DSP编程中使用的预编译指令
DSP应用中编译选项的智能选择

DSP应用中编译选项的智能选择作者:CEVA公司编译器项目经理Eran Balaish摘要随着DSP处理器的能力越来越强大,可采用C编译器的代码部分在不断增加。
不过,没有编程人员的协助,编译器是无法生成最优化的代码。
为了最大地提高性能,编程人员必须利用各种编译选项功能来调节编译器。
不幸的是,在DSP应用里,没有充分利用编译器调节能力的现象相当普遍。
整个应用过程中,往往只利用一组相同的编译选项来进行编译。
这种方法忽略了每一项功能的特殊需求。
编译选项的智能选择可以大幅提高性能,例如可以大大减少代码量。
在评估产品成本时,代码量通常是主要考虑因素,因为这对所需存储量有直接的影响。
本文将介绍如何减少代码的使用量以及其它重要资源的消耗量。
在指令周期数和代码量之间进行权衡,满足功能级的特殊要求为了更好地了解如何利用编译选项的智能选择来节省代码量,必须熟悉指令周期数与代码量之间的权衡取舍,这方面的实例是循环展开 (loop-unrolling) 和软件流水(SWP) 的常用编译器优化技术。
这种技术通过循环体的复制来进行循环展开,利用从循环语句内部到循环语句外部的某些指令的拷贝来实现SWP。
当使用带有深度管线的多事件超长指令字 (VLIW)处理器时,该技术显得非常有用。
这时,SWP可中断循环语句内部的许多依赖关系,而循环展开能够大幅提高指令间并行性 (ILP)。
这里给出了简单的乘法与累加 (mac) 循环语句,以阐释循环展开和SWP。
for (i = 0; i < 960; i++){sum += src1[i] * src2[i];}图1. 基本的C语言级mac循环语句下面摘选了一段效率相对低的简单汇编代码,是在为代码量最小化而调节CEVA-X1641™ DSP内核编译器时产生的。
它使用了SWP,但没有循环展开。
这个循环语句的执行需要使用大约959*2 = 1918个指令周期,所需代码量小于20个字节。
LS0.ld {w} (r3)+#2, a3lLS0.ld {w} (r4)+#2, a2lSQ.bkrep {ds1} #958nop{nopA.S.mac a2l, a3l, a0|| LS0.ld {w} (r3)+#2, a3l|| LS1.ld {w} (r4)+#2, a2l}图2. CEVA-X1641编译器产生的mac循环语句中的简单但效率较低的汇编实现方案相反地,当为指令周期数最小化而调节时,CEVA-X1641编译器产生的结果截然不同。
第五章 DSP的汇编指令..

第五章 TMS320C55x系列DSP的汇编指令
(2) 用户自定义的双指令的并行
这两条指令的并行是通过用户或C编译器定义的。两条指令 同时执行两个操作,用并行符“||”区分并行执行的两条指令。 例:
MPYM *AR1+, *CDP, AC1 ;D单元的一个MAC来完成
||XOR AR2,T1
;A单元的ALU来完成
第五章 TMS320C55x系列DSP的汇编指令
1、高速数字信号处理中常采用汇编语言编程。 2、汇编语言中的两种指令集 (1) 助记符指令集:有助于记忆的符号来表示指令。 (2) 代数指令集:类似于代数表达式,运算关系清楚明了。 注意:DSP的软件开发工具只支持单一的指令形式,不支持助记
符指令和代数指令的混合形式。 3、术语、符号和缩写见P93的表5-1 4、运算符见表5-2
令执行的条件:
TCx(测试/控制标志为1) !TCx(测试/控制标志为0)
TC1&TC2 TC1&!TC2 TC1|TC2 TC1|!TC2 TC1^TC2 TC1^!TC2
!TC1&TC2 !TC1&!TC2 !TC1|TC2 !TC1|!TC2 !TC1^TC2 !TC1^!TC2
第五章 TMS320C55x系列DSP的汇编指令
4、双16比特算术指令: [(1)语法、(2)操作数、(3)状态位] 在D单元中利用其ALU的双16比特模式,同时执行(并行)两个16
比特算术运算,包括加-减、减-加、两个加和两个减运算。
例:
说明: NO:不能并行执行 3:指令的长度为3字节 1:周期为1 X:在X(执行)流水线阶段处理
D – ALU:在D单元ALU执行。 执行结果:AC0=(*AR3)+CARRY+AC1 状态位: Affected by CARRY,C54CM,M40等
第五章 DSP的汇编指令..

