离子束溅射
离子束溅射Si/Ge多层膜的界面结构研究

3 结 果 与 分 析
31 S/ e多层膜 的共 聚焦显微 R m n图谱分析 . i G aa
些仪器可 获得高质量 的 S/ e 晶格 材料 , i 超 G 但价格 昂贵 , 制备成 本高 , 以实现工业 化生产 。离子束溅 射法能够 难 生长 出质 量较好 的薄膜 ,且生产成本 低、操作 方便 ,有
不同周期数 的 S/ e多层膜样 品。 i G 通过 R ma a n光谱 和 x 射线 小角衍射对 薄膜 进行 了表征 和分析 , 现随着生 长 发 周期数 的增加 ,层与层之 间的互扩散 效应 逐渐减 弱,界 面结构逐渐清 晰,生长周期 为 2 5的样 品界 面最平整 。 关键词: S/ e多层膜 ;界 面结构;离子束溅 射 i G 中图分类号: 0 8 . 4 45 文献标识码 :A
2昆明理工大学 材 料科学与冶 金工程学 院 ,云南 昆明 6 0 9 ) . 50 3 摘 要 : 采用 离子束溅射技 术 ,在玻 璃衬底 上制备 了
不 同周期数 的 S G i e多层 膜样 品。 / 实验靶 材为高纯 单晶硅 ( 99 9 9 . %)和 高纯单 晶锗 9
( 99 9 , 别固定在 四工位转靶 中相互 垂直的两个 9 . %) 分 9 靶位 上。硅 靶和锗靶 由步 进 电机驱动轮 流溅射 ,通过计
从 图中我们 可 以看到 ,中心 峰位位于 2 5 m 6 附近 c 的 G —G e e键振动峰 , G 与 e晶体 G — G 键 的 T e e O峰峰
本实验 室曾研 究过 S G i e多层膜 的晶粒 大小 、结 晶 / 性 、红外 吸收和 发光 特 性[1等 。本 文 则通过 R ma 91 - a n 光谱和 x 射线小 角衍射对所 制备 的一 系列样 品进行 了 表 征和 分析 ,讨 论了不 同周期 下 S/ e i 多层 膜界面结构 G
聚焦离子束溅射(FIB)

题目:A Review of Focused Ion Beam Sputtering
作者:Mohammad Yeakub Ali, Wayne Hung and Fu Yongqi
期刊:International journal of precision engineering and manufacturing vol. 11, no. 1, pp. 157-170
3FIB溅射模型
尽管FIB溅射能制备高精确度的微元件,控制溅射深度是相当困难的。如果衬底的材料既不是集成电路,也不是晶圆,那么SIMS(二次离子质谱技术)能以20nm的精确度探测并鉴定出过渡层。但是,对于单一组成的材料而言,SIMS技术则无法使用。这样就导致末端点的检测成为FIB溅射的难点。表面粗糙度的估测则是FIB溅射微加工中的另一个关键性问题。在如下几个部分中,若干模型被讨论如何达到期望的溅射深度、几何完整性以及表面抛光处理。
他们较高的质量能诱导溅射效应的发生。加速电压使离子在接地点加速,加速电压越高,离子移动速度越快
2.1仪器
基本的单波束仪器由液态金属离子源、一个离子柱、样品载台、真空腔组成。
典型的离子束显微镜包括液态金属离子源及离子引出极、预聚焦极、聚焦极所用的高压电源、电对中、消像散电子透镜、扫描线圈、二次粒子检测器、可移动的样品基座、真空系统、抗振动和磁场的装置、电路控制板和电脑等硬件设备。
在给定入射角度的溅射产额随有多种因素变化,通道的晶体取向。容易的通道取向,离子只经历非弹性作用,与躺在晶面里样品原子掠射角碰撞,在引起弹性散射前,深入晶体内部,因此只有少数原子从表面被溅射。这好比晶体取向效应对低能电子产额的影响。在垂直晶界的溅射通道效应。溅射剖面图还有赖于在样品表面扫描光栅的方向和序列。例如,环形的溅射轮廓,被快速和重复的扫描切割,与慢扫描逐点切割不同。
射频离子束辅助溅射镀膜设备的研制

