高等数学竞赛试题1答案

合集下载

数学竞赛高数试题及答案

数学竞赛高数试题及答案

数学竞赛高数试题及答案试题一:极限的计算问题:计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。

解答:根据洛必达法则,我们可以将原式转换为 \(\lim_{x \to 0} \frac{\cos x}{1}\),由于 \(\cos 0 = 1\),所以极限的值为 1。

试题二:导数的应用问题:若函数 \( f(x) = 3x^2 - 2x + 1 \),求其在 \( x = 1 \) 处的导数值。

解答:首先求导数 \( f'(x) = 6x - 2 \),然后将 \( x = 1 \) 代入得到 \( f'(1) = 6 \times 1 - 2 = 4 \)。

试题三:不定积分的求解问题:求不定积分 \(\int \frac{1}{x^2 + 1} dx\)。

解答:这是一个基本的积分形式,可以直接应用反正切函数的积分公式,得到 \(\int \frac{1}{x^2 + 1} dx = \arctan(x) + C\),其中\( C \) 是积分常数。

试题四:级数的收敛性判断问题:判断级数 \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) 是否收敛。

解答:根据比值测试,我们有 \(\lim_{n \to \infty}\frac{1}{(n+1)^2} / \frac{1}{n^2} = \lim_{n \to \infty}\frac{n^2}{(n+1)^2} = 1\),由于极限值为 1,小于 1,所以级数收敛。

试题五:多元函数的偏导数问题:设函数 \( z = f(x, y) = x^2y + y^3 \),求 \( f \) 关于\( x \) 和 \( y \) 的偏导数。

解答:对 \( x \) 求偏导,保持 \( y \) 为常数,得到 \( f_x =2xy \)。

对 \( y \) 求偏导,保持 \( x \) 为常数,得到 \( f_y = x^2 + 3y^2 \)。

高等数学竞赛真题及答案解析

高等数学竞赛真题及答案解析

高等数学竞赛真题及答案解析高等数学竞赛是对学生在该学科中的深入理解和应用能力的考察,对于提升学生的数学素养和能力有着重要的意义。

本文将为大家介绍一些高等数学竞赛的真题,并提供相应的解析,帮助大家更好地理解和掌握数学知识。

一、题目1让我们先来看一个简单的问题:计算$\int \frac{1}{x} dx$。

解析:这是一个基本的积分题目,我们可以使用积分的基本公式来解答。

首先,我们要找到该函数的原函数,即使得它的导数等于$\frac{1}{x}$的函数。

显然,原函数是$ln|x|$。

所以,该积分的结果就是$ln|x|+C$,其中C为常数。

二、题目2接下来,我们来看一个稍微复杂一些的题目:设$f(x)$在[0,1]上连续,且$\int_0^1 f(x) dx = c$,求证:存在$\xi \in (0,1)$,使得$f(\xi) = c$。

解析:根据题目要求,我们需要找到一个$\xi$,使得$f(\xi) = c$。

根据平均值定理,即在[0,1]区间上存在一个点$\xi$,使得$f(\xi) = \frac{1}{b-a} \int_a^b f(x) dx$,其中a和b为区间的两个端点。

由于$\int_0^1 f(x) dx = c$,所以存在$\xi \in (0,1)$,使得$f(\xi) = c$。

三、题目3现在我们来考虑一个涉及到函数极限的题目:设函数$f(x)$在0的某个去心邻域内有定义,且$\lim_{x \to 0} f(x) = A$,证明:$\lim_{x \to 0} \frac{f(x)}{x} = A$。

解析:根据题目给出的条件,我们知道当$x$趋近于0时,$f(x)$会趋近于A。

我们需要证明的是,当$x$趋近于0时,$\frac{f(x)}{x}$也会趋近于A。

我们可以通过将分子和分母都除以$x$来简化问题,得到$\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0}\frac{\frac{f(x)}{x}}{1} = \lim_{x \to 0} \frac{f(x)}{x} = A$。

高数竞赛试题及答案

高数竞赛试题及答案

高数竞赛试题及答案在高等数学领域中,竞赛试题的编写与解答一直是学生们提高自己数学水平的重要方式之一。

本文将提供一些高等数学竞赛试题,并附上详细的解答过程,以帮助读者更好地理解和应用数学知识。

1. 竞赛试题一考虑函数f(x) = |x^2 - 4x + 3|,其中x为实数。

(1)求函数f(x)的定义域。

(2)求函数f(x)的最大值和最小值。

解答过程:(1)为了求函数f(x)的定义域,我们需要确定使函数的值有意义的x 的范围。

由于函数f(x)中包含了一个绝对值,我们可以将其拆分成两种情况讨论:当x^2 - 4x + 3 ≥ 0时,函数f(x) = x^2 - 4x + 3;当x^2 - 4x + 3 < 0时,函数f(x) = -(x^2 - 4x + 3)。