令执行的条件:
TCx(测试/控制标志为1) !TCx(测试/控制标志为0)
TC1&TC2 TC1&!TC2 TC1|TC2 TC1|!TC2 TC1^TC2 TC1^!TC2
!TC1&TC2 !TC1&!TC2 !TC1|TC2 !TC1|!TC2 !TC1^TC2 !TC1^!TC2
第五章 TMS320C55x系列DSP的汇编指令
4、双16比特算术指令: [(1)语法、(2)操作数、(3)状态位] 在D单元中利用其ALU的双16比特模式,同时执行(并行)两个16
比特算术运算,包括加-减、减-加、两个加和两个减运算。
例:
▪ M40=0时,D单元按32位运算模式,因此累加器溢出、进位、符号扩
展和移位操作都以第31比特为准。
▪ M40=1时,D单元按40位运算模式,因此累加器溢出,进位,符号扩
展和移位操作都以第39比特为准。
BCLR M40 ; Clear M40
BSET M40 ; Set M40
第五章 TMS320C55x系列DSP的汇编指令
第五章 TMS320C55x系列DSP的汇编指令
一、算术运算指令 用于完成加减乘除等运算,按照功能可分成以下几类:
▪ 加法指令 ▪ 减法指令:减法,条件减法,条件加/减 ▪ 乘法指令:乘法,乘加,乘减,双乘加/减 ▪ 双16比特算术指令 ▪ 比较运算指令:比较并求极值,最大/最小值,存储单元比较,寄存器比较 ▪ 移位指令:条件移位、带符号的移位。 ▪ 寄存器修改:辅助寄存器修改、堆栈指针SP修改 ▪ 隐含的并行指令 ▪ 专用指令:绝对值、归一化、有限冲激响应滤波FIR、最小均方LMS等
✓ M40=0时: 溢出位在第31位检测
预编译指令#pragma详解

预编译指令#pragma详解#pragma详解在#Pragma是预处理指令它的作用是设定编译器的状态或者是指示编译器完成一些特定的动作。
#pragma指令对每个编译器给出了一个方法,在保持与C和C++语言完全兼容的情况下,给出主机或操作系统专有的特征。
依据定义,编译指示是机器或操作系统专有的,且对于每个编译器都是不同的。
其格式一般为:#Pragma Para其中Para为参数,下面来看一些常用的参数。
(1)message参数。
Message参数是我最喜欢的一个参数,它能够在编译信息输出窗口中输出相应的信息,这对于源代码信息的控制是非常重要的。
其使用方法为:#Pragma message(“消息文本”)当编译器遇到这条指令时就在编译输出窗口中将消息文本打印出来。
当我们在程序中定义了许多宏来控制源代码版本的时候,我们自己有可能都会忘记有没有正确的设置这些宏,此时我们可以用这条指令在编译的时候就进行检查。
假设我们希望判断自己有没有在源代码的什么地方定义了_X86这个宏可以用下面的方法#ifdef_X86#Pragma message(“_X86macro activated!”)#endif当我们定义了_X86这个宏以后,应用程序在编译时就会在编译输出窗口里显示“_X86macro activated!”。
我们就不会因为不记得自己定义的一些特定的宏而抓耳挠腮了。
(2)另一个使用得比较多的pragma参数是code_seg。
格式如:#pragma code_seg([\section-name\[,\section-class\]])它能够设置程序中函数代码存放的代码段,使用没有section-name字符串的#pragmacode_seg可在编译开始时将其复位,当我们开发驱动程序的时候就会使用到它。
(3)#pragma once(比较常用)只要在头文件的最开始加入这条指令就能够保证头文件被编译一次,这条指令实际上在VC6中就已经有了,但是考虑到兼容性并没有太多的使用它。
DSP指令大全(最全)

附录6 TMS320C54x 指令系统一览表(按指令功能排列) 一、算术运算指令二、逻辑运算指令三、程序控制指令6.注:?条件“真”,§条件“假”,※延迟指令。
四、加载和存储指令4.6.7.五.伪指令2.初始化常数(数据和存储器)的伪指令3.调整段程序计数器伪指令(SPC).align 把SPC调整到页边界.even 把SPC调整到偶数字边界4.控制输出列表格式化伪指令5.条件汇编伪指令.break [well-defined expression] 如果条件真结束.loop汇编,.break结构是可选项.else 如果.if条件为假,汇编代码块.else结构是可选项.elseif well-defined expression——如果if条件为假且.elseif条件为真,汇编代码块.else结构是可选项.endif 结束.if代码块.endloop 结束.1oop代码块.if well-defined expression 如果条件为真则汇编代码块.loop [well-defined expression] 开始代码块的重复汇编6. 汇编符号.asg [”] character string [”],substitution symbol——把字符串赋予替代的符号..endstruct 结束结构定义.equ 使值和符号相等.eval well-defined expression,substitution symbol 根据数字替代符号完成运算.newblock 取消局部标号.set 使数值和符号相等.struct 开始结构定义.tag 把结构属性赋予标号7.宏指令宏定义:Macname .macro[参数1],[…],[参数n]宏调用:[标号][:] macname [参数1],[…],[参数n]8.编译软件指令①汇编器:asm500.exeasm500[input file[object file [listing file] [-options]]-c—使汇编语言文件中大小没有区别。