e x p e r i me n t a l r e s u l t s a r e p r e s e n t e d .Co mp a r e d wi t h e q u i p me n t u s i n g h o t i f l a me n t i o n s o u r c e ,t h i s e q u i p me n t s o l v e s t h e k e y p r o b l e m o f s u i t a b l e f o r o x i d e i f l m d e p o s i t i o n b y wa y o f u s i n g RF i o n b e a m
s o ur c e a n d RF ne u t r a l i z e r . Ke ywo r d s :I o n Be a m; S p u t t e r i ng: Fi l m; I o n be a m s o u r c e; S pu t t e r i n g t a r g e t
-
氦
半 - 一  ̄ , q 一 2 g 器 莆 件 仟 制 造 工 上 艺 与 设 备 亩
Байду номын сангаас
射频 离子束 辅助 溅射镀膜 设备 的研 制
陈特超 , 龙 长林 , 胡 凡, 刘 欣, 王慧勇
( 中 国 电子 科 技 集 团公 司 第 四十 八 研 究 所 , 湖 南 长沙 4 1 0 1 1 1 )
关键 词 :离子 束 ; 溅射; 薄膜 ; 射 频 离 子源 ; 溅 射 靶 中 图分 类 号 : T N3 0 5 . 9 2 文献 标 识码 : A 文章编 号 : 1 0 0 4 — 4 5 0 7 ( 2 0 1 3 ) 1 1 — 0 0 0 1 — 0 4
xps离子束溅射副反应

xps离子束溅射副反应
XPS(X射线光电子能谱)是一种表面分析技术,它利用X射线激发样品表面的原子,从而产生光电子,通过分析这些光电子的能量和数量来研究样品的化学成分和电子结构。
在XPS分析中,离子束溅射副反应是一个重要的现象。
离子束溅射是指当样品表面受到离子轰击时,部分表面原子会被离子击出,形成离子束溅射副反应。
这些溅射出的原子和分子会影响样品表面的化学成分和形貌,从而对XPS分析结果产生影响。
溅射副反应会导致样品表面的化学成分发生变化,使得XPS分析结果可能不准确。
另一方面,离子束溅射副反应也可以被利用。
通过控制离子束的能量和强度,可以实现对样品表面的精确加工和清洁,从而提高XPS分析的准确性和重复性。
此外,离子束溅射副反应还可以用于表面改性和纳米结构的制备,具有一定的应用潜力。
总的来说,离子束溅射副反应在XPS分析中是一个复杂而重要的现象,既可能对分析结果产生负面影响,也可以被合理利用来改善分析效果和实现表面加工。
因此,在进行XPS分析时,需要充分
考虑离子束溅射副反应的影响,并采取相应的措施来减小其影响,以确保分析结果的准确性和可靠性。
溅射物理[解析]
![溅射物理[解析]](https://img.taocdn.com/s3/m/70f90fe8f605cc1755270722192e453610665b6e.png)
第六章溅射物理我们知道具有一定能量的离子入射到固体表面上时,它将同表面层内的原子不断地进行碰撞,并产生能量转移。
固体表面层内的原子获得能量后将做反冲运动,并形成一系列的级联运动。
如果某一做级联运动的原子向固体表面方向运动,则当其动能大于表面的结合能时,它将从固体表面发射出去,这种现象称为溅射。
早在1853年Grove就观察到了溅射现象,他发现在气体放电室的器壁上有一层金属沉积物,沉积物的成份与阴极材料的成份完全相同。
但当时他并不知道产生这种现象的物理原因。
直到1902年,Goldstein 才指出产生这种溅射现象的原因是由于阴极受到电离气体中的离子的轰击而引起的,并且他完成了第一个离子束溅射实验。
到了1960年以后,人们开始重视对溅射现象的研究,其原因是它不仅与带电粒子同固体表面相互作用的各种物理过程直接相关,而且它具有重要的应用,如核聚变反应堆的器壁保护、表面分析技术及薄膜制备等都涉及到溅射现象。