对于第一种情况,我们需要求解不等式x^2 - 4x + 3 ≥ 0。

通过因式分解或配方法,我们可以得到(x-1)(x-3) ≥ 0。

解这个不等式可以得到x ≤ 1或x ≥ 3。

对于第二种情况,我们需要求解不等式x^2 - 4x + 3 < 0。

同样通过因式分解或配方法,可以得到(x-1)(x-3) < 0。

解这个不等式可以得到1< x < 3。

综上所述,函数f(x)的定义域为x ≤ 1或x ≥ 3,且1 < x < 3。

(2)为了求函数f(x)的最大值和最小值,我们可以分别考虑函数f(x)在定义域的两个区间内的取值情况。

当x ≤ 1时,函数f(x) = x^2 - 4x + 3。

通过求导可以知道,函数f(x)在x = 2处取得最小值。

代入可得最小值为f(2) = 1。

当x ≥ 3时,函数f(x) = -(x^2 - 4x + 3)。

同样通过求导可以知道,函数f(x)在x = 2处取得最大值。

代入可得最大值为f(2) = -1。

综上所述,函数f(x)的最大值为-1,最小值为1。

2. 竞赛试题二已知函数f(x) = 2^(x+1) - 3^(x-2),其中x为实数。

第十届高等数学竞赛理工类(一)试题答案

第十届高等数学竞赛理工类(一)试题答案

第十届高等数学竞赛理工类(一)试题答案南昌大学第十届高等数学竞赛(前湖校区理工类)试题答案序号:姓名:学生编号:学院(学科部):检查室:考试号:2022年10月13日题号1,15,2,15,3,7,4,8,5,9,6,8,9,6,总分,累积分数签名:这个卷有X页,主要问题,考试时间是8:30~1130评分审阅者。

填空(每个问题3分,共15分)1。

曲面x2?2y2?3z2?21点?1.2,2? 正态方程是3nx?1岁?2z?2.1.461? 十、1.十、1.十、1.2.设n为正整数,则Lim=x?1n 3.设置向量a??1,2,3?, B1,1,0?,如果非负实数k构成向量a?KB和a?KB垂直,然后K?(1?x)n?17.4.穿过直线x?1岁?2z?2.2.32并且垂直于平面3x?2岁?Z5.0的平面方程是x?8岁?13z?9? 0 N5。

幂级数1.N212n?3x的收敛域是??2,2?. N2n第1页,共6页二、单项选择题(每题3分,共15分)得分评阅人1、设f?x??2x?3x?2,则当x?0时(b)(a)f?x?与x是等价无穷小.(b)f?x?与x是同阶但非等价无穷小.(c)f?x?是比x低阶的无穷小.(d)f?x?是比x高阶的无穷小.2、x?0是f?x??2?12?11x1x的(b).(a)可去间断点.(b)跳跃间断点.(c)无穷间断点.(d)振荡间断点.?g(x),x?0?3、设f?xx其中g?x?在x?0的某个邻域内二阶导数存在,且g?0??0,??0,x?0g??0??0,则(c)(a)f?x?在x?0处不连续.(b)f?x?在x?0处连续但不可导.(c)f?x?在x?0处可导,但导函数在x?0处不一定连续.(d)f?x?在x?0处导函数连续.4、设线性无关的函数y1?x?,y2?x?,y3?x?均是二阶非齐次线性方程yp?x?y??q?x?y?f?x?的解,c1,c2是任意常数,则该非齐次方程的通解是(d)(a)c1y1?c2y2?y3.(b)c1y1?c2y2??c1?c2?y3.(c)c1y1?c2y2??1?c1?c2?y3.(d)c1y1?c2y2+?1?c1?c2?y3.5、设a为常数,则级数?sinna1n2??(a).n?n?1??(a)发散.(b)绝对收敛.(c)条件收敛.(d)敛散性与a的取值有关.第2页共6页评分评审员3,(满分7分)找到极限limx2?lnarctan(x?1)?lnarctanx?。

