基于LFHB 理论模型关联和预测醇+惰性溶剂的1H NMR 化学位移

合集下载

天然紫杉烷类化合物的核磁共振氢谱特征

天然紫杉烷类化合物的核磁共振氢谱特征

天然紫杉烷类化合物的核磁共振氢谱特征霍长虹;张嫚丽;王于芳;李力更;李作平;史清文【摘要】在系统分析天然紫杉烷类化合物核磁共振氢谱的基础上,对具有不同骨架类型的天然紫杉烷类二萜化合物的核磁共振氢谱的特征进行了总结,提供了部分不同类型的紫杉烷类化合物的核磁共振氢谱图.这些1H NMR特征对于紫杉烷类化合物的结构确定非常有益.【期刊名称】《波谱学杂志》【年(卷),期】2007(024)001【总页数】18页(P101-118)【关键词】NMR;红豆杉;天然紫杉烷类;核磁共振氢谱【作者】霍长虹;张嫚丽;王于芳;李力更;李作平;史清文【作者单位】河北医科大学,药学院天然药物化学教研室,河北,石家庄,050017;河北医科大学,药学院天然药物化学教研室,河北,石家庄,050017;河北医科大学,药学院天然药物化学教研室,河北,石家庄,050017;河北医科大学,药学院天然药物化学教研室,河北,石家庄,050017;河北医科大学,药学院天然药物化学教研室,河北,石家庄,050017;河北医科大学,药学院天然药物化学教研室,河北,石家庄,050017【正文语种】中文【中图分类】O641紫杉醇(Taxol®)是美国学者Wall最早于1963年从太平洋红豆杉(Taxusbrevifolia)的树皮中分离出来的优秀的天然抗肿瘤药物,主要用于卵巢癌、乳腺癌、小细胞性和非小细胞性肺癌、头颈部癌的治疗,并对食道癌、鼻咽癌、膀胱癌、淋巴癌、前列腺癌、恶性黑色素癌及胃肠道癌疗效显著[1-3]. 紫杉醇属于紫杉烷类含氮二萜类化合物,其新颖的结构、可靠的疗效、独特的抗肿瘤作用机制吸引全世界医药学家对这类化合物进行寻找,目前已从自然界中分离得到400多个此类化合物,新的紫杉烷类化合物,以及新的骨架类型的化合物还在不断地被发现[4-6]. 关于紫杉烷类化合物的氢谱特征,周金云等在1997年已有专门的综述发表[7]. 但近10年来,随着200多个新的紫杉烷类化合物的发现,对天然紫杉烷类二萜化合物的氢谱特征重新作一比较全面的总结和补充,无疑对这类化合物的结构推导有参考价值. 本文旨在结合我们自己的研究工作,对天然紫杉烷类二萜化合物的氢谱特征作一综述.1 紫杉烷类二萜化合物的基本骨架紫杉烷类二萜化合物按其基本骨架可分为如下9大类,即6/8/6,6/5/5/6,6/10/6,5/7/6,5/6/6,6/12,6/8/6/6,6/5/5/5/6, 6/8/6等9种不同的稠和方式,包括五元环,六元环,七元环,八元环,十元环和十二元环等. 9种基本骨架按其被发现的时间顺序排列如下,其中最后3种骨架是近三年才从自然界中被发现.我们对上述9种紫杉烷类化合物基本骨架各自的氢谱特征进行了简单的归纳总结(见表1),对于初步判断某个紫杉烷类化合物属于上述哪种骨架类型,具有一定的指导意义.表1 紫杉烷类化合物9种骨架类型的1H NMR特征Table 1 The 1H NMR features of nine skeletons of taxanes骨架1H NMR特征AH-3α(δ 2.57~3.27, d, J=6.8 Hz)为其特征信号, 不同的亚类型有其不同的特征. B缺少H-3α的特征信号, Me-18 (δ 1.24~1.34, d, J=7.0 Hz), H-12α (δ 3.23~3.79, q, J=7.0 Hz)C*H-20 (δ 5.30~5.80, d, J=9~10 Hz), H-3a (δ 2.52~2.82, d,J=15.5 Hz), H-3b (δ 1.64~2.00, d, J=15.5 Hz)D在氢谱中很难与相应的6/8/6骨架相区别, 但在碳谱中C-1与其它不含杂原子的碳相比明显位于低场(δC 57~70); Me-16(δ 1.01~1.38)E缺少H-9β和H-10α的特征信号, 但在碳谱中有C-10内酯羰基特征信号(δC 173)续表1Continuation of the Table 1骨架1H NMR特征F**H-10α (δ 6.83~7.31), H-3 (δ 5.59~6.47, d, J=10~12 Hz) ; H-20a, H-20b为一组AB四重峰, J=12.9~13.5 Hz, 当C-20为羟基时H-20a (δ 