山东高考数学试卷及答案

合集下载

2024年山东省高考数学试卷(新高考Ⅰ)正式版含答案解析

2024年山东省高考数学试卷(新高考Ⅰ)正式版含答案解析

绝密★启用前2024年山东省高考数学试卷(新高考Ⅰ)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合A ={x|−5<x 3<5},B ={−3,−1,0,2,3},则A ∩B =( ) A. {−1,0} B. {2,3} C. {−3,−1,0} D. {−1,0,2}2.若z z−1=1+i ,则z =( )A. −1−iB. −1+iC. 1−iD. 1+i3.已知向量a ⃗=(0,1),b ⃗⃗=(2,x),若b ⃗⃗⊥(b ⃗⃗−4a ⃗⃗),则x =( ) A. −2B. −1C. 1D. 24.已知cos(α+β)=m ,tanαtanβ=2,则cos(α−β)=( ) A. −3mB. −m3C. m3D. 3m5.已知圆柱和圆锥的底面半径相等,侧面积相等,且它们的高均为√ 3,则圆锥的体积为( ) A. 2√ 3πB. 3√ 3πC. 6√ 3πD. 9√ 3π6.已知函数为f(x)={−x 2−2ax −a,x <0,e x +ln(x +1),x ≥0在R 上单调递增,则a 取值的范围是( )A. (−∞,0]B. [−1,0]C. [−1,1]D. [0,+∞)7.当x ∈[0,2π]时,曲线y =sinx 与y =2sin(3x −π6)的交点个数为( ) A. 3B. 4C. 6D. 88.已知函数为f(x)的定义域为R ,f(x)>f(x −1)+f(x −2),且当x <3时,f(x)=x ,则下列结论中一定正确的是( ) A. f(10)>100B. f(20)>1000C. f(10)<1000D. f(20)<10000二、多选题:本题共3小题,共18分。

2022年山东省高考数学试卷(新高考Ⅰ)及答案解析

2022年山东省高考数学试卷(新高考Ⅰ)及答案解析

2022年山东省高考数学试卷(新高考Ⅰ)一.选择题:(每小题5分,共60分)A .∅B .{2,4,6}C .{1,3,6,7}D .{1,3,5,7}1.(5分)已知全集U ={1,2,3,4,5,6,7},A ={2,4,5},则∁U A =( )A .(2,3)B .[-1,5]C .(-1,5)D .(-1,5]2.(5分)已知集合A ={x |-1≤x <3},B ={x |2<x ≤5},则A ∪B =( )A .A ∩∁UB B .∁U A ∩BC .∁U (A ∩B )D .∁U (A ∪B )3.(5分)图中阴影部分表示的集合是( )A .-1B .1C .±1D .04.(5分)若{1,a ,b a }={0,a 2,a +b },则a 2013+b 2012的值为( )A .y =(x )2B .y =3x 3C .y =x 2D .y =x 2x 5.(5分)下列四个函数中,与y =x 表示同一函数的是( )√√A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]6.(5分)函数y =x 2-6x 的单调递减区间是( )A .1B .3C .-2D .57.(5分)函数y =4x −2在区间[3,6]上是减函数,则y 的最小值是( )A .y =x 4+x 2是偶函数B .偶函数的图象关于y 轴对称C .y =x 3+x 2是奇函数8.(5分)下列说法错误的是( )二、填空题(每小题5分,共20分)三.解答题(17题10分,18-22题每小题10分)D .奇函数的图象关于原点对称A .∅B .[1,4]C .(1,4)D .(-∞,1)∪[4,+∞)9.(5分)函数f (x )=x −1+4−x 的定义域是( )√√A .1B .2C .3D .410.(5分)函数f (x )=V W X 2x ,x ≥0x (x +1),x <0,则f (-2)=( )A.B.C.D.11.(5分)在下列图象中,函数y =f (x )的图象可能是( )A .a <2B .a >-2C .a >-1D .-1<a ≤212.(5分)设A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( )13.(5分)集合{a ,b }的子集个数 .14.(5分)若函数f (x )=(k -2)x 2+(k -1)x +3是偶函数,则f (x )的递减区间是.15.(5分)已知集合M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},则M ∩N 等于.16.(5分)已知f (x )=x 5+ax 3+bx -8,若f (-2)=10,则f (2)= .17.(10分)已知全集U ={0,1,2,3,4,5,6},集合A ={x ∈N |1<x ≤4},B ={x ∈R |x 2-3x +2=0}.(1)用列举法表示集合A 与B ;(2)求A ∩B 及∁U (A ∪B ).18.(12分)已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.(1)当m=3时,求集合A∩B;(2)若B⊆A,求实数m的取值范围.19.(12分)指出函数f(x)=x+1x在(-∞,-1],[-1,0)上的单调性,并证明.20.(12分)已知函数f(x)=ax+b1+x2是定义在(-1,1)上的奇函数,且f(12)=25,求函数f(x)的解析式.21.(12分)定义在(-1,1)上的函数f(x)是减函数,且满足f(1-a)<f(a),求实数a取值范围.22.(12分)已知函数f(x)=x2+2ax+2,x∈[-5,5],(1)当a=-1时,求函数的最大值和最小值;(2)求实数a的取值范围,使y=f(x)在区间[-5,5]上是单调减函数.。