高等数学竞赛试题含答案

高等数学竞赛试题含答案

高等数学竞赛试题一、选择题1. 设n n n y z x ≤≤,且0)(lim =-∞→n n n x y ,则n n z ∞→lim ( C )(A) 存在且等于零; (B) 存在但不一定等于零; (C) 不一定存在; (D) 一定不存在. 2. 设)(x f 是连续函数,)()(x f x F 是的原函数,则( A )(A) 当)(x f 为奇函数时,)(x F 必为偶函数; (B) 当)(x f 为偶函数时,)(x F 必为奇函数; (C) 当)(x f 为周期函数时,)(x F 必为周期函数; (D) 当)(x f 为单调增函数时,)(x F 必为单调增函数. 3. 设0>a ,)(x f 在),(a a -内恒有2|)(|0)("x x f x f ≤>且,记⎰-=a adx x f I )(,则有( B )(A) 0=I ;(B) 0>I ;(C) 0<I ;(D) 不确定.4. 设)(x f 有连续导数,且0)0(',0)0(≠=f f ,⎰-=x dt t f t x x F 022)()()(,当0→x 时,k x x F 与)('是同阶无穷小,则=k ( B )(A) 4; (B) 3; (C) 2; (D) 1.5.设⎪⎩⎪⎨⎧=+≠++=0,00,),(2222222y x y x y x yx y x f ,则),(y x f 在点)0,0(( D )(A) 不连续;(B) 连续但偏导数不存在;(C) 可微; (D) 连续且偏导数存在但不可微.6. 设k j b j i a ρρρρρρ+-=+=2,,则以向量a ϖ、b ϖ为边的平行四边形的对角线的长度为( A )(A) 11,3; (B) 3, 11; (C) 10,3; (D) 11,2.7. 设21L L 与是包含原点在内的两条同向闭曲线,12L L 在的内部,若已知2222L xdx ydykx y +=+⎰Ñ(k 为常数),则有1222L xdx ydyx y ++⎰Ñ( D )(A) 等于k ; (B) 等于k -; (C) 大于k ; (D) 不一定等于k ,与L 2的形状有关. 8. 设∑∞=0n nn xa 在1=x 处收敛,则∑∞=-+0)1(1n nnx n a 在0=x 处( D )二、设)(1lim)(2212N n x bxax x x f n n n ∈+++=-∞→,试确定a 、b 的值,使与)(lim 1x f x →)(lim 1x f x -→都存在.解:当||1x <时,221lim lim 0n n n n x x -→∞→∞==,故2()f x ax bx =+;当||1x >时,1()f x x=112111,1,lim ()1,lim (),1(),11,1,1,lim (),lim ()1,1x x x x x f x f x a b a b x f x ax bx x x f x a b f x a b x -+-+→-→-→→⎧<-=-=--=⎪⎪⎪=+-<<⎨⎪⎪>=+=+=⎪⎩0a =,1b =。

高等数学竞赛最新试题及答案

高等数学竞赛最新试题及答案

高等数学竞赛最新试题及答案高等数学竞赛试题一、选择题(每题3分,共30分)1. 函数\( f(x) = x^2 - 4x + 3 \)的顶点坐标是:A. (2, -1)B. (1, 0)C. (2, 1)D. (2, -1)2. 已知\( \lim_{x \to 0} \frac{\sin x}{x} = 1 \),求\( \lim_{x \to 0} \frac{\sin 3x}{3x} \)的值是:A. 1B. 0C. 3D. 无法确定3. 曲线\( y = x^3 - 2x^2 + x \)在点(1,0)处的切线斜率是:A. 0B. -1C. 1D. 24. 以下哪个级数是发散的?A. \( \sum_{n=1}^{\infty} \frac{1}{n^2} \)B. \( \sum_{n=1}^{\infty} \frac{1}{n} \)C. \( \sum_{n=1}^{\infty} (-1)^n \frac{1}{n} \)D. \( \sum_{n=1}^{\infty} \frac{1}{2^n} \)5. 函数\( f(x) = \sin x + \cos x \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \frac{\pi}{2} \)D. \( \pi \)6. 以下哪个函数是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = |x| \)D. \( f(x) = \sin x \)7. 已知\( \int_{0}^{1} x^2 dx = \frac{1}{3} \),求\( \int_{0}^{1} x^3 dx \)的值是:A. \( \frac{1}{4} \)B. \( \frac{1}{3} \)C. \( \frac{1}{2} \)D. \( 1 \)8. 以下哪个是二阶常系数线性微分方程?A. \( y'' + 3y' + 2y = 0 \)B. \( y' + y = x^2 \)C. \( y'' + y' = 0 \)D. \( y'' - 2y' + y = \sin x \)9. 以下哪个是二元函数的偏导数?A. \( \frac{\partial^2 f}{\partial x \partial y} \)B. \( \frac{\partial f}{\partial x} \)C. \( \frac{\partial f}{\partial y} \)D. \( \frac{d^2f}{dx^2} \)10. 已知\( \lim_{x \to \infty} \frac{f(x)}{x} = 0 \),那么\( f(x) \)是:A. 常数B. 有界函数C. 无穷小量D. 无穷大量二、填空题(每题4分,共20分)11. 函数\( f(x) = \sqrt{x} \)的定义域是_________。