DSP常用汇编语言指令简介

5. 控制指令举例
Example1:BIT0h,15 ;(DP = 6)把内存地址=300h 单元内容的最低位(BIT0)送给TC。 Example2:LDP #0h;使用立即数方式装载 数据页,也可以采用直接寻址和间接寻址方式装 载。 Example3:PUSH ;把累加器的低16位压入堆 栈。 Example4:SETC C;置进位C=1,也可以设置 以下的控制位为1或者为0,例如:CNF、INTM、 OVM、SXM、TC和XF。类似的指令还有: CLRC。
2. 工作寄存器等指令举例
Example4:ADRK #80h ;把当前工作寄存器内容 加一个立即数80h(注意立即数范围:00~FFh)。类 似的指令还有SBRK。 Example5:BANZ指令使用举例。例: MAR *, AR0 ;当前ARP=AR0 LAR AR1, #03h ;AR1内容赋值为03h LAR AR0, #60h ;AR0内容赋值为60h ZAC ; 累加器ACC清零 loop: ADD *+, AR1 ;把当前工作寄存器AR0指向 的内存单元数值加到ACC,然后AR0内容加1,当前工 作寄存器指针指向AR1 BANZ loop, *-AR0 ;判断AR0是否为0,否则程序 转到loop,同时AR0的内容减1。 南航自动化学院DSP技术应用实验 返回到第10页 室
南航自动化学院DSP技术应用实验 室
1. 累加器等指令举例
Example 1:ADD 1,1;(假设DP = 6),把 第6个数据页的第一个内存单元内容左移一 位加到累加器 Example 2:LACC *,4; (与SXM有关) Example 3:ROL;把累加器内容循环左移 Example 4:SACL *,0,AR7 ;把当前工作寄 存器指示内容左移0位送入累加器的低8位 Example 5:RPT #15 SUBC * ;累加器减去当前寄存 器指的内容,连续减16次,结果存累加器
c54xx系列DSP汇编指令详解

意义 或运算 异或运算
减1 赋值于 表示一个立即数 x 的补码
|x|
x 的绝对值
0x
十六进制数据
>>
右移
<<
左移
×
乘法
*
指针指向的地址
TMS320C54xx 系列 DSP 的指令一共有 129 条,按功能分为如下几类:算术指令、逻 辑指令、程序控制指令、存储和装入指令以及循环指令。下面根据每种指令功能的不同,
目的累加器的反 if dst=A,then dst_=B if dst=B then dst_=A
E 地址总线 EAB 地址寄存器 23 位立即数表示的程序存储器地址 ST1 寄存器中的分数方式位 十六进制数据 十六进制数据 累加器 A 的高端(位 32~16) ST1 寄存器中的保持方式位 中断标志寄存器 ST1 寄存器中的中断屏蔽位 少于 9 位的短立即数
3 位立即数(0 ≤ k3 ≤ 7 ) 5 位立即数(-16 ≤ k5 ≤ 15 ) 9 位立即数(0 ≤ k9 ≤ 115 )
16 位长立即数 使用长字寻址 32 位单数据存储器操作数 存储器映射寄存器,AR0~AR7 或 SP
存储器映射寄存器,AR0~AR7 或 SP
紧跟 XC 指令的字数,n=1 或 2 指定在 RSBX、SSBX 和 XC 指令中修改的状态寄存器 N=0,状态寄存器 ST0 N=1,状态寄存器 ST1 ST0 寄存器中的累加器 A 的溢出标志 ST0 寄存器中的累加器 B 的溢出标志 目的累加器(A 或 B)的溢出标志 目的累加器反(A 或 B)的溢出标志 源累加器(A 或 B)的溢出标志 ST1 寄存器中的溢出方式位 16 位立即数表示的端口地址
③ 乘法指令
DSP汇编指令总结

DSP汇编指令总结DSP汇编指令总结⼀、寻址⽅式:1、⽴即寻址:短⽴即寻址(单指令字)长⽴即数寻址(双指令字)第⼀指令字第⼆指令字16位常数=16384=4000h2、直接寻址ARU 辅助寄存器更新代码,决定当前辅助寄存器是否和如何进⾏增或减。
N规定是否改变ARP值,(N=0,不变)4.3.1、算术逻辑指令(28条)4.3.1.1、加法指令(4条);4.3.1.2、减法指令(5条);4.3.1.3、乘法指令(2条);4.3.1.4、乘加与乘减指令(6条);4.3.1.5、其它算数指令(3条);4.3.1.6、移位和循环移位指令(4条);4.3.1.7、逻辑运算指令(4条);4.3.2、寄存器操作指令(35条)4.3.2.1、累加器操作指令(6条)4.3.2.2、临时寄存器指令(5条)4.3.2.3、乘积寄存器指令(6条)4.3.2.4、辅助寄存器指令(5条)4.3.2.5、状态寄存器指令(9条)4.3.2.6、堆栈操作指令(4条)4.3.3、存储器与I/O操作指令(8条)4.3.3.1、数据移动指令(4条)4.3.3.2、程序存储器读写指令(2条)4.3.3.3、I/O操作指令(2条)4.3.4、程序控制指令(15条)4.3.4.1、程序分⽀或调⽤指令(7条)4.3.4.2、中断指令(3条)4.3.4.3、返回指令(2条)4.3.4.4、