3.离子束分析技术
核工程与核技术专业导论

专业导论2012核工程与核技摘要从应用的角度讲,核技术主要包括射线和粒子束技术与放射性核素技术。
前者主要包括核分析技术、辐射加工与离子束加工、无损检测、工业核仪表、核医学成像、肿瘤放疗和辐射诱变育种技术等;后者则主要包括放射性核素测年、放射性核素示踪和放射性药物。
射线和粒子束与物质的相互作用是核技术的物理基础,粒子加速器技术和核探测技术是核技术的主要支撑技术。
本文介绍了上述各技术领域的发展,并介绍北京大学的核技术及应用研究工作。
关键词核技术;应用;粒子加速器;核探测技术;射线;粒子束;放射性核素中图分类号TL5;TL8;TL92;TL99;O571.3术姓名:张朝平班级:双核二班学号:201206020212时间:2013-1-3一、培养目标本专业培养适应我国国民经济和国防核科技工业发展需要的,能在核技术及相关专业领域从事研究、设计、生产、应用和管理等的专门人才。
本专业培养的人才应具有良好的数理基础、扎实的专业知识和熟练的专业技能,能够适应核技术各个方向发展的基本需要;同时应具有较好的人文社会科学和管理知识,较高的道德素质和文化素质,身心健康,全面发展。
素质要求:热爱祖国,拥护中国共产党的领导,逐步树立科学的世界观和人生观。
具有健全的法治意识、诚信意识和集体主义精神,具有良好的思想品德、社会公德和职业道德。
具有较好的人文、艺术修养和文字、语言表达能力,了解历史和世界,积极参加社会实践活动,适应社会发展与进步,具有良好的心理素质和合作意识精神,具有健康的体魄和进取精神。
具有良好的理论基础和扎实的专业知识,掌握熟练的专业技能,勤奋、严谨、求实、创新,有科学精神和奋斗意识。
能力要求:具有较强的获取知识、更新知识和应用知识的能力,良好的表达能力、社交能力和计算机及信息技术应用能力。
在核技术及相关的科研、应用和开发领域,能够综合应用所学知识,发现和分析解决实际问题,具有通过创造性思维进行创新实验和科技研究开发的能力。
聚焦离子束实验报告

聚焦离子束实验报告一、实验目的本实验旨在学习和掌握聚焦离子束(Focused Ion Beam, FIB)的工作原理及操作方法,通过观察和分析实验结果,加深对离子束物理的理解。
二、实验原理聚焦离子束(FIB)是一种将离子束聚焦到微米甚至纳米级别的技术,它具有高能量密度、高精度和高分辨率的特点。
FIB系统主要由离子源、离子光学系统、扫描电极和真空腔组成。
其中,离子源产生的离子束经过离子光学系统的聚焦和校准,最终在扫描电极上形成聚焦点。
三、实验步骤1、样品准备:选择具有代表性的材料或结构作为实验对象,本实验选用硅基底上的金属薄膜。
2、样品清洗:使用有机溶剂和去离子水清洗样品,去除表面的污垢和杂质。
3、样品安装:将清洗后的样品放入FIB系统的样品室,确保样品固定牢固。
4、FIB系统校准:使用校准靶对FIB系统进行校准,确保离子束的聚焦精度。
5、离子束照射:设定合适的电压和电流,将离子束聚焦到样品表面,观察并记录实验现象。
6、数据分析:通过对实验结果的观察和分析,得出结论。
四、实验结果及分析1、硅基底上的金属薄膜经过离子束照射后,表面出现明显的凹坑和凸起,表明离子束具有较高的能量密度和侵蚀性。
2、随着离子束电流的增加,照射区域的形貌变化更加明显,说明离子束的刻蚀能力与电流成正比。
3、通过对比不同材料在相同条件下的刻蚀效果,发现材料的刻蚀速率与材料的力学、物理性能有关。
五、结论本实验通过聚焦离子束技术对硅基底上的金属薄膜进行照射,观察并分析了离子束的刻蚀效果。
结果表明,聚焦离子束具有高能量密度和侵蚀性,可以用于微纳结构的加工和材料的形貌分析。
同时,材料的刻蚀速率与材料的力学、物理性能有关,这为进一步研究材料在离子束作用下的行为提供了依据。
六、实验建议与展望1、在本次实验中,我们发现聚焦离子束技术在材料科学、微纳制造等领域具有广泛的应用前景。
为了更好地掌握这一技术,建议在后续实验中进一步探讨不同材料在不同条件下的刻蚀行为。
核技术应用题库