高数竞赛练习题答案(函数、极限、连续)

高数竞赛练习题答案(函数、极限、连续)

高数竞赛练习题答案(函数、极限、连续)第一篇:高数竞赛练习题答案(函数、极限、连续)函数、极限、连续1.f(x),g(x)∈C[a,b],在(a,b)内二阶可导且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(1)∃η∈(a,b),使f(η)=g(η)(2)∃ξ∈(a,b),使f''(ξ)=g''(ξ)证明:设f(x),g(x)分别在x=c,x=d处取得最大值M,不妨设c≤d(此时a<c≤d<b),作辅助函数F(x)=f(x)-g(x),往证∃ξ∈(a,b),使F''(ξ)=0令F(x)=f(x)-g(x),则F(x)在[a,b]上连续,在(a,b)二阶可导,且F(a)=F(b)=0,① 当c<d,由于F(c)=f(c)-g(c)=M-g(c)≥0F(d)=f(d)-g(d)=f(d)-M≤0由“闭.连.”零点定理,∃η∈[c,d]⊂(a,b),使f(η)=g(η)② 当c=d,由于F(c)=f(c)-g(c)=f(c)-g(d)=M-M=0即∃η∈(a,b),使f(η)=g(η) 对F(x)分别在[a,η],[η,b]上用罗尔定理,∃ξ1∈(a,η),ξ2∈(η,b),使在[ξ1,ξ2]上对F(x)在用罗尔定理,F'(ξ1)=F'(ξ2)=0,∃ξ∈(ξ1,ξ2)⊂(a,b),使F''(ξ)=0,∃ξ∈(a,b),使f''(ξ)=g''(ξ).2.设数列{xn}满足0<x1<π,xn+1=sinxn,n=1,2,Λxn存在,并求该极限(1)证明limn→∞xn+1x1n(2)计算lim()n→∞xn分析:(1)确定{xn}为单调减少有下界即可1xn,用洛必达法则.(2)利用(1)确定的limn→∞解:易得0<xn≤1(n=2,3,Λ),所以xn+1=sinxn<xn,n=(2,3,Λ),即{xn}为xn存在,并记为limxn=a,则a∈[0,1],单调减少有下界的数列,所以 lim n→∞n→∞对等式xn+1=sinxn<xn,两边令n→∞取极限,得a=sina,a∈[0,1],所以a=0,即limxn=0.n→∞lim((2)n→∞xn+1sinxn)=lim()n→∞xnxn2xn2xn令t=xn=lim(t→0sint)=et→0ttlimln()tt2由于limt→0tln(sin)ttsintln[1+(sin-1)]-1-1t2sint-t洛cost-11tt2=lim=lim=lim=lim=lim=- t→0t→0t→0t→0t→03t2t2t2t33t26 xn+1xn-1所以lim()=e.n→∞xn3.已知f(x)在[0,1]连续,在(0,1)可导,且f(0)=0,f(1)=1,证明:(1)∃ξ∈(0,1),使f(ξ)=1-ξ,(2)存在两个不同点η,ζ∈(0,1),使f'(η)f'(ζ)=1证:(1)令F(x)=f(x)+x-1,则F(x)在[0,1]上连续,且F(0)=-1<0,F(1)=1>0,由“闭.连.”零点定理,∃ξ∈(0,1),使F(ξ)=0,即f(ξ)=1-ξ(2)f(x)在[0,ξ],[ξ,1]上都满足拉格朗日中值定理,所以∃η∈(0,ξ),ζ∈(ξ,1),使f(ξ)-f(0)=f'(η)(ξ-0),f(1)-f(ξ)=f'(ζ)(1-ξ),即f'(η)=f'(ζ)=f(ξ)ξ=1-ξξ1-f(ξ)1-(1-ξ)ξ==1-ξ1-ξ1-ξ∴f'(η)f'(ζ)=1-ξξ⋅ξ1-ξ=14.设方程xn+nx-1=0,其中n为正整数,证明此方程存在唯一的正α实根xn,并证明当α>1时,级数∑xn收敛.n=1∞证:令f(x)=xn+nx-1,则f(x)在(0,+∞)上连续,且f(0)=-1<0,f()=()n>0nn所以由连续函数的零点定理,所给方程在(0,)内有根,又由f'(x)=n(xn-1+1)>0,即f(x)在(0,)内单调递增,所以所给方程(0,)内只有唯一的根,在(,∞)上无根,即所给方程存在唯一的正实根xn.α<由上述知,对n=1,2,Λ,有0<xn<,有0<xn∞1n1n1n1n1n1,nα此外,由α>1知,级数∑收敛,所以由正项级数比较审敛法,知αn=1n∑xα收敛.nn=1∞5.求lim(cosx)x→01ln(1+x)x→0ln(1+x)解:lim(cosx)x→01ln(1+x)=elimlncosx,其中limln(1+xx→0lncosx)=limx→0ln[1+(cosx-1)]ln(1+x)=limx→0-x22x=-(cosx)所以,limx→0ln(1+x)=e-6.f(x)在x=0的某邻域内具有一阶连续导数,且f(0)≠0,f'(0)≠0,若af(h)+bf(2h)-f(0)在h→0时是比h高阶的无穷小,试确定a,b的值.