角函数 (一)两角和与差公式
()βαβαβαsin cos cos sin sin ±=± ()β
αβαβαsin sin cos cos cos =±
()β
αβ
αβαtan tan 1tan tan tan ±=
±
(二)倍角公式 1、公式βαα
cos sin 22sin = cos 2α=
2
2cos 1α
+ sin 2α=
2
2cos 1α
-
ααααα2222sin 211cos 2sin cos 2cos -=-=-=
α
αα2tan 1tan 22tan -=
α
α
ααα
sin cos 1cos 1sin 2
tan
-=
+=
)sin(cos sin 22ϕααα++=+b a b a )sin ,(cos 2
2
2
2
b
a a b
a b
+=
+=
ϕϕ
注: (1)对公式会“正用”,“逆用”,“变形使用”。
(2)掌握“角的演变”规律(3)将公式和其它知识衔接起来使用。
(4)倍角公式揭示了具有倍数关系的两个角的三角函数的运算规律,可实现函数式的降幂的变化。
2、两角和与差的三角函数公式能够解答的三类基本题型: (1)求值
①“给角求值”:给出非特殊角求式子的值。
仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角
②“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。
找出已知角与所求角之间的某种关系求解
③ “给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。
④ “给式求值”:给出一些较复杂的三角式的值,求其他式子的值。
将已知式或所求式进行化简,再求之 三角函数式常用化简方法:切割化弦、高次化低次
注意点:灵活角的变形和公式的变形, 重视角的范围对三角函数值的影响,对角的范围要讨论
(2)化简
①化简目标:项数习量少,次数尽量低,尽量不含分母和根号
②化简三种基本类型:根式形式的三角函数式化简、多项式形式的三角函数式化简、分式形式的三角函数式化简 ③化简基本方法:用公式;异角化同角;异名化同名;化切割为弦;特殊值与特殊角的三角函数值互化。
(3)证明①化繁为简法②左右归一法③变更命题法④条件等式的证明关键在于分析已知条件与求证结论之间的区别与联系。
无论是化简还是证明都要注意:(1)角度的特点(2)函数名的特点(3)化切为弦是常用手段(4)升降幂公式的灵活应用 四、三角函数的性质
y=sinx
y=cosx
y=tanx
y=cotx
图象
定义域 x ∈R x ∈R x ≠k π+
2
π
(k ∈Z ) x ≠k π(k ∈Z )
值域 y ∈[-1,1] y ∈[-1,1] y ∈R y ∈R 奇偶性
奇函数
偶函数
奇函数
奇函数
单调性
在区间[2k π-2
π,2k π+
2
π
]上都是增函数 在区间[2k π+2
π
,
2k π+2
3π]上都是减函数
在区间[2k π-2k π]上都
是增函数
在区间[2k π,2k π+π]
上都是减函数
在每一个开区间
(k π-2π, k π+2
π)
内都是增函数
在每一个开区间 (k π,k π+π)内都是减函数
周 期 T=2π
T=2π T=π
T=π 对称轴
2
π
π+
=k x
π
k x =
无
无
对称 中心
()0,πk
⎪⎭⎫
⎝⎛+0,2ππk ⎪⎭⎫
⎝⎛0,2πk ⎪⎭
⎫
⎝⎛0,2πk 五、已知三角函数值求角 1、反三角概念: (1)若sinx=a ⎥⎦
⎤
⎢⎣⎡-∈≤2,2,1ππx a 则x=arcsina ,说明:a>0,arcsina 为锐角; a=0,arcsina=0; a<0, arcsina
为“负锐角”。
(2) 若cosx=a
[]π,0,1∈≤x a 则x=arccosa 说明:a>0,arccosa 为锐角; a=0,arccosa=900; a<0, arccosa
为钝角。
(3)若tanx=a
⎪⎭
⎫
⎝⎛-∈∈2,2,ππx R a 则x=arctana 说明:a>0,arctana 为锐角; a=0,arctana=0; a<0, arctana
为“负锐角”。
如;arcsin
0602
3
=,arcsin 22arcsin 45)22(0-=-=-.
arccos 2
1
arccos 32)21(-==-
ππ,arctan3>060,而arctan(-3)=--arctan3. 而sin(arcsin )3
π不存在。
2、反三角关系:
(1) arcsin(-x)=-arcsinax; arctan(-x)=arctanx; arcos(-x)=π-arccosx 由此可知:
x y x y arctan ,arcsin ==是匠函数,而x y arccos =非奇非偶。
(2) arcsinx+arccosx=2
π
3、[)π2,0∈
x 时求角x :
六、三角函数的最值 (1)
配方法求最值
主要是利用三角函数理论及三角函数的有界性,转化为二次函数在闭区间上的最值问题,如求函数
2sin sin 1y x x =++的最值,可转化为求函数[]21,1,1y t t t =++∈-上的最值问题。
(2) 化为一个角的三角函数,再利用有界性求最值:sin )a x bcox x ϕ+=+
(3)
换元法求最值
①利用换元法将三角函数问题转化为代数函数,此时常用万能公式和判别式求最值。
②利用三角代换将代数问题转化为三角函数,然而利用三角函数的有界性等求最值。