核技术应用题库第一章核技术及应用概述1、什么是核技术?答:核技术是以核物理、核武器物理、辐射物理、放射化学、辐射化学和辐射与物质相互作用为基础,以加速器、反应堆、核武器装置、核辐射探测器和核电子学为支撑而发展起来的综合性现代技术学科。
2、广义地说,核技术分为哪六大类?答:广义地说,核技术可分为六大类:核能利用与核武器、核分析技术、放射性示踪技术,辐射照射技术、核检测技术、核成像技术。
3、核能利用与核武器主要利用的什么原理,其主要应用有哪些?答:主要是利用核裂变和核聚变反应释放出能量的原理,开发出能源或动力装置和核武器,主要应用有:核电站、核潜艇、原子弹、氢弹和中子弹。
4、什么是核分析技术,其特点是什么?答:在痕量元素的含量和分布的分析研究中,利用核探测技术、粒子加速技术和核物理实验方法的一大类分析测试技术,统称为核分析技术。
特点:1.灵敏度高。
比如,可达百万分之一,即10-6,或记为1ppm;甚至可达十亿分之一,即10-9,或记为1ppb。
个别的灵敏度可能更高。
2.准确。
3.快速。
4.不破坏样品。
5.样品用量极少。
比如,可以少到微克数量级。
5、什么示放射性示踪技术,有哪几种示踪方式?答:应用放射性同位素对普通原子或分子加以标记,利用高灵敏,无干扰的放射性测量技术研究被标记物所显示的性质和运动规律,揭示用其他方法不能分辨的内在联系,此技术称放射性同位素示踪技术。
有三种示踪方式:1)用示踪原子标记待研究的物质,追踪其化学变化或在有机体内的运动规律。
2)将示踪原子与待研究物质完全混合。
3)将示踪原子加入待研究对象中,然后跟踪。
6、研究植物的光合作用过程是利用的核技术的哪个方面?答:放射性示踪。
7、什么是核检测技术,其特点是什么?答:核检测技术: 是以核辐射与物质相互作用原理为基础而产生的辐射测量方法和仪器。
特点:1)非接触式测量;2)环境因素影响甚无;3)无破坏性:4)易于实现多个参数同时检测和自动化测量。
现代材料分析方法(8-SIMS)

Al+的流强随时间变化的曲线
SIMS 离子溅射与二次离子质谱
Si的正二次离子质谱
SIMS 离子溅射与二次离子质谱
聚苯乙烯的二次离子质谱
SIMS 离子溅射与二次离子质谱
在超高真空条件下,在清 洁的纯Si表面通入20 L的氧 气后得到的正、负离子谱, 并忽略了同位素及多荷离 子等成份。除了有硅、氧 各自的谱峰外,还有SimOn (m,n = 1, 2, 3……)原子团离 子发射。应当指出,用氧 离子作为入射离子或真空 中有氧的成分均可观察到 MemOn (Me为金属)
SIMS 二次离子质谱仪
定性分析Biblioteka SIMS定性分析的目的是根据所获取的二次离子
质量谱图正确地进行元素鉴定。样品在受离子照射时,
一般除一价离子外,还产生多价离子,原子团离子,
一次离子与基体生成的分子离子。带氢的离子和烃离 子。这些离子有时与其它谱相互干涉而影响质谱的正 确鉴定。
SIMS 二次离子质谱仪
溅射产额与元素的升 华热倒数的对比
SIMS 离子溅射与二次离子质谱
溅射产额与晶格取向的关系
SIMS 离子溅射与二次离子质谱
在100~1000 eV下,用Hg+垂直入射Mo和Fe的溅射粒子的角分布
SIMS 离子溅射与二次离子质谱
= 60o时W靶的溅射粒子的角分布
SIMS 离子溅射与二次离子质谱
SIMS 离子溅射与二次离子质谱
是入射方向与
样品法向的夹角。
当 = 60o~ 70o时, 溅射产额最大, 但对不同的材料, 增大情况不同。
相对溅射产额与离子入射角度的关系
SIMS 离子溅射与二次离子质谱
溅射产额与入射离子原子序数的关系
SIMS 离子溅射与二次离子质谱
核技术应用汇总.