解1:(利用导数定义)0=limaf(h)+bf(2h)-f(0)af(h)-af(0)+af(0)+bf(2h)-bf(0)+bf(0)-f(0)=limh→0h→0hhaf(h)-af(0)bf(2h)-bf(0)[(a+b)-1]f(0)[(a+b)-1]f(0)=l im+lim+lim=(a+b)f'(0)+limh→0h→0h→0h→0hhhh⎧a+b=1'由f(0)≠0,f(0)≠0,得⎨,即a=2,b=-1a+2b=0⎩解2:按解1,只要假定f(x)在x=0处可导即可,但在题中“f(x)在x=0的某邻域内具有一阶连续导数”的假定下,有以下解法:由lim h→0h→0af(h)+bf(2h)-f(0)=0得 limaf(h)+bf(2h)-f(0)=0h→0h即0=limaf(h)+bf(2h)-f(0)=(a+b-1)f(0),由f(0)≠0,得a+b=1(1)af(h)+bf(2h)-f(0)洛=limaf'(h)+2bf'(2h)=(a+2b)f'(0)且f'(0)≠0,又由0=limh→0h→0h所以 a+2b=0(2)由(1)、(2)得a=2,b=-1.⎛2+esinx⎫⎪.7.求lim 4+x→0x⎪⎝1+e⎭解:⎛2e-+e-sinx⎫⎛2+esinx⎫⎪=1⎪=lim lim+4+4++-x→0x→0 x⎪x⎪⎝1+e⎭⎝e+1⎭⎛2+esinx⎫⎛2+esinx⎫ ⎪⎪=1 lim=lim4+4---⎪x→0x⎭x→0⎝1+ex⎪⎝1+e⎭所以原式 = 18.求limx→0143+x+-x-2.2x解1:(泰勒公式)因+x+-x-2=[1+1111x-x2+o(x2)]+[1-x-x2+o(x2)]-22828(x→0)=-x2+o(x2)~-x2所以1-x2+x+-x-2=-1lim=limx→0x→0x2x24解2:(洛必达法则)-+x+-x-2洛必达lim=limx→0x→0x22x1-x-+x1⋅lim=lim x→0+x-x4x→0x1-2x1=lim.=-4x→0x(-x++x)4第二篇:高数课件-函数极限和连续一、函数极限和连续自测题1,是非题(1)无界变量不一定是无穷大量()(2)若limf(x)=a,则f(x)在x0处必有定义()x→x012x(3)极限lim2sinx=limx=0()x→+∞x→+∞33x2,选择题(1)当x→0时,无穷小量1+x-1-x是x的()A.等价无穷小B.同阶但不等价C.高阶无穷小D.低价无穷小⎧x+1-1x≠0⎪(2)设函数f(x)=⎨,则x=0是f(x)的()x⎪0x=0⎩A.可去间断点 B.无穷间断点C 连续点D 跳跃间断点⎧exx<0(3)设函数f(x)=⎨,要使f(x)在x0处连续,则a=()⎩a+xx≥0A.2B 1C 0D -13n2-5n+1=()(4)lim2n→∞6n+3n-2A 151B -C -D ∞ 2321⎧xsinx<0⎪⎪x(5)设f(x)=⎨,则在x=0处f(x) ()⎪1sinx-1x>0⎪⎩xA 有定义B 有极限C 连续D左连续3(6)x=1是函数y=x-1的()x-1A 可去间断点B 无穷间断点C 连续D跳跃间断点3.求下列极限(1)limx→∞x+sinxsin(-2x)x+2-3(2)lim(3)limx→0x→12xln(1+2x)x-1e-2x-1(4)lim(5)limn[ln(1+n)-lnn](6)lim(sinn+1-sinn)n→∞n→∞x→0x2x+3x+2(sinx3)tanx2lim()(7)lim (8)(9)limx(x+1-x)x→∞2x+1x→01-cosx2x→∞cosx-cosaarctanxex-ex0(10)lim(11)lim(12)limx→ax→∞x→x0x-xx-ax0x2+32x2+1sin(x-1))(13)lim(14)lim(2x→∞x→1x-1x+24,求满足下列条件的a,b的值1x2+x+a=b(2)lim(3x-ax2-x+1)=(1)limx→+∞x→26x-2⎧tanaxx<0ax+b⎪=2(4)已知f(x)=⎨x(3)lim且limf(x)存在x→0x→1x-2⎪x+2x≥0⎩x<-1⎧-2⎪2(5)已知f(x)=⎨x+ax+b-1≤x≤1在(-∞,+∞)内连续⎪2x≥1⎩⎧sin2x+e2ax-1x≠0⎪(6)函数f(x)=⎨在x=0点连续x⎪ax=0⎩5.求下列函数的间断点并判断其类型⎧x-1x≤11-cosxx2-1(1)y=2(2)y=⎨(3)f(x)=sinxx-3x+2⎩3-xx>1⎧1x>0x⎪(4)f(x)=⎨ex-1(5)y=tanx⎪⎩ln(1+x)-1<x≤026.已知x→-1时,x+ax+5x+1是同阶无穷小,求a7.证明方程x-4x+2=0在区间(1,2)内至少有一个根8.当x→0时,e+ln(1-x)-1与x是同阶无穷小,求n 9.设函数f(x)=a,(a>0,a≠1),求limxxn41ln[f(1)f(2)K f(n)]n→∞n2第三篇:高数极限和连续第二章极限和连续【字体:大中小】【打印】2.1 数列极限一、概念的引入(割圆术)“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣” ——刘徽正六边形的面积A正十二边形的面积A2n-1正6×2形的面积AnA1,A2,A3,…,An,…→…S二、数列的定义定义:按自然数1,2,3...编号依次排列的一列数x1,x2,...,xn, (1)称为无穷数列,简称数列。

