土壤中溶磷微生物的筛选
高效溶磷菌的筛选、鉴定及其溶磷特性

邵锴,邱业先,徐婧.高效溶磷菌的筛选、鉴定及其溶磷特性[J ].江苏农业科学,2017,45(8) =253 -257. doi : 10.15889/j . issn . 1002 - 1302.2017. 08. 068高效溶磷菌的筛选、鉴定及其溶磷特性邵锴,邱业先,徐婧(苏州科技学院,江苏苏州21000)摘要:为了从根际土壤中筛选出具有较高溶磷能力的菌株及优化溶磷条件,通过种子萌发初步研究溶磷促生效应。
通过稀释涂布法分离、筛选菌株,并进行ATB 细菌鉴定仪及16S rD N A 测序鉴定;采用单因子试验及正交试验优 化菌株溶磷发酵条件,利用种子发芽指标测定菌株的促生能力。
结果显示,筛选出菌株B D -1的溶磷能力最强,经 ATB 细菌鉴定仪及16S rD NA 测序,该菌株被鉴定为路德维希肠杆菌。
正交试验结果表明,在温度为30丈、摇床转速为180 r /mm 、接种量为2 ml ^、初始p H 值为7.0的条件下培养7 d 的溶磷效果最好,其溶磷量为181.73 g /L 。
种子萌 发试验结果表明,该溶磷菌对作物种子萌发具有一定的促进作用。
关键词:溶磷菌;微生物肥料;条件优化;解磷能力;种子萌发;鉴定;筛选;溶磷特性 中图分类号:S 154. 38 + 1文献标志码:A文章编号:1002 -1302(2017)08 -0253 -04江苏农业科学2017年第45卷第8期一 253 —磷是植物生长必需的营养元素之一,植物的光合作用和 体内的生化过程都必需有磷参与[1<,但其在土壤中主要以 难溶性矿物态存在[3],难溶性矿物态磷无法被作物直接吸收 利用。
为提高作物产量,超过/ k /hm 2磷肥被施用于土壤 中[],部分磷肥被作物吸收利用,大部分被转化成难溶性磷 返施于土壤。
大量化学磷肥的施用,伴随土壤板结、土壤酸 化、土壤贫瘠化日益严重。
因此,提高土壤中磷的利用效率对 降低化学磷肥的施用量具有十分重要的意义。
一株溶磷解钾菌的分离筛选与鉴定

一株溶磷解钾菌的分离筛选与鉴定随着农业生产的不断发展,土壤中的养分供应问题逐渐凸显出来。
磷和钾是土壤中必不可少的元素,对植物的生长发育具有重要的影响。
由于土壤中无机磷和钾的含量有限,很大一部分呈结合态,无法直接被植物吸收利用,需要通过微生物的参与,转化为植物可利用的形态。
溶磷和解钾微生物是一类能够有效分解土壤中有机磷和结合态钾的微生物,对于提高农作物的吸收利用率具有重要的意义。
分离筛选与鉴定这些菌株可以为农业生产提供一种新的途径,用于改善土壤肥力,并减少化肥的使用。
分离筛选这些溶磷解钾菌的关键是寻找适合生长的培养基。
常用的培养基有PDA、LB 和液体MS等。
从农田土壤中采集土壤样品,并将样品带回实验室进行处理。
将土壤样品稀释后接种在已经准备好的培养基上,将培养皿密封后放置在适当的温度和湿度下培养。
在合适的时间内,从培养皿中观察出现菌落的样品,进行进一步的分析与鉴定。
鉴定这些菌株的关键是通过形态学、生理生化以及分子生物学等多种手段进行分析。
通过形态学的方法,可以观察菌落的形态、色素的产生以及孢子的形态等特征。
然后,通过生理生化的方法,可以测试菌株对不同物质的利用能力,如磷酸盐的水解能力和钾离子的溶解能力。
通过分子生物学的方法,可以利用PCR技术扩增16S rRNA基因,并进行测序分析,以确定溶磷解钾菌的亲缘关系。
通过以上的分离筛选和鉴定工作,可以得到一株具有较好解磷和溶钾能力的菌株。
之后,可以进一步对其进行大规模培养和应用试验,以验证其在农业生产中的作用。
通过利用这些菌株,可以提高土壤肥力,减少农药的使用,改善农作物的产量和品质,为可持续农业的发展做出贡献。
解磷解钾微生物筛选

解磷解钾微生物的筛选与初步鉴定微生物是土壤肥力的核心,土壤中的微生物不仅数量巨大,而且种类极多。
许多微生物对土壤氮、磷和钾等养分的转化和供给起非常重要的作用。
氮、磷和钾均是作物生长发育必需的大量元素。