1.2 核技术在工业中的应用
• 在无损检测技术中核技术占了很大比例并有显著优势。早 期的射线探伤是用加速器产生的电子束打靶产生的X 射线 照射工件形成平面图像。70 年代医用X-CT 诞生后,80 年 代即出现了工业CT,并很快应用到热轧无缝钢管的在线测 试、发动机检测、以至大型火箭的整体测试中。无损检测 的一个成功例子是集装箱检查。我国已成功地研制出了基 于加速器的和基于60Co 源的集装箱检测系统,为海关缉私 提供了强有力的工具。另一种重要的无损检测是中子照相 ,用其检测火药、继电器、发动机叶片等有很高的灵敏度 和分辨率,在航天与航空工业和国防上有重要应用。
2.1 工业应用 — 核子密度计
• 用途:
各种料液浓度的在线检测和控制 。也可通过密度而间接测定出料液中 某种成分的含量、以及两种物料的本 比等。
例如:选矿工艺中矿浆和浮选液 浓度的在线检测和控制;油田和石油 化工过程中油品含水率的测定;选煤 厂选煤液密度的检测和控制;化工厂 酸、碱、盐的浓度以及各种成分配比 的在线检测;造纸厂纸浆浓度的测定 和控制;江河中水流含沙量的测定。
如果我国也按3-4%的比值测算,核技术应用的年产 值应达到14000-18000亿人民币。这与我国当前核技术 应用的产值相比,差约一个数量级。据不完全统计, 我国核技术应用产业约为1200亿人民币 左右。这说明 ,我国核技术应用,有着一个很大的市场和很好的发 展前景。因此,我们应大力发展核技术,加速推动其 应用。
1.1 核技术在基础研究中的应用
• 各种射线和粒子束与物质相互作况下还会产生次级射线和次 级粒子。这些变化和次级发射在很大程度上取决于靶物质本身 的组成、结构和特性。因此,对于物理、化学、生物、地质、 考古等学科所研究的各种实体与物质,射线与粒子束技术亦是 有力的分析手段。通常我们将这类技术统称为核分析技术。核 分析技术主要包括活化分析技术、离子束分析技术和超精细相 互作用核分析技术三大类。
飞顿离子束-概念解析以及定义

飞顿离子束-概述说明以及解释1.引言1.1 概述飞顿离子束技术是一种利用加速器产生高能离子束,在固体表面进行材料改性、表面处理和纳米加工的先进技术。
飞顿离子束技术具有高能量、高精度和非接触加工的特点,被广泛应用于材料科学、半导体制造、生物医药等领域。
本文将从飞顿离子束的基本原理、在材料科学中的应用以及技术的发展现状三个方面对飞顿离子束进行详细介绍。
通过对飞顿离子束技术的深入探讨,以期能够更好地认识这一先进技术的重要性,同时也展望其在未来的发展前景。
1.2 文章结构文章结构部分的内容应该主要介绍整篇文章的布局和结构安排。
可以描述本文的章节组成,以及每个章节的主要内容概述。
同时可以提及每个部分之间的逻辑关系和连接,为读者提供整体的阅读框架。
例如:本文分为引言、正文和结论三个部分。
在引言部分,将概述飞顿离子束技术的基本概念和本文的研究方向,如何展开对飞顿离子束的研究。
在正文部分,将详细介绍飞顿离子束的基本原理、在材料科学中的应用以及技术的发展现状。
最后,在结论部分,将总结飞顿离子束的重要性,展望技术未来的发展,并对全文进行总结。
通过这样清晰的结构安排,读者可以更加轻松地理解全文的内容,并且能够更好地跟随作者的思路和逻辑推进。
1.3 目的本文旨在介绍飞顿离子束技术,包括其基本原理、在材料科学领域的应用以及目前的发展现状。
通过对飞顿离子束技术的全面介绍,旨在让读者了解这一新兴技术的重要性和潜在应用价值。
同时,本文也将展望飞顿离子束技术的未来发展,并总结其在材料科学领域中的重要性,以期能够为相关领域的研究人员提供参考和借鉴。
章1.3 目的部分的内容2.正文2.1 飞顿离子束的基本原理飞顿离子束的基本原理是利用离子加速器将离子加速到高能量状态,然后将离子束聚焦并注入到目标材料中。
这种加速的过程主要包括三个步骤:加速、聚焦和注入。
首先,在加速阶段,离子会被加速器加速到高能量状态。
这通常是通过电场或磁场来完成的,使离子获得高速运动所需的能量。
核分析基础第3章