高等数学竞赛试题含答案

高等数学竞赛试题含答案

高等数学竞赛试题1.计算{}2222,max 0abb x a ydx edy ⎰⎰,(a>0,b>0)解:原积分=22222222000baax abab y b x a y b x a y a bb xa b dx edy dx edy xe dx dy e dx a+=+⎰⎰⎰⎰⎰⎰⎰=222222111(1)(1)(1)22a b a b a b e e e ab ab ab-+-=-2. 设幂级数nn n a x∞=∑的系数满足02a =,11n n na a n -=+-,n=1,2,3…,求此幂级数的和函数()s x 。

解:0(),n nn s x a x +∞==∑则1111111'()(1)n n n nn n n n s x na xa xn x +∞+∞+∞----=====+-∑∑∑12()(1)()(1)n n xs x n x s x x +∞+==++=+-∑即2'()()(1)xs x s x x =+-,且(0)2o s a == 解方程1()1xs x ce x =+- 由(0)1s =⇒1()1xs x e x=+- 3. 已知()f x 二阶可导,且()0f x >,[]2''()()'()0f x f x f x -≥,x R ∈ (1)证明 21212()()()2x x f x f x f +≥, 12,x x R ∀∈ (2)若(0)1f =,证明'(0)(),f xf x e x R ≥∈证明:(1)记()ln ()g x f x = 则'()'()()f xg x f x = 22''(')''()0ff f g x f -=> 1212()()()22g x g x x x g ++∴≥ 即 21212()()()2x xf x f x f +≥⑵2222''()'(0)''(')()(0)'(0)ln (0)|2(0)2x g f ff f g x g g x x f x x f fξξ=-=++=++ '(0)f x ≥ 即'(0)()f xf x e≥4.求10(1)limln(1)xx x e x →+-+由洛比塔法则原极限=120(1)ln(1)1lim(1)(1)2xx x x x x e x x →-+++=-+5.设222 0cos()sin t u x t y e udu -⎧=⎪⎨=⎪⎩⎰ ,求22d y dx 解:42sin()2t dy e t t -=⋅⋅ 2sin()2dx t t =-⋅4t dy e dx -∴=- 44232222(')42sin()2sin()t t d y d y t e t edx dx t t t --===--⋅ 6.2 0(1)(1)dxx x α+∞++⎰,(0α≠) 解:记原积分为I 则201/(1)(1)dxI t x x x α+∞==++⎰含 20(1)(1)t dt t t αα+∞++⎰ 22 124dx I I x ππ+∞∴==∴=+⎰7.设函数()f x 满足方程,()2()3sin xxe f x e f x x ππ-+-=,x R ∈,求()f x 的极值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1高等数学竞赛试题1一、填空:1.若()⎪⎩⎪⎨⎧≤->-=,x ,a x ,x f x xx01e 0,arctan e 122sin 是()+∞∞-,上的连续函数,则a = -1 。