2020年山东高考数学试卷(详细解析版)

2020年山东高考数学试卷(详细解析版)

2020年普通高等学校招生全国统一考试新高考全国一卷(山东卷)数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{|13}A x x =≤≤,{|24}B x x =<<,则A B =A .{|23}x x <≤B .{|23}x x ≤≤C .{|14}x x ≤<D .{|14}x x <<答案:C解析:利用并集的定义可得{|14}A B x x =≤< ,故选C.2.2i 12i -=+A .1B .−1C .iD .−i 答案:D 解析:222i (2i)(12i)(22)(41)i i 12i 125----+--===-++,故选D3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A .120种B .90种C .60种D .30种答案:C解析:不同的安排方法有123653C C C 60⋅⋅=4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°答案:B 解析:因为晷面与赤道所在平面平行,晷针垂直晷面,所以晷针垂直赤道所在平面,如图所示,设AB 表示晷针所在直线,且AB OB ⊥,AC 为AB 在点A 处的水平面上的射影,则晷针与点A 处的水平面所成角为BAC ∠,因为OA AC ⊥,AB OB ⊥,所以BAC AOB ∠=∠,由已知40AOB ∠=︒,所以40BAC ∠=︒,故选B5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是A .62%B .56%C .46%D .42%答案:C解析:既喜欢足球又喜欢游泳的学生数占该校学生总数的比例=60%+82%-96%=46%,故选C6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,。

2020年山东高考数学试卷-(及答案)

2020年山东高考数学试卷-(及答案)

2020年山东高考数学试卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B = A .{x |2<x ≤3} B .{x |2≤x ≤3} C .{x |1≤x <4} D .{x |1<x <4}2.2i12i-=+ A .1 B .−1 C .iD .−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有 A .120种 B .90种 C .60种D .30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是A .62%B .56%C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rt I t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是 A .()2,6- B .()6,2- C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是A .[)1,1][3,-+∞B .3,1][,[01]--C .[)1,0][1,-+∞D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。

2020年新高考全国卷Ⅰ数学高考试题(山东)(附答案)

2020年新高考全国卷Ⅰ数学高考试题(山东)(附答案)

2020年普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.2i 12i -= +A.1B.−1C.i D.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e)rtI t =描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是 A .()2,6- B .()6,2- C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是 A .[)1,1][3,-+∞ B .3,1][,[01]-- C .[)1,0][1,-+∞ D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。

2021年高考真题数学【新高考全国Ⅰ卷】(山东卷)(含解析版)

2021年高考真题数学【新高考全国Ⅰ卷】(山东卷)(含解析版)