4.40~4.60, d), H-20b (δ 3.40~3.80, d); 当C-20为乙酰氧或肉桂酰氧基时H-20a (δ 4.80~4.95, d), H-20b (δ 4.10~4.55, d)GH-14 (δ 3.02, m), H-20a (δ 2.89, dd, J=15.8, 6.6 Hz), H-20b (δ 2.12, dd, J=15.8, 1.3 Hz)H缺少H-3 的特征信号, H-20a (δ 1.97~2.12, d, J=11.4 Hz), H-20b (δ 1.74~2.00, d, J=11.4 Hz)I***H-14 (δ 3.01, 1H, br.s), H-21 (δ 3.79, 2H, br.d, J=8.0 Hz)* 目前从自然界中分离得到的具有骨架C的化合物,其C-4和C-20之间均为双键;** 目前从自然界中分离得到的具有骨架F的化合物,其C-3和C-4、C-8和C-9之间均为双键;当C-5有肉桂酰基取代时H-10α在δ 7.25左右,常与CDCl3的信号重合. *** 目前从自然界中分离得到的具有骨架I的化合物仅一个.2 各类骨架的氢谱紫杉烷类化合物一般都有4个甲基,由于此类化合物在C-11,12大多具有双键,因此18位甲基一般位于最低场(δ 1.91~2.37);19位甲基位于最高场(δ 0.66~1.45)[但有5(20)四元氧环的化合物除外,其19位甲基的信号出现在较低场(δ1.45~1.89)];16位和17位甲基是位于C-15上的偕甲基,其化学位移在18位甲基和19位甲基之间(但C-9位有羰基的化合物,16位甲基的信号会出现在较高场),且相互之间有远程偶合[8]. 紫杉烷类化合物的母核一般都有数个含氧取代基,与含氧取代基位于同一碳上的氢的化学位移一般在δ 3.0~7.0,峰与峰之间很少有重合,由于与邻位的氢有偶合而呈现不同程度的裂分,一般特征都很明显,比较容易辨认. 其它类型质子的氢谱特征则随着化合物基本骨架的不同而有很大区别,下面逐一论述.2.1 具有C-4(20)双键的紫杉烷类化合物的氢谱图1 化合物1的立体结构Fig.1 The stereochemistry structure of compound 1 含C-4(20)双键的紫杉烷类化合物,当C-9和C-10具有相同的取代基时,H-10α与H-9β相比位于低场,两者呈AB偶合系统,偶合常数大约为10 Hz 左右. 由于H-1β和H-2β之间的二面角接近90°,因此H-1β与H-2β几乎没有偶合,但H-1β与H-14β质子有偶合,偶合常数为6~7 Hz. H-3α与H-2β形成一个AB系统,H-3α一般出现在δ 2.3~4.0左右,偶合常数大约为5~7 Hz,这一组AB系统是含有C-4(20)环外双键6/8/6环系紫杉烷类化合物的一个特征(当C-2没有含氧取代基时例外,这时H-3仅为一宽的双重峰,偶合常数较小). 该类化合物的另一个特征信号是环外双键的烯氢H-20a和H-20b,在烯氢范围内呈现两个单峰或宽单峰,其化学位移值受C-2和C-5取代基的影响, 并和H-3α,H-5β有远程烯丙偶合. 当C-5是肉桂酰基取代时,肉桂酰基的苯环的2′,6′芳氢受C-13取代基的影响较大. 这可能是由于在立体结构中肉桂酰基的苯环伸展到C-13取代基附近,如果C-13位为羰基的话,苯环的2′,6′芳氢正好处于羰基的负屏蔽区(图1),其化学位移向低场移动,此时肉桂酰基的β氢出现在2′,6′芳氢和3′,4′,5′ 芳氢信号之间(图2);但当 C-13位是羟基(乙酰氧基)取代时,肉桂酰基的2′,6′芳氢和3′,4′,5′芳氢呈现裂分很小的两组近似单峰,且肉桂酰基的β氢出现在2′,6′芳氢和3′,4′,5′芳氢信号的低场(图3). 当C-11,12之间的双键被氧化成环氧烷或转移到C-12, 13位或C-3(11)环化时,肉桂酰基的β氢信号位置与13-Deacetyltaxinine E基本一致[9]. 所以通过肉桂酰基中芳氢的化学位移值和峰形可以区别C-13位是羰基还是羟基(或乙酰氧基)取代.图2 化合物1的1H NMR图谱Fig.2 1H NMR spectrum of compound 1图3 化合物2的1H NMR图谱Fig.3 1H NMR spectrum of compound 22.2 具有C-4(20)双键C-3(11)环化的紫杉烷类化合物的氢谱化合物Taxinine K 和Taxuspine C为典型的具有C-4(20)双键C-3(11)环化的紫杉烷类化合物. 