根瘤菌可以与豆科植物共生固氮, 在生物固氮中占有重要的地位。
溶磷菌、硅酸盐细菌(又名钾细菌)能够分解土壤中的固定态磷、固定态钾转化为作物可以直接吸收利用的有效磷、有效钾。
因此,高效的解磷、解钾菌株对于提高土壤肥力具有非常重要的作用。
一、实验目的1、从各类土样中筛选高效的解磷解钾菌株2、熟悉菌株筛选、分离纯化、鉴定等具体操作流程二、实验原理分别配制以磷酸钙、钾长石为唯一磷源或钾源的筛选培养基,在该培养基上,只有能分解利用磷酸钙、钾长石的菌株才能够生长。
因为磷酸钙、钾长石不能溶解于培养基,故在固体培养基平板上表现为浑浊,若菌株能够利用磷酸钙、钾长石,则在培养基中形成以菌落为中心的透明圈,因此可以通过是否产生透明圈来筛选目的菌株。
分别筛选细菌和真菌。
为筛选到真菌,采用在培养基中加入链霉素方法来抑制细菌生长。
三、材料和方法1、材料各处取得的土样;培养基种类如下(g/l):(1)牛肉膏蛋白胨培养基:(2)解磷菌株筛选培养基:无机磷固体培养基:葡萄糖l0 g,(NH4)2SO40.5 g,酵母粉0.5 g,MgSO4·7H2O 0.3 g,氯化钠0.3g,氯化钾0.3 g,FeSO4·7H2O 0.03 g,MnSO4·7H2O 0.03 g,Ca3(PO4)2 2 g,琼脂粉18 g,蒸馏水1000 mL,pH 7.2,ll5℃灭菌20 min。
(3)钾长石固体培养基:蔗糖 5 g,葡萄糖 5 g,(NH4)2SO4 0.5 g,酵母粉0.5 g,MgSO4·7H2O 0.3 g,磷酸氢二钠2 g,FeSO4·7H2O 0.03 g,MnSO4·7H2O 0.03 g,钾长石2 g,琼脂粉18 g,蒸馏水1000 mL,pH 7.2,ll5℃灭菌20 min。
一株溶磷解钾菌的分离筛选与鉴定

一株溶磷解钾菌的分离筛选与鉴定溶磷解钾菌是指具有能够分解无机磷、解离钾盐并将其转化为有机物质的细菌。
这类菌株广泛存在于土壤中,对于植物和农业生产具有重要意义,能够促进作物生长和提高产量。
因此,分离出具有溶磷解钾能力的菌株对于土壤生态系统的调节和农业生产的发展具有积极作用。
本实验旨在从土壤中筛选出溶磷解钾菌,并对所得菌株进行鉴定和分类。
实验步骤如下:实验材料:1.土壤样品2.磷酸二氢钾、氯化钾3.高氯酸盐酸铂(IV)4.琼脂、蔗糖、酵母粉、肉汤、营养琼脂培养基实验步骤:1. 采集土壤样品,处理成均匀状态。
2. 在含有磷酸二氢钾和氯化钾的营养琼脂培养基上进行菌落筛选。
将土样涂布在琼脂培养基上,放置温箱中,培养24小时。
3. 筛选出的菌株进行溶磷解钾能力测试。
将每个菌株接种于含有磷酸二氢钾的营养琼脂培养基上,培养48小时。
然后在营养琼脂培养基上加上1%酵母粉,继续培养48小时。
观察菌落中是否有出现溶解带,并记录其直径大小。
4. 对具有溶磷解钾能力的菌株进行分类鉴定。
首先进行生长特性观察,记录菌落特征、颜色、形态、透明度等;然后进行生理生化特性测试,包括淀粉酶、氧化酶、葡萄糖发酵、产气等反应,将结果与相关分类鉴定手册进行对照,确定其菌属和菌种。
结果分析:经过菌落筛选和溶磷解钾能力测试,筛选出44株溶磷解钾菌株。
经过对这些菌株进行分类鉴定,得出以下结果:1. 有34株归属于假单胞菌属,属于γ-变形菌门。
2. 有5株归属于龙门菌属,属于γ-变形菌门。
3. 有2株归属于芽孢杆菌属,属于芽孢杆菌门。
4. 有1株归属于链球菌属,属于革兰氏阳性菌门。
2株未能鉴定出其菌属和菌种。
结论:通过对土壤样品进行菌株筛选和分类鉴定,得到44株具有溶磷解钾能力的菌株,其中绝大部分菌株归属于γ-变形菌门。
该类菌株对于土壤中的化学反应过程和植物的生长发育有着重要的影响,对于农业生产和生态环境的监测都有着重要的意义。
解磷细菌的筛选与分离

土壤中解磷细菌的分离与纯化摘要:磷细菌是存在于自然界,主要是土壤中的一类溶解(dissolve)磷酸化合物(phosphate compound)能力较强的细菌的总称。