2021年普通高等学校招生全国统一考试(新高考I 卷)数学一、单选题1.设集合{|24}A x x =-<<,{2,3,4,5}B =,则A B = ()A.{2}B.{2,3}C.{3,4}D.{2,3,4}答案:B 解析:{2,3}A B = ,选B.2.已知2z i =-,则()z z i +=()A.62i -B.42i -C.62i +D.42i +答案:C 解析:2,()(2)(22)62z i z z i i i i =++=-+=+,选C.3.已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B. C.4D.答案:B解析:设母线长为l,则l l π=⇒=.4.下列区间中,函数()7sin()6f x x π=-单调递增的区间是()A.(0,)2πB.(,)2ππC.3(,)2ππD.3(,2)2ππ答案:A 解析:()f x 单调递增区间为:222()22()26233k x k k Z k x k k Z πππππππππ-≤-≤+∈⇒-≤≤+∈,令0k =,故选A.5.已知1F ,2F 是椭圆22:194x y C +=的两个焦点,点M 在C 上,则12||||MF MF ⋅的最大值为()A.13B.12C.9D.6答案:C 解析:由椭圆定义,12||||6MF MF +=,则21212||||||||(92MF MF MF MF +≤=,故选C.6.若tan 2θ=-,则sin (1sin 2)sin cos θθθθ+=+()A.65-B.25-C.25D.65答案:C 解析:22sin (1sin 2)sin (sin cos 2sin cos )sin cos sin cos θθθθθθθθθθθ+++=++22222sin sin cos tan tan 2sin cos tan 15θθθθθθθθ++===++,故选C.7.若过点(,)a b 可以作曲线x y e =的两条切线,则()A.b e a <B.a e b <C.0b a e <<D.0a b e <<答案:D 解析:设切点为00(,)P x y ,∵xy e =,∴xy e '=,则切线斜率0xk e =,切线方程为0()xy b e x a -=-,又∵00(,)P x y 在切线上以及xy e =上,则有000()x x eb e x a -=-,整理得00(1)0x ex a b --+=,令()(1)xg x e x a b =--+,则()()xg x e x a '=-,∴()g x 在(,)a -∞单调递减,在(,)a +∞单调递增,则()g x 在x a =时取到极小值即最小值()ag a b e =-,又由已知过(,)a b 可作xy e =的两条切线,等价于()(1)xg x e x a b =--+有两个不同的零点,则min ()()0ag x g a b e==-<,得a e b >,又当x →-∞时,(1)0xe x a --→,则(1)xe x a b b --+→,∴0b >,当1x a a =+>时,有(1)0g a b +=>,即()g x 有两个不同的零点.∴0ab e <<.8.有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A.甲与丙相互独立B.甲与丁相互独立C.乙与丙相互独立D.丙与丁相互独立答案:B 解析:由题意知,两点数和为8的所有可能为:(2,6),(3,5),(4,4),(5,3),(6,2),两点数和为7的所有可能为:(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),∴1()6P =甲,11()166P =⨯=乙,5()36P =丙,61()=366P =丁,()0P =甲丙,1()36P =甲丁,1()36P =乙丙,()0P =丙丁,故()()()P P P =⋅甲丁甲丁,B 正确,故选B.二、多选题9.有一组样本数据12,,,n x x x ,由这组数据得到新样本数据12,,,n y y y ,其中1(1,2,)i y x c i n =+= ,c 为非零常数,则()A.两组样本数据的样本平均数相同B.两组样本数据的样本中位数相同C.两组样本数据的样本标准差相同D.两组样本数据的样本极差相同答案:C、D 解析:对于A 选项:121n x x x x n +++= ,1212n ny y y x x x y c n n++++++==+ ,∴x y ≠,∴A 错误;对于B 选项:可假设数据样本12,,,n x x x 中位数为m ,由i i y x c =+可知数据样本12,,,n y y y 的中位数为m c +,∴B 错误;对于C选项:1S =2S =1S ==,∴C 正确;对于D 选项:∵i i y x c=+,∴两组样本数据极差相同,∴D 正确。