到目前为止,从各种红豆杉中分离出该类化合物有21个. 在这类化合物中由于C-3和C-11环化,H-3的特征信号消失,但同时出现一组特征信号,即H-12 和18位甲基分别作为四重峰和二重峰出现在δ 3.23~3.79和δ 1.24~1.34,偶合常数大约是7.0 Hz[10,11]. 由于C-5一般都是肉桂酰基取代,H-5β常作为一个特征三重峰出现在较低场(δ 5.6左右,J≈9 Hz)[12,13]. 因为C-11, 12之间的双键已不存在,当C-9与C-10有相同取代基时,H-9β和H-10α的化学位移值很接近,有时甚至连9-OH, 10-OAc取代与10-OH, 9-OAc取代的两个化合物在1H NMR谱上都不易区别[14],但偶合常数还是较大,约在9~10 Hz左右[15]. 目前发现的这类化合物中,C-13均为羰基,因此,H-14α 和H-14β的信号也是这类化合物的特征信号. 当1-位为羟基取代时,可以看到H-2β和H-14α之间的偶合,如化合物1-hydroxy-2-deacetoxy-taxuspine C的氢谱中可以看到H-2β为宽单峰,H-14α为宽的二重峰(图4)[13].图4 1-hydroxy-2-deacetoxy-taxuspine C的1H NMR图谱Fig.4 1H NMR spectrum of 1-hydroxy-2-deacetoxy-taxuspine C2.3 具有C-4(20)双键C-12(17)氧环的紫杉烷类化合物的氢谱在具有C-4(20)双键C-12(17)氧环的紫杉烷类化合物如Taxagifine 和 TaxinineM中,最大的波谱特征是H-9β 和H-10α之间的偶合常数变小. 这是由于围绕着C-9 和C-10 键的取代基采取了斜背式,致使H-9β和H-10α之间的二面角约是120°,偶合常数约在2~3 Hz. 这类化合物的另一个特点是C-12 和C-17形成了一个五元氧环,C-11 和C-12 之间的双键不复存在,H-9β 和H-10α的化学位移值比较接近或重合(与C-11 和C-12 之间有双键同类化合物相比),在吡啶溶剂中相差在δ 0.4左右[16]. 五元氧环上的偕氢(H-17a和 H-17b)作为AB四重峰出现在δ 3.6~4.4 左右,偶合常数在8 Hz左右[16-19]. 由于C-19常常有含氧取代基,H-19a和 H-19b作为AB四重峰出现在δ 3.7~4.2(C-19位是羟基时)或在δ4.3~4.6 (C-19位是酰基时),其偶合常数比五元氧环上的偕氢H-17a和H-17b之间的偶合常数要大,大约在11~12 Hz[20]. 这类化合物的第三个波谱特征是H-2β 和H-3α之间的偶合常数变大,大约在10~11 Hz (C-11 和C-12 之间有双键的同类化合物, H-2β 和H-3α之间的偶合常数大约在6~7 Hz),H-2β 明显向低场位移(目前发现的此类化合物C-2均为乙酰基取代,化学位移值通常大于δ 6.0) (图5).图5 化合物6的1H NMR图谱Fig.5 1H NMR spectrum of compound 62.4 具有C-4(20)环氧烷或C-11(12) 环氧烷的紫杉烷类化合物的氢谱在具有C-4(20) 氧环的紫杉烷类化合物结构中,C-4(20)氧环上的氧都是构象,如化合物7的优势构象中C-4(20)氧环上的氧和C环上的H-5β即为顺式取向(图6),由于受C-4(20)三元氧环的各相异性效应的影响,与C-4(20)之间有双键的同类化合物相比,H-5β通常向高场位移δ 1.0左右(图7). 当C-5为羟基取代时,H-5β作为三重峰出现在δ 3.0左右(J=2.7~3.2 Hz); 当C-5为酰基取代时,H-5β作为三重峰出现在δ 4.0~4.3左右(J=2.7~3.2 Hz). 如果忽略C-4(20)三元氧环的各相异性效应的影响,仅仅和C-4(20)有双键的同类化合物的化学位移值相比较来判断C-5位的取代情况常常会得出不正确的结论[21-23]. 这类化合物的另一个波谱特征是H-20a 和H-20b作为一个非常特征的AB系统分别出现在δ 2.3 和3.6左右,偶合常数大约在5.2 Hz左右. 