1969年,Sigmund 在总结了大量的实验工作的基础上,对Thompson的理论工作进行了推广,建立了原子线性级联碰撞的理论模型,并由此得到了原子溅射产额的公式。
对于低能重离子辐照固体表面,可以产生原子的非线性级联碰撞现象,通常称为“热钉扎”(thermalized spike) 效应。
在1974年,这一现象被H.H. Andersen 和H. L. Bay的实验所验证。
本章主要介绍溅射物理过程的一些基本概念和特征、计算溅射产额的Sigmund的线性级联碰撞模型、Matusnami 等人的溅射产额经验公式、热钉扎溅射以及溅射过程的计算机模拟等。
最后,我们还对表面腐蚀现象与溅射过程之间的关系进行简要的讨论。
§6.1 溅射过程的一般描述溅射过程可以用溅射产额Y这个物理量来定量地描述,其定义为平均每入射一个粒子从靶表面溅射出来的原子数,即每入射一个粒子溅射出来的原子数 Y (6.1-1)溅射产额依赖于靶材料的结构、成份及表面形貌,同时还与入射离子的能量、电荷态和种类有关。
离子束溅射

离子束溅射
离子束溅射(Ion Beam Sputtering,IBS)是一种物理溅射方式,利用离子束将材料溅射到另一种物质表面上。
它使用加速的离子束发生碰撞和释放能量,从而将被溅射物质激烈地离开原位,形成粒子流,这些粒子会击中目标表面,因此在溅射表面形成一层薄膜。
离子束溅射技术可以用来制备各种材料的膜、涂层或其他复合材料,广泛应用于航空航天、半导体、信息存储、光学等多个领域。
由于它的超微细粒度和均匀分布,离子束溅射可以用来制备更好的磁性记录层、光学膜和涂层材料。
双离子束操作步骤

LDJ-2A双离子束系统双离子束溅射步骤:先检查一下靶材是否正确。
1.开机,开水,后面插电源(放气阀往里充气,同时将三个锁子打开)放好样品后关闭放气阀,将样品挡板关闭。
2.先开机械泵,然后开上管阀(抽10 min左右)抽至10Pa以下开下管阀,抽至10 Pa以下时,关闭上管阀,然后打开真空阀(左边大手柄),打开扩散泵,同时打开Model FP150中的电源,Start,待指示灯到Normal时才可以离开。
抽气1-2小时。
3.低真空度测试,按下黄色按钮,高真空度测试,按下白色按钮,给入测试电流(5*10-2Pa),再按一下白色按钮,弹出后即可开始测试,若真空度达到2*10-3Pa,即可开始溅射。
4.开启冷却系统(HX-1050)(循环水按钮),打开镀膜台温度显示下方的制冷(绿色按钮),真空计调至10-2档,flow-set档调至set,通量流量计调至19,对应的通道开关打至control,将flow-set调至flow,给室内冲入Ar,调节通量流量计使其真空计I指示在2*10-2Pa。
5.开离子源(I):打开I-1中右侧开关(钥匙),依次打开阴极,阳极,屏栅,加速,中和5个按钮,慢慢调节阳极旋钮,电流控制在5A(约5 A)以下(电流不要太高,容易把钽丝烧断)。
阳极旋钮调至起弧,然后调低,控制在35——45A(<50 A),阳极弧流在1-2之间,调节加速旋钮,先加至150 V,然后调节屏栅,使离子能量达到150 eV,此时加速电压会上升,控制其在200 V以下,调节阴极和阳极旋钮,控制离子束流在10 mA,用螺丝刀调节中和旋钮,使中和电流为离子束流的1.2倍。
6.开主源(II)与开辅源顺序同,阴极电流控制在4-5A,阳极电压控制在40-50V之间,加速电压控制在200 V以下,调节屏栅,Ag和Al的离子能量控制在750 eV,离子束流在60-70mA,中和电流为离子束流的1.2倍,生长速度为400 nm/半小时(Pt加速电压160 V,600 eV,90 mA,10 nm/min)7.打开I-2中的旋转按钮,打开腔体后面的挡板,开始溅射,同时开始计时。
分子束外延法及离子束溅射法生长CdTe和HgCdTe膜的比较

1 9 年第 2期 91
红 外 与激光 技术
一 3 5
/
/
分子 束 外 延 法及 离 子束 溅 射 法
。
, r
生长 C T 和 H C T 膜的比较 d e g de 和
氏 .