山东数学高考真题及答案

山东数学高考真题及答案

山东数学高考真题及答案今年山东省高考数学试题在难度上有所提高,试题主要考察了学生对数学知识的理解和运用能力。

下面将列举部分试题及其答案供大家参考。

一、选择题(共40分)1. 若函数$f(x)=ax^2+bx+c$在区间$[0, 1]$上是增函数,则$a$, $b$, $c$应该满足的条件是()A.$a>0$, $b<0$, $c<0$B.$a<0$, $b>0$, $c>0$C.$a>0$, $b>0$, $c<0$D.$a<0$, $b<0$, $c>0$答案:C2. 设等差数列$\{a_n\}$满足$a_1=3$, $a_2=7$,则$a_1+a_2+a_{10}$的值为()A.50B.51C.52D.53答案:B3. 曲线$y=x^2$与直线$y=2x+k$交于两点$A$, $B$,且点$A$在点$B$的右下方,则$k$的取值范围是()A.($-\infty$, $1$)B.($1$, $2$)C.($2$, $3$)D.($3$, $+\infty$)答案:A4. 记$z=\frac{3}{2}+\frac{i\sqrt{15}}{2}$,则$\cos{\text{Arg}(z)}$的值为()A.$\frac{1}{\sqrt{2}}$B.$\frac{1}{2}$C.$-\frac{1}{\sqrt{2}}$D.-$\frac{1}{2}$答案:A5. 有二次方程$x^2+(\alpha-1)x+(\alpha-2)=0$的两个根$x_1$,$x_2$的值满足$x_1<x_2$,则$\alpha$的取值范围是()A.($-\infty$, $-2$)B.($-2$, $0$)C.($0$, $1$)D.($1$, $+\infty$)答案:C6. 在三棱锥$P-ABC$中,$AB=AC$, $\angle{BAC}=90^\circ$,$M$是$AC$的中点,$N$是$PB$上的一点,且$PN\bot AB$,若$\overrightarrow{PM}=(1, 2, -1)$,则$\overrightarrow{PN}$的坐标是()A.($1$, $1$, $-1$)B.($1$, $-1$, $1$)C.($1$, $1$, $1$)D.($-1$, $1$, $1$)答案:B以上是部分选择题,供大家参考,更多试题及答案请参考山东数学高考真题。

山东省数学高考试题及答案

山东省数学高考试题及答案

山东省数学高考试题及答案一、选择题(每小题4分,共80分)1. 已知函数 f(x) 的图象如下:(略)根据图象可知, f(x) 在区间(−∞, 0] 上是增函数,则下列结论中正确的是()A. f(−4) < f(0)B. f(−4) > f(0)C. f(−2) < f(−4)D. f(−2) > f(−4)答案:D2. 若集合 A={x | x<4且x>−2},则集合 A 的数目是()A. 7B. 5C. 3D. 2答案:B3. 已知数列 { an } 为等差数列,首项为 3,公差为 2。

若 a5 > a6,则 n 的最小值为()A. 2B. 3C. 4D. 5答案:B4. 不等式x(x−2)(x−4)(x−6) > 0 的整数解的个数为()A. 0B. 1C. 2D. 3答案:C5. y=log2(x−1)∣x<3 ,则函数y=log2(x−1)的定义域为()A. (−∞, 1)B. (1, ∞)C. (0, ∞)D. (−∞, 0) ∪ (0, 1)答案:A二、填空题(每小题4分,共40分)6. 整式−2a^2b^3 c 的由高到低的项系数和为______答案:-27. 平移变换 y=(2−x)cos π(x−12) 的平移向量为______。

答案:(a, b)=(−2, 0)三、解答题(共80分)8. 已知函数 f(x)=x^x 交直线x=2x+3 于点 (1, 5),求 a 的值。

解答:因为该函数与直线交于点 (1, 5),所以有 f(1)=2×1+3=5,即 a=a^1=5。

所以 a=5。

9. 已知集合 A={x | 3x−2<−4},集合 B={x | x>0},求集合A ∩ B 的解集。

解答:将不等式 3x−2<−4 化简得x<−2/3。

由于x>0,所以集合A ∩ B 的解集为∅。

10. 求等差数列 { a_n } 的第 8 项及公差,已知该数列前 7 项的和为42,首项为 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档