• 入射离子与靶原子碰撞的运动学因子、散 射截面和能量损失因子是背散射分析中的 三个主要参量。
1.离子碰撞后和碰撞前的能量之比K称为运动 学因子.
2.入射粒子与靶原子核之间的库仑排斥力作 用下的弹性散射过程的微分截面称为卢瑟 福散射截面.
3. 能量损失因子 当入射粒子从靶样品表面穿透到靶内某一深度 处发生大角度散射时,离子在这段入射路径上要损 失一小部分能量,同样,在发生散射后,背散射粒 子从靶内射出样品表面到达探测器,在这段出射路 径上也要损失一小部分能量.离子在样品中入射和 出射路径上的电离能量损失,使在样品深部发生背 散射的粒子的能量在能谱上相对于样品表面发生背 散射的粒子能量往低能量侧展宽。 能量宽度ΔE正比于靶厚度和离子在靶物质中的 背散射能量损失因子。这能谱曲线向低能侧的展宽, 反映出了靶原子随深度的分布情况。因此,由背散 射能谱分析,可以获得靶原子的深度分布信息,建 立背散射谱峰宽度与靶厚度之间的关系。
三、应用实例 卢瑟福反散射分析可用于:样品表面层杂质成分和深度 分布分析,材料表面各种薄膜组成和厚度分析,薄膜界 面特性分析,化合物的化学配比分析,以及离子束混合 材料分析等。 例:表面杂质含量分析
在玻璃碳基体上,用真空镀膜法镀上一层极薄的Au元素。用 2MeV的4He+束做RBS分析,测到的背散射能谱如图所示,图中 用箭头标出了Au和C的背散射峰位。C基体很厚,它的能谱是连 续的,Au层很薄,背散射能谱呈一高斯形状的峰.
四、带电粒子瞬发分析的特点 1.有极高的选择性,干扰小; 2.核反应特性不受靶所处的物理和化学状态的影响;
(条件允许时)样品可以在高温和高压下被分析
3. 适合分析重基体中的轻元素;
特别是B、H、He、Li、Be、C、N、O、F、Na、Mg和A1
聚焦离子束fib测试用途以及注意事项

聚焦离子束fib测试用途以及注意事项全文共四篇示例,供读者参考第一篇示例:聚焦离子束(Focused Ion Beam,简称FIB)是一种现代化的分析仪器,它利用离子束对材料表面进行切割、雕刻和离子注入等操作,可用于材料性能分析、纳米加工以及器件结构调制等方面。
在科学研究和工程应用中,FIB技术被广泛应用于半导体、材料科学、生物医药等领域。
本文将重点介绍聚焦离子束FIB的测试用途以及注意事项。
一、FIB的测试用途1. 样品切割:FIB技术可以通过离子束切割样品,制备出不同几何形状和大小的样品切片,用于透射电镜、扫描电镜等进一步的显微分析。
这对于研究材料的微观结构和性能具有重要意义。
2. 纳米加工:FIB技术可以对样品表面进行精确的纳米加工,包括雕刻、刻蚀和注入等操作。
通过控制离子束的能量和位置,可以实现微米和纳米尺度的结构制备和调控,为纳米器件的制备和研究提供了重要手段。
3. 局部分析:FIB技术可以结合光学显微镜、扫描电子显微镜等设备,对样品表面进行定位并进行局部分析。
通过离子束的照射,可以实现对材料的表面成分、结构和形貌等信息的获取,为材料性能和组成分析提供了便利。
4. 器件修复:FIB技术可用于器件的故障分析和修复,通过对器件进行切割、磨蚀和掺杂等操作,可以找到故障点并进行修复,提高器件的可靠性和性能。
5. 原位实验:FIB技术可以在扫描电子显微镜或透射电镜平台上实现原位实验,对材料进行局部处理和观察。
这种原位实验可以实现对材料反应、相变和结构演化等过程的实时监测和控制,具有重要的研究意义。
二、FIB的注意事项1. 样品准备:在进行FIB实验前,应对样品进行充分的处理和准备工作。
样品表面应平整干净,避免有氧化物、污渍和尘埃等杂质,以确保离子束对样品的照射效果。
2. 参数设置:在使用FIB进行实验时,需要根据样品的性质和需要进行离子束的能量、电流和面积等参数进行合理的设置。
过小的能量和电流会导致处理效率低,而过大可能会损伤样品。