主 题词
分 子 柬 外 延
离 子 柬 溅 射
二 、 实 验 技 术
( ) 分 子 束 外 延 生 长 一
本 研究 工 作 中 生 长 的 所 有 I S 、 Cd 和 Hg Te , 都 是 在 VG一 0 真 空 发 生 器 nb Te Cd 层 8H
分 子 束 外 延 装 置 中制 备 的。 IS n b薄 膜 生 长 需 要 元 素 铟 和 锑 源 的蒸 发 。 Cd e薄 膜 是 用 单 个 T 扩 散 源 蒸 发 得 到 。 Hg Te薄 膜 制 备 使 用 了 汞 、 碲 和 碲 化 镉 三 个 源 。 通 过 调 整 CdT Cd :e相 对比率,也即相对变动碲源 的温度 ( 固定 C T d e流 量 ) 来 控 制 合 金 的 组 分 。 衬 底 包 括 离 子 清 洗 和 M BE生 长 的 ( 0 )I S 0 1 n b和 Cd Te薄 片。 在 某 些 沉 积 之 前 和 沉 积期 间进 行 了 原 位
本 文的主 要 目的是, 专门参 考在 我们 这些实验室 J 和其他 别处 l 对外延质 量、薄膜 l
组 分 和 电 学 特 性 的 控 制 和 最 佳 化 方 面 的 最 新 进 展 , 评 述 M B 生长 Cd E Te和 Hg Te 的 Cd 膜
现 状 。 本 文 也 讨 论 了 在 离 子 束 溅 射 Cd 、 Hg Te Xe和 Hg T Cd e膜 方 面 的 最 新 结 果 ll】 就 】”。 l M B 和 离 子 束 溅 射 方 法 的 主 要 方 面 进 行 了 比 较 , 井 认 为 离 子 束 方 法 可 以 有 助 于 消 除 E MB E的 某 些 局 限 性 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4 溅射产额与入射离子能量的关系
这个图给出的是Ni的溅射产额与 入射离子能量之间的关系。由图 可以清楚地看出的规律是:从一 定阈值开始有溅射,随着入射离 子能量的增加,溅射产额增加。 然后又逐渐下降。这是因为:随 着入射离子能量的增加,位移原 子的数目及能量都跟着增加,但 另一方面,当入射离子能量增加 时,它射入晶格更深处,而深处 的位移原子并不能从表面上逸出, 因而溅射产额降低,这两个因数 决定了溅射与入射离子能量的关 系。
离子束溅射
引言 为何要使用离子束溅射
溅射系统的一个主要缺点就是工作压强较高,由此导致 溅射膜中有气体分子的进入。而离子束溅射,除具有工作压 强低,减小气体进入薄膜,溅射粒子输送过程中较少受到散 射等优点外,还可以让基片远离离子发生过程。 离子束溅射的靶和基片与加速极不相干,因此,通常在 传统溅射沉积中由于离子碰撞引起的损伤会降到极小。并且 在外延生长薄膜领域,离子束溅射沉积变得非常有用。因为 在高真空环境下,离子束溅射出来的凝聚粒子具有超过10eV 的动能。即使在低基片温度下,也会得到较高的表面扩散率, 对外延生长十分有利。
离子束溅射的主要缺点就是轰击到 的靶面积太小,沉积速率一般较低。而 且,离子束溅射沉积也不适宜沉积厚度 均匀的大面积的薄膜。并且溅射装置过 于复杂,设备运行成本较高。
5.离子束溅射的应用
离子束溅射沉积最常使用的两种离子源是 Kaufman源和双等离子体源,沉积技术被用 于制备金属、半导体和介电膜 离子束溅射用于制备高温超导薄膜 离子束溅射用于溅射非理想化学配比的氧化 物
在LKJ一2A机上通过实脸,验证了淀积速率与离子 束流密度有较好的线性关系,离子能在400~900eV 之间,Zc与E呈现平方根关系,不同材料淀积速率 不同。在各种实际问题中,由于对膜层的质量要 求不同,不一定追求较高的淀积速率,此时往往 选择适当的离子,从而以适中的速率成膜,保证 膜的质量。