2.函数x x y 2sin +=在区间⎥⎦⎤⎢⎣⎡ππ,2上的最大值为332+π 。

3.()=+⎰--22d ex x x x26e 2-- 。

4.由曲线⎩⎨⎧==+0122322z y x 绕y 轴旋转一周得到的旋转面在点()230,,处的指向外侧的单位法向量为{}32051,,。

5.设函数()x,y z z =由方程2e =+----xy z x x y z 所确定,则=z d ()y x x x xy z xy z d d e 1e 1-1+++---- 。

二、选择题:1. 设函数f (x )可导,并且()50='x f ,则当0→∆x 时,该函数在点0x 处微分d y 是y ∆的( A ) (A )等价无穷小; (B )同阶但不等价的无穷小; (C )高阶无穷小; (D )低阶无穷小。

2. 设函数f (x )在点x = a 处可导,则()x f 在点x = a 处不可导的充要条件是( C ) (A )f (a ) = 0,且()0='a f ; (B )f (a )≠0,但()0='a f ; (C )f (a ) = 0,且()0≠'a f ; (D )f (a )≠0,且()0≠'a f 。

3. 曲线12+-+=x x x y ( B )(A )没有渐近线; (B )有一条水平渐近线和一条斜渐近线; (C )有一条铅直渐近线; (D )有两条水平渐近线。

4.设()()x,y x,y f ϕ与均为可微函数,且()0≠'x,y y ϕ。

已知()00,y x 是()x,y f 在约束条件()0=x,y ϕ下的一个极值点,下列选项中的正确者为( D )(A )若()000=',y x f x ,则()000=',y x f y ; (B )若()000=',y x f x ,则()000≠',y x f y ; (C )若()000≠',y x f x ,则()000=',y x f y ; (D )若()000≠',y x f x ,则()000≠',y x f y 。

25.设曲面(){}0Σ2222≥=++=,z k z y x x,y,z 的上侧,则下述曲面积分不为零的是( B )(A )⎰⎰∑z y x d d 2; (B )⎰⎰∑z y x d d ; (C )⎰⎰∑x z z d d ; (D )⎰⎰∑y x y d d 。

三、设函数f (x )具有连续的二阶导数,且()0lim=→x x f x ,()40=''f ,求()xx x x f 101lim ⎥⎦⎤⎢⎣⎡+→。

解:由题设可推知f (0) = 0,()00='f ,于是有()()()22lim 2lim lim0020=''='=→→→x f x x f xx f x x x 。

故 ()()()()()()()220010e 1ln exp lim 1lim 1lim =⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡+→→→x f xx x x f x f xx xx x x f x x f x x f x x f 。

四、设函数()x y y =由参数方程()1d e 212ln 112>⎪⎩⎪⎨⎧=+=⎰+t ,u u y ,t x t u 所确定,求9d d 22=x x y 。

解:由t t t t t y t 2ln 12e 22ln 1e d d 2ln 1+=⋅+=+,t t x 4d d =,得到()t x y 2ln 12e d d +=,所以()()()222222ln 14e 412ln 12e2412ln 12e d d d d 1d d d d d d t t t t t t t t tx x y t x y +-=⋅+-=⋅⎪⎪⎭⎫ ⎝⎛+=⋅⎪⎭⎫ ⎝⎛=。

而当x = 9时,由221t x +=及t > 1,得t = 2,故()()222222ln2116e22ln 14e 9d d +-==+-==t t t x x y 。

五、设n 为自然数,计算积分()⎰+=20d sin 12sin πn x xxn I 。

解:注意到:对于每个固定的n ,总有()12sin 12sin lim0+=+→n xxn x ,所以被积函数在x = 0点处有界(x = 0不是被积函数的奇点)。

又()()x nx x n x n sin 2cos212sin 12sin =--+,于是有3()()00sin21d cos22d sin 12sin 12sin 220201===--+=-⎰⎰-πnx n x nx x x x n x n I I ππn n ,上面的等式对于一切大于1的自然数均成立,故有11I I I n n ===- 。

所以2d cos 2d cos2d sin cos sin2sin cos2d sin sin32022020201πππππ=+=+===⎰⎰⎰⎰x x x x x x x x x x x x x I I n 。

六、设f (x )是除x = 0点外处处连续的奇函数,x = 0为其第一类跳跃间断点,证明()⎰xt t f 0d 是连续的偶函数,但在x = 0点处不可导。

证明:因为x = 0是f (x )的第一类跳跃间断点,所以()x f x +→0lim 存在,设为A ,则A ≠0;又因f (x )为奇函数,所以()A x f x -=-→0lim 。