通过磷细菌的作用,可使土壤中不能被植物利用的磷化物转变成可被利用的可溶性磷化物。
故又称溶磷细菌。
主要有两类,一类称为有机磷细菌,主要作用是分解有机磷化物如核酸、磷脂等;另一类称为无机磷细菌,主要作用是分解无机磷化物,如磷酸钙、磷灰石等。
磷细菌主要是通过产生各种酶类或酸类而发挥作用的。
可用它制成细菌肥料,实践证明,对小麦、甘薯、大豆、水稻等多种农作物,以及苹果、桃等果树具有一定增产效果。
农业上常用的菌有解磷巨大芽孢杆菌(Bacillusmegatherium var.phosphaticum),俗称为“大芽孢”磷细菌,此外,还有其他芽孢杆菌和无色杆菌(Achromobacter)、假单胞菌(Pseudomonas)等。
我们此次试验目的是从土壤中分离出无机解磷细菌,观察解磷细菌的细胞形态,并进行生理生化鉴定,进一步熟悉掌握微生物实验的基本技能。
关键词:土壤解磷细菌无机磷细菌含磷培养基分离提纯生理生化反应实验目的1)掌握倒平板的方法和几种常用的分离纯化微生物的基本操作技术。
2)学习并掌握分离纯化无机解磷细菌的基本方法。
3)巩固和贯通所学的无菌技术、纯培养技术、保藏技术、显微技术、……等微生物操作技术。
4)学习通过微生物的形态特征、生理生化反应来鉴别解磷细菌与其他微生物的异同。
试验原理1)菌种来源:由于各种微生物对营养物质需求不同,在不同地方采样对选取所要的微生物含量和其它杂菌含量的多少直接有关。
所以要选择无机磷含量较高的土壤中采样。
2)培养基的选取:为了使所要的无机解磷细菌能生长,其它微生物生长受到一定的抑制,要用选择培养基。
还要把解磷菌与其他微生物相区别,还要用鉴别培养基。
为了达到即是选择培养基又是鉴别培养基,选取以磷酸钙为唯一磷源的培养基。
毕业论文:皖北麦田土壤解磷菌筛选及解磷能力初步研究

本科生毕业论文(设计)题目: 皖北麦田土壤解磷菌筛选及解磷能力初步研究姓名: 赵家印学院: 城建与环境学院专业: 农业资源与环境班级: 2010级2班学号: 2204100223指导教师: 汪建飞职称: 教授2014年5月25 日安徽科技学院教务处制目录摘要 2关键字 2引言 21 材料和方法 21.1 材料 21.1.1 土样 21.1.2 培养基 21.1.3 磷源物质 31.2 方法 31.2.1 解磷菌筛选 31.2.2 解磷菌在固体培养基上溶磷能力的测定 31.2.3 解磷菌在液体培养基上溶磷量的测定 32 结果和讨论 32.1 菌落形态观察 32.2 菌株在不同磷源固体培养基上的生长活力 3 2.3 菌株在三种液体培养基上的溶磷量 42.4 三种液体培养基中的pH与溶磷量的关系 53 结论 6致谢 6参考文献 7英文翻译 8皖北麦田土壤解磷菌筛选及解磷能力初步研究10级农业资源与环境专业赵家印指导老师:汪建飞教授摘要:采用Pikovskay培养基从临泉麦田中筛选出具有高效解磷能力的菌株四株,将筛选出的菌株在三种不同磷源(磷酸三钙、磷矿粉、卵磷脂)的固体培养基和液体培养基中培养。
在Pikovskay平板3天后测量解磷菌D/d为1.27~1.65,在液体摇瓶培养中,其解磷率为0.13~20.20mg/L。
其中310—1对三种磷源都有较高的解磷效果,有较高发展潜力。
而303—3和310—3分别对磷酸钙和卵磷脂有较高解磷率,可作为专性解磷菌株配合单一磷肥施用。
关键字: 解磷菌;不同磷源;溶磷能力引言:磷是作物生长必不可少的营养元素之一,在作物生长的各个阶段都扮演重要角色。
根据报道我国约75%的耕地土壤缺磷。
土壤中95%的磷以无效态形式存在,植物难以直接利用。
根据报道,土壤中平均含磷量约0.12%,而其在土壤溶液中的含量仅为0.005~1.0mg/kg。
作物当季磷肥利用率仅为5%~10%,大部分磷作为无效态在土壤中累积[1,2]。
一株根际解磷菌的筛选鉴定及溶磷促生作用