3.离子束溅射的优点
离子束溅射薄膜沉积装置示意图
1.离子束溅射的基本原理
产生离子束的独立装置被称为离子枪,它提供 一定的束流强度、一定能量的Ar离子流。离子束以 一定的入射角度轰击靶材并溅射出其表层的原子, 后者沉积到衬底表面即形成薄膜。在靶材不导电的 情况下,需要在离子枪外或是在靶材的表面附近, 用直接对离子束提供电子的方法,中和离子束所携 带的电荷。
2.2 溅射产额与靶原子序数的关系
这个图给出了Ar离子作为 入射离子在1KeV时对一些 元素的溅射产额。由图可 见溅射与原子序数有周期 性的关系,这是因为靶材 的升华热与原子序数成周 期性的结果,靶材的升华 热愈低,结合能愈弱,在 同样的条件下溅射产额愈 大,反之亦然。再者,当 金属表面形成金属氧化物 时,致密的氧化层使结合 能增大,溅射产额减少。
3.离子束溅射的淀积速率
淀积速率Zc:通常用淀积速率来表示溅射材料在基 片上成膜的快慢。而把溅射材料在单位时间内淀积 在基片上的厚度定义为淀积速率。
式中Kc为一常数,是由溅射镀膜装置决定的,它与 真空室气压P、靶与基片距离有关;Y(E,θ)为溅射率, 它是离子能量E和入射角度θ的函数,Jb是离子束流 密度。
溅射镀膜是依靠动量交换作用使固体材料的 原子、分子进入气相,溅射出的平均能量 10eV,高于真空蒸发粒子的100倍左右,沉积 在基体表面上之后,尚有足够的动能在基体 表面上迁移,因而薄膜质量较好,与基体结 合牢固。
任何材料都能溅射镀膜,材料溅射特性差别 较其蒸发特性差别小,即使是高熔点材料也 能进行溅射,对于合金、靶材化合物材料易 制成与靶材组分比例相同的薄膜,因而溅射 镀膜的应用非常广泛。
溅射产额
溅射产额指的是一个初级离子平均从表面上溅射 的粒子数。也就是指平均每入射一个粒子从靶表 面溅射出来的原子数,即
溅射出来的原子数 Y= 每入射一个粒子
影响溅射产额的因素
靶材料的表面结构、原子序数 入射离子的角度、能量 衬底温度
2.1 溅射产额与靶表面的关系
在实际的离子束溅射中,溅射靶表面上不可避 免地存在一些微观孔洞。而在离子束溅射模拟中, 通常认为靶表面是平滑的。所以,在实际过程中, 溅射产额总是低于或高于基于光滑表面计算的值。 例如,如果靶表面存在锥形孔,溅射产额比 相应光滑表面的溅射产额低;相反,若在靶表面 上创造一些棱形的孔或者三角形的沟槽,则溅射 产额就随之增加。
可以使离子束精确聚焦和扫描,在保持离子 束特性不变的情况下,可以变换靶材和基片 材料,并且可以独立控制离子束能量和电流。 由于可以精确地控制离子束的能量、束流大 小与束流方向,而且溅射出的原子可以不经 过碰撞过程而直接沉积薄膜,因而离子束溅 射方法很适合于作为一种薄膜沉积的研究手 段。
4.离子束溅射的缺点
实验条件E=800eV, P=2.66x102pa,同曲钱上 可看出,在E一定时,淀 积速率与束流密度成正 比,与公式有很好的一 致性。还可以看出,在 同等条件下,SiO2的淀积 速率略高于Ti的淀积速 率。
Y与E的关系 E=25~150eV时Y∝(E-E0), E=150~400eV时Y ∝(E-E0) E=400~500eV时Y ∝E1/2 E>5000eV时Y ∝lgE E0为临界能量 实验条件为Jb=0.57mA/cm2, P=2.66x102pa,θ =45°在固 定Jb时入射离子能量在400 ~900eV之间,Zc与E近似成平 方根关系,与分析较为一致。
2.离子束溅射的基本规律
描述离子束溅射的主要参量分别是溅射阈 能、溅射产额和淀积速率。
那什么是溅射阈能、溅射产额和淀 积速率呢?