其它控制指令(3条)4.3.1、算术逻辑指令(28条)4.3.1.1、加法指令(4条);▲ADD▲ADDC(带进位加法指令)▲ADDS(抑制符号扩展加法指令)▲ADDT(移位次数由TREG指定的加法指令)4.3.1.2、减法指令(5条);★SUB(带移位的减法指令)★SUBB(带借位的减法指令)★SUBC(条件减法指令)★SUBS(减法指令)★SUBT(带移位的减法指令,TREG决定移位次数)4.3.1.3、乘法指令(2条);★MPY(带符号乘法指令)★MPYU(⽆符号乘法指令)4.3.1.4、乘加与乘减指令(6条);★MAC(累加前次积并乘)(字数2,周期3)★MAC(累加前次积并乘)★MPYA(累加-乘指令)★MPYS(减-乘指令)★SQRA(累加平⽅值指令)★SQRS(累减并平⽅指令)4.3.1.5、其它算数指令(3条);★ABS(累加器取绝对值指令)★NEG(累加器取补码指令)★NORM(累加器规格化指令)返回4.3.1.6、移位和循环移位指令(4条);▲ SFL(累加器内容左移指令)▲ SFR(累加器内容右移指令)▲ROL(累加器内容循环左移指令)▲ROR(累加器内容循环右移指令)返回4.3.1.7、逻辑运算指令(4条);▲ AND(逻辑与指令)▲ OR(逻辑或指令)▲ XOR(逻辑异或指令)▲ CMPL(累加器取反指令)返回4.3.2、寄存器操作指令(35条)4.3.2.1、累加器操作指令(6条)▲ LACC(装载累加器指令)▲ LACT(装载累加器)*按TREG低4位指定的次数移位▲ LACL(装载累加器低16位指令)▲ ZALR(装载累加器指令)▲ SACL(移位并存储累加器低半部)▲ SACH(移位并存储累加器⾼半部)返回4.3.2.2、临时寄存器指令(5条)▲ LT(装载TREG指令)▲ LTA(装载TREG并累加上次乘积指令)▲ LTS (装载TREG并减去上次乘积指令)▲ LTD(装载TREG并累加上次乘积及数据移动指令)▲LTP(装载TREG和累加器指令)返回4.3.2.3、乘积寄存器指令(6条)▲ PAC (乘积寄存器内容载⼊累加器)▲ APAC (PREG与累加器相加)▲ SPAC(累加器和乘积寄存器相减)▲ LPH(装载PREG⾼16位指令)▲ SPL(存储PREG低16位指令)▲ SPH(存储PREG⾼16位指令)返回4.3.2.4、辅助寄存器指令(5条)★LAR(装载当前辅助寄存器AR)★SAR(存储辅助寄存器指令)★MAR(修改当前辅助寄存器)★SBRK(从当前辅助寄存器减去短⽴即数)返回4.3.2.5、状态寄存器指令(9条)★LST(装载状态寄存器)★SST(存储状态寄存器)★SETC(控制位置“1”指令)★SETC(控制位置“1”指令)★LDP(装载数据指针DP指令)★BIT(位测试指令)★BITT(测试由TREG指定bit code指令)★CMPR(⽐较当前辅助寄存器AR和AR0)返回4.3.2.6、堆栈操作指令(4条)★PUSH(累加器低16位进栈指令)★POP(栈顶内容弹出⾄累加器低16位指令)★POP(栈顶内容弹出⾄累加器低16位指令)★POPD(弹栈⾄数据存储器指令)返回4.3.3、存储器与I/O操作指令(8条)4.3.3.1、数据移动指令(4条)▲DMOV(数据存储器内部数据移动指令)▲SPLK(存储长⽴即数⾄数据存储器指令)▲BLDD(数据存储器内部的数据块移动)▲ BLPD(从程序存储器到数据存储器的数据块传送)4.3.3.2、程序存储器读写指令(2条)★TBLR(读程序存储器数据到数据存储器)★TBLW(写程序存储器)4.3.3.3、I/O操作指令(2条)★IN(数据输⼊指令)★OUT(数据输出指令)4.3.4、程序控制指令(15条)4.3.4.1、程序分⽀或调⽤指令(7条)★B(⽆条件转移指令)★BANZ(辅助寄存器内容不等于零转移)★CALL(⽆条件⼦程序调⽤指令)★BACC(按累加器内容转移指令)★CALA(由累加器指定地址的⼦程序调⽤指令)★CC(条件调⽤指令)4.3.4.2、中断指令(3条)★INTR(软中断指令)★TRAP(软件陷阱中断)★NMI(⾮屏蔽中断)4.3.4.3、返回指令(2条)★RET(⽆条件从⼦程序或中断返回)★RETC(条件返回指令)4.3.4.4、其它控制指令(3条)★RPT(重复执⾏下条指令)★NOP(空操作)★IDEL(暂停)返回。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DSP编程中使用的预编译指令 #pragma(2008-12-10 10:55:09)转载▼标签:杂谈【原创】转载请注明出处**** TypeWritter: Li Hui*** Start Time: Nov.19.2008*** Version 1.3**** use word to instead 2 * 16bit short data's access ** void vecsum4(short *restrict sum, restrict short *in1, restrict short *in2, unsigned int N){int i;#pragma MUST_ITERATE(10);for(i=0;i<(N/2);i++)_amem4(&sum[i]) =add2(_amem4_const(&in1[i]),_amem4_const(&in2[i])); }** near variable's