doi:10.11838/sfsc.1673-6257.21131一株根际解磷菌的筛选鉴定及溶磷促生作用王 君*,范延辉,尚 帅,李学平,张玉苗,吴 涛,许骥坤(滨州学院生物与环境工程学院,山东省黄河三角洲脆弱生态带工程技术研究中心, 山东省黄河三角洲生态环境重点实验室,山东 滨州 256600)摘 要:从黄河三角洲地区盐碱化耕地的5种农作物根际土壤中分离筛选高效解磷菌,为开发盐碱地生物肥料提供菌种资源。
结合解磷圈筛选法和钼锑抗比色法评价菌株的解磷能力;采用含不同NaCl浓度的LB培养基测定菌株的耐盐性。
利用菌株的形态学特征、生理生化特性和16S rDNA基因序列分析方法进行鉴定;采用液体摇床培养试验测定菌株对多种难溶性磷源的溶解能力。
以盐碱化土壤为供试土壤,检验菌株在盐碱土壤中的应用潜力。
共分离出27株解磷细菌,其中菌株B19被鉴定为杓兰泛菌(Pantoea cypripedii),该菌在0%~4%的NaCl浓度下生长良好,最高可耐受6%的盐浓度。
B19具有较强的解磷能力,在Ca3(PO4)2为磷源的无机磷固体培养基上30 ℃培养3 d解磷圈的直径(D)为18 mm,与菌落直径(d)比达3.17;PVK液体培养试验表明,菌株B19对多种难溶性磷源都有较强的溶解能力,对Ca3(PO4)2、AlPO4、FePO4和磷矿粉溶磷量分别达230.2、72.1、153.2和28.5 mg/L。
土壤培养试验结果表明,B19菌可以显著提高盐碱化土壤的有效磷含量,10 d后土壤有效磷含量增加了36.2%。
盆栽试验结果还表明,B19菌对小麦植株促生效果显著,说明解磷菌B19在改善盐碱化土壤肥力方面具有很好的应用潜力。
关键词:根际;盐碱地;解磷菌;杓兰泛菌;鉴定磷是植物体内有机化合物的重要组成成分,是限制植物生长且不可代替的第二大营养元素。
土壤中的总磷含量为0.04%~0.10%(w/w),其中只有极少量的可溶性磷(H2PO4–/HPO42–)能被植物利 用[1-2]。
土壤中解磷细菌的分离与初步鉴定

JIANGXI AGRICULTURAL UNIVERSITY本科毕业论文(设计)题目:土壤中解磷细菌的分离与初步鉴定学院:生物科学与工程学院姓名:学号:专业:生物工程年级:指导教师:职称:二0一一年五月摘要目的:通过分离、筛选与纯化,从土壤中筛选出具有解磷能力的菌株。
方法:根据解磷圈大小判断其解磷能力。
从桔子、柚子、石榴3种不同植物根系土壤中分离出降解无机磷的解磷菌,通过平板法进行初筛,根据水解圈直径和菌落直径比值大小筛选到水解圈直径和菌落直径比值较大的菌株,连续纯培养五代,选择遗传稳定的解磷菌,进一步通过液体摇瓶培养复筛,最后筛选出分解无机磷能力较强且能稳定遗传的菌株。
结果:从桔子根际土壤中分离降解出了三株透明圈明显的解磷菌,筛选出两株水解圈直径(D)与菌落直径(d)比值较大的解磷菌,1号菌株水解圈直径(D)/菌落直径(d)为2.625,2号菌株水解圈直径(D)/菌落直径(d)为2.44,经过五代培养,将稳定性最好的菌株进行液体摇瓶培养7天,然后进行解磷能力测定,测得结果是菌株1号水溶性磷含量为31.13mg ∕L,菌株2号水溶性磷含量为25.43mg∕L,具有较强解磷能力。
结论:通过菌落形态观察以及水溶性磷含量的测定结果可鉴定菌株为无机磷解磷细菌。
关键词:果树根际土壤,解磷菌,无机磷,分离,鉴定AbstractObjective: the separation, purification, from screening and soil were XieLin ability with the strain. Methods: according to the size XieLin circle XieLin judge its ability. From orange, grapefruit, pomegranate 3 kinds of different plant roots isolated soil degradation of inorganic phosphorus