溅射阈能
溅射阈能是指开始出现溅射时初级离子的能量。 也就是说是将靶材原子溅射出来所需的入射 离子的最小能量值。当入射离子的能量低于溅射 阈能时,不会发生溅射现象。溅射阈能与入射离 子的质量无明显的依赖关系,但与靶材却有很大 的关系。阈能随靶材原子序数的增加而减少。对 于大多数金属来说,溅射阈能为20-40eV。
这个图是在45kV加速 电压条件下各种入射离 子轰击Ag表面时得到 的溅射产额随离子的原 子序数的变化。易知, 重离子惰性气体作为入 射离子时的溅射产额明 显高于轻离子。但是出 于经济方面的考虑,多 数情况下均采用Ar离子 作为薄膜溅射沉积时的 入射离子。
2.3 溅射产额与入射离子角度的关系
这个图给出的是入射离子能量 为200eV时溅射产额与入射离子 角度的关系。其中Θ角为入射方 向与法线的夹角,由图见, Θ=80 ° -85°时溅射产额最大, 但地耗 散在靶近表面区,使溅射产额 增大。但当Θ过大时,入射离子 弹性散射的几率增大,传给靶 导致溅射的能量减少,因而使 溅射产额急剧下降。
应用
理想的薄膜应该具有光学性质稳定、无散射 和吸收、机械性能强和化学性质稳定等特征,而 离子束溅射技术正好提供了能够达到这些要求的 技术平台,目前离子束溅射技术的应用领域不断 地被拓宽,并且应用的光谱波段也早已从可见光 拓宽到红外、紫外、χ射线等范围。离子束溅射技 术在光纤、计算机、通信、纳米技术、新材料、 集成光学等领域即将发挥其强大的作用。
溅射镀膜中的入射离子一般利用气体放电法得到, 因而其工作压力在10-2Pa~10Pa范围,所以溅射离子 在飞到基体之前往往已与真空室内的气体分子发生 过碰撞,其运动方向随机偏离原来的方向,而且溅 射一般是从较大靶表面积中射出的,因而比真空镀 膜得到均匀厚度的膜层,对于具有勾槽、台阶等镀 件,能将阴极效应造成膜厚差别减小到可以忽略的 程度。但是,较高压力下溅射会使膜中含有较多的 气体分子。
2.5 溅射产额与衬底温度的关系
这个图给出了35KeV的Co+轰 击Si靶,在Si基底上的相对溅 射产额与衬底温度的关系图, 从图可知,随着衬底温度的升 高,相对溅射产额逐渐降低。 导致溅射产额下降的主要原因 是,当温度升高时,有一部分 离子穿入到膜的内部,从而把 能量消耗在材料内部。另一方 面,由于温度的升高,晶格原 子的布郎运动加剧,阻止了离 子进一步遂穿到膜内部,从而 有助于产额的提高。但由于设 备不能够提供足够高的温度, 所以图中没有最低点和逐渐上 升的部分。