access **LDW *dp(_address),a1** far variables' access **MVKL _address,a1MVKH _address,a1LDW *a1,a0** far function call **MVKL _func,a1MVKH _func,a1B a1** default is near type **** if you use -mr1 option, all the func are 'far' if you don't use -mr1, default is 'near'if you use -mr0, then all the array or matrix are 'far', program is 'near'if you use -mr1, then all the array or matrix are 'near', program is 'far'if you use -mr2, then all the array, matrix, program are 'far'if you use -mr3, then all data and program are 'far'**** not-related **void foo(int * restrict a, int * restrict b)void foo(int c[restrict], int d[restrict])** difference of const-pointer and point to const**int * const p = &x; ** a const pointer who point to a variable named x **const int * p = &x; ** a pointer who point to a const named x, the pointer can point another variable **** volatile - to guarantee a variable can not be optimized by optimizer **unsigned int *ctrl;while(*ctrl !=0xFF)...** optimizer will treat ctrl a const **** so we should specify the ctrl's type is 'volatile' ** volatile unsigned int * ctrl;** That's ok **** Embedded the assembly language into the .C file **asm(" Assembly Language... ");** Useful Pragma Directive **** (1) CODE_SECTION **** Allocate space for symbol in the section named "section name" **#pragma CODE_SECTION(symbol,"section name"); // in C language** (2) DATA_ALIGN **** align symbol to the column edge specfied by the constant ** #pragma DATA_ALIGN(symbol,constant); // constant must be power of 2eg1:#pragma DATA_ALIGN(inputArray,8);// when you use DSPLIB FFT functions** (3) DATA_MEM_BANK **** align the symbol and variables to the page edge specified by the constant **** avoid the data's overlapped storage **#pragma DATA_MEM_BANK(symbol,constant); ** C64 : constant must be 0-15 and must be even **** (4) DATA_SECTION **** Allocate space for symbol in the section named "section name" **** 4-1 C Language **#pragma DATA_SECTION(symbol,"section name");** 4-2 C++ Language **#pragma DATA_SECTION("section name");** 4-3 Assembly Language **.global _bufferA.bss _bufferA,512,4.global _bufferB_bufferB .usect "section name",512,4** (5) FUNC_CANNOT_INLINE **** this function can not be inline, even the function is defined 'inline' **#pragma FUNC_CANNOT_INLINE(func);** (6) FUNC_EXT_CALLED **** if you add -pm options in the compile period, the compiler will erase the function which haven't beencalled by main, but acturally, the function may be called by .asm file. **#pragma FUNC_EXT_CALLED(func);** restriction: func can not be _c_int00 **** (7) FUNC_INTERRUPT_THRESHOLD **#pragma FUNC_INTERRUPT_THRESHOLD(func,threshold);eg1:#pragma FUNC_INTERRUPT_THRESHOLD(func1,2000);** the period between the func1's interrupts must lager than 2000 clock cycle **eg2:#pragma FUNC_INTERRUPT_THRESHOLD(func2,1);** the func2 can always be interrupted **eg3:#pragma FUNC_INTERRUPT_THRESHOLD(func3,-1);** the func2 can not be interrupted **** (8) FUNC_IS_PURE **** This function has no side-effect, if you do not need the value returned by func, you can delete its' callyou can delete the copy of the func**#pragma FUNC_IS_PURE(func);** (9) FUNC_IS_SYSTEM **** this function has the ANSI standard operation, the directive must be used for ANSI standard function **** for example: memcpy, strcmp and so on **#pragma FUNC_IS_SYSTEM(func);** (10) FUNC_NEVER_RETURNS **** this function never returns, so compiler can not terminate this function or free stack and so on **#pragma FUNC_NEVER_RETURNS(func);** (11) FUNC_NO_GLOBAL_ASG **** this function will not assign global variables and not contains .asm sentences **#pragma FUNC_NO_GLOBAL_ASG(func);** (12) FUNC_NO_IND_ASG **** this function will not allocate space via pointer and not contains .asm sentences **#pragma FUNC_NO_IND_ASG(func);** (13) INTERRUPT **** you can use the function to handle the DSP's interrupt ** #pragma INTERRUPT(func);** (14) MUST_ITERATE **** Specify the cycle's minimum times, maximun times and the times must be multiple of 'multiple' **#pragma MUST_ITERATE(min,max,multiple);** (15) NMI_INTERRUPT **** you can use the function to handle the Non Maskable Interrupt(NMI) **#pragma NMI_INTERRUPT(func);** (16) PROB_ITERATE **** Specify the cycle's minimum times, maximun times **#pragma PROB_ITERATE(min,max);** (17) STRUCT_ALIGN **** Like to DATA_ALIGN, using for defination of struct and class **#pragma STRUCT_ALIGN(type,constact expression);eg:typedef strct st_tag{int a;short b;}st_typedef;#pragma STRUCT_ALIGN(st_tag,128);** (18) UNROLL **** Specify which number of cycle times can not be unfolded ** #pragma UNROLL(n);。