XieLin bacteria, through the flat screen, according to early method of hydrolysis circle diameter and colonies diameter ratio size screening to hydrolysis circle diameter and the ratio of larger diameter strains colony, continuous pure cultivate generation, choose the genetic stability XieLin bacteria, further through the liquid wave flask culture after screen, finally selected decomposition inorganic phosphorus ability stronger and can stable genetic strain. Results: from orange rhizospheric soil degradation out isolated transparent circle obvious reason XieLin bacterium, two strains were hydrolyzed circle diameter (D) and colonies diameter (D) XieLin bacterium, the ratio of larger diameter strains hydrolysis circle 1 (D) / colonies diameter (D) for 2.625, 2 strains hydrolysis circle diameter (D) / colonies diameter (D) for 2.44, after five dynasties, the best training for liquid stability strains flask culture seven days, wave XieLin ability and determination of measurement results is,water-soluble phosphorus strains 1 for 31.13 mg/L, water-soluble phosphorus strains 2 for 25.43 mg/L XieLin ability, strong. Conclusion: through the colony morphology observation and the measured results of water-soluble phosphorus can be identified for inorganic phosphorus XieLin strains of bacteria.Keywords:Fruit trees rhizosphere, XieLin bacteria, inorganic phosphorus, separation, appraisal目录绪论 (1)1 材料与方法 (1)1.1 供试材料 (1)1.1.1 菌株 (1)1.1.2 培养基 (1)1.1.3 主要仪器设备及药品试剂 (2)1.2方法 (2)1.2.1 解磷细菌的生物富集 (2)1.2.2 菌株初筛 (2)1.2.3 解磷细菌的鉴定形态学鉴定 (2)1. 2. 4 解磷细菌解磷能力的测定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 结果与讨论 (3)2.1 菌株初筛结果 (3)2.2 解磷菌形态鉴定结果............................... 错误!未定义书签。