命:()()()⎪⎩⎪⎨⎧<+=>-=.A,x x f ;x ,;A,x x f x 0000ϕ则()x ϕ在x = 0点处连续,从而()x ϕ在()+∞∞-,上处处连续,且()x ϕ是奇函数:当x > 0,则-x < 0,()()()()[]()x A x f A x f A x f x ϕϕ-=--=+-=+-=-; 当x < 0,则-x > 0,()()()()[]()x A x f A x f A x f x ϕϕ-=+-=--=--=-, 即()x ϕ是连续的奇函数,于是()⎰xt t 0d ϕ是连续的偶函数,且在x = 0点处可导。

又()()x A t t f t t xx -=⎰⎰0d d ϕ,即()()x A t t t t f xx+=⎰⎰d d ϕ,所以()⎰xt t f 0d 是连续的偶函数,但在x = 0点处不可导。

七、设f (u , v )有一阶连续偏导数,()()xy ,y x f z cos 22-=,ϑϑsin cos r y ,r x ==,证明:()xy vz y u z x z r r z sin 2sin 1cos ∂∂-∂∂=∂∂-∂∂ϑϑϑ。

解: 设:()xy v ,y x u cos 22=-=,则4()()()ϑϑϑϑsin cos sin sin cos 2x y xy vz y x u zy v v z y u u z r y x v v z x u u z r x r y y z r x x z r z +⋅∂∂--∂∂=⎪⎪⎭⎫ ⎝⎛∂∂⋅∂∂+∂∂⋅∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂⋅∂∂+∂∂⋅∂∂∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂类似可得()()()ϑϑϑϑϑcos sin sin cos sin 2x y xy r vzy x u z r z -⋅∂∂++∂∂-=∂∂, 代入原式左边,得到()()()()()()()xy vz y u z x x y xy v z uzx y xy v z y x u z z r r z sin 2cos sin sin sin ycos xsin sin 2sin cos sin cos sin cos 2cos sin 1cos ∂∂-∂∂=-∂∂-+⋅∂∂++⋅∂∂⋅--∂∂⋅=∂∂-∂∂ϑϑϑϑϑϑϑϑϑϑϑϑϑϑϑ八、设函数f (u )连续,在点u = 0处可导,且f (0)= 0,()30-='f 求:()⎰⎰⎰≤++→++2222d d d 1lim2224t z y x t z y x z y xfπt 。

解:记()()⎰⎰⎰≤++++=2222d d d 12224t z y x z y x z y xfπt t G ,应用球坐标,并同时注意到积分区域与被积函数的对称性,有()()()420220204d 4d d sin d 8t rr r f r r r f πt t G tt⎰⎰⎰⎰==ππϕϕϑ于是有()()()()()()300lim 44lim d 4limlim 0320420-='=-===→→→→⎰f t f t f t t t f t rr r f t G t t tt t 。

九、计算⎰+++-=L y x x yx x y I d d ,其中L 为1=++y x x 正向一周。

解:因为L 为1=++y x x ,故()[]⎰⎰⎰⎰⎰=--=+-=DDLyx x y I σσd 2d 11d d 格林公式其中D 为L 所围区域,故⎰⎰Dσd 为D 的面积。

为此我们对L 加以讨论,用以搞清D 的面积。

当00≥+≥y x x 且时,0121=-+=-++y x y x x ;5当0且0≤+≥y x x 时,011=--=-++y y x x ; 当0且0≥+≤y x x 时,011=-=-++y y x x ; 当0且0≤+≤y x x 时,0121=---=-++y x y x x , 故D 的面积为2×1=2。

从而4d d =+++-=⎰L y x x yx x y I 。

十、⑴ 证明:当x 充分小时,不等式422tan 0x x x ≤-≤成立。

⑵ 设∑=+=nk n kn x 121tan ,求n n x ∞→lim 。

证明:⑴ 因为32tan lim 3231sec lim 2tan lim tan lim tan lim2202200304220==-=+⋅-=-→→→→→x x x x x x x x x x x x x x x x x x , 又注意到当x 充分小时,x x ≥tan ,所以成立不等式422tan 0x x x ≤-≤。

⑵ 由⑴知,当n 充分大时有,()22111tan 1k n k n kn kn +++≤+≤+,故 ()n kn k n k n x k n nk n k n k n nk 1111111211++≤+++≤≤+∑∑∑∑====, 而∑∑==+=+n k nk nk n k n 111111,于是ln2d 11111lim 1lim 1011=+=+=+⎰∑∑=∞→=∞→x x nk n k n n k n nk n ,由夹逼定理知ln2lim =∞→n n x 。

相关文档
最新文档