在这类化合物中, H-2β 和H-3α之间的偶合常数通常也变小,大约在3.0~4.5 Hz左右[24,25];当C-11和C-12之间的双键环氧化后,H-10α受C-11,12三元氧环的各相异性效应的影响也向高场位移,当C-9和C-10有相同的取代时, H-10α较H-9β位于高场[26,27].图6 化合物7中C-4(20) 氧环的构象Fig.6 Conformation of C-4(20) epoxyring in compound 7图7 化合物7的1H NMR图谱Fig.7 1H NMR spectrum of compound 72.5 具有C-5(20) 四元氧环的紫杉烷类化合物及其重排衍生物的氢谱这类紫杉烷类化合物共同特征是存在一个C-5(20)四元氧环,因此其主要特征为H-20a 与H-20b构成一个AB四重峰系统,它们的化学位移值和偶合常数都比较固定(δ 4.1~4.6,J=7~9 Hz). 唯一的例外是当7位具含氧取代基时,H-20a与H-20b的化学位移值十分接近,形成一个宽单峰. 当C-7和C-13为羟基或酰基取代时,H-7α和H-13β均为三重峰,H-13β受C-11,12双键的影响位于更低场.上述两类化合物,当取代基相同时,它们的氢谱几乎是一致的(尽管在碳谱中这两类化合物的C-1与C-15是有区别的),因此,如果没有二维谱的帮助时常常会得到错误的结果[28,29]. 当两类化合物的B环有苯甲酰基取代时(不论其所在的位置),2′,6′-芳氢的化学位移呈现较强的规律性,在Baccatin Ⅲ衍生物(9)中,2′,6′-芳氢的化学位移位于δ 8.0的低场;但在11(15→1)重排的Baccatin Ⅲ衍生物如11(15→1)abeotaxane(10)中,2′,6′-芳氢的化学位移值一般都小于或等于δ 8.0.需要指出的是当11(15→1) 重排的紫杉烷的C-5(20)不是四元氧环而是C-4(20)环外双键时,这类化合物的B/C环在室温下可采取船式/椅式或椅式/船式两种构象,或是两种构象的平衡体. 当B/C环采取船式/椅式时,H-9β和H-10α之间的偶合常数大约是10 Hz; 当B/C环采取椅式/船式时,H-9β和H-10α之间的偶合常数大约是3.7 Hz; 当B/C环采取两种构象并进行快速交换时,其氢谱中的每个氢仅呈现为很宽的单峰或峰包,看不清裂分(图8上). 当温度降到很低时(0 ℃),可以看到一种优势构象,其氢谱中可以观察到一种构象的氢谱及其裂分(图8下)[30,31].图8 化合物11在不同温度下的1H NMR图谱(上为25 ℃,下为0 ℃)Fig.8 1H NMR spectrum of compound 11 at different temperatures (above at 25 ℃, below at 0 ℃)2.6 二环紫杉烷类的氢谱到目前为止分离得到的二环紫杉烷类化合物不足30个[32-36]. 在这类化合物中,当C-9为乙酰氧基时,在低场除H-5β和H-10α呈宽的单峰(H-10α和18-Me以及19-Me均有远程偶合)外,H-7和H-13β均呈宽的双峰,H-2β和H-3以及H-20a和H-20b呈现两组AB四重峰. 现在已发现的该类化合物C-10都是乙酰氧基,H-10α因夹在两个双键之间出现在最低场(δ 6.8左右). 当C-13为羰基时,H-10α出现在 7.05左右[37-39]. 当C-5有肉桂酰基或Winterstein酰基时,H-10α移向低场,大约在δ 7.26左右, 常被氘代氯仿中残余的氢质子的信号所掩盖(图9)[40,41]. 当C-9为羰基时,C-8与C-9之间的双键移至C-7与C-8之间,H-10α失去了原来与C-19甲基的远程偶合由原来宽单峰变为尖锐的单峰(δ 6.7左右)(图10)[42-44].图9 化合物13的1H NMR图谱Fig.9 1H NMR spectrum of compound 13图10 化合物14的1H NMR图谱Fig.10 1H NMR spectrum of compound 142.7 2(3→20)重排的紫杉烷类的氢谱1982年首次从欧洲红豆杉(T. Baccata)中分离得到2(3→20)重排的紫杉烷类化合物[45],但到目前为止报道的仅约有20个[36]. 这类化合物的波谱特征是H-10α作为一个尖的单峰出现在δ 5.4左右的低场(当10-OH乙酰化后移向更低场,约δ 6.3),H-2β和H-20构成一组宽的AB四重峰(因为H-2β同时还和H-1β有弱偶合,H-20 同时还和H-5β有远程偶合). H-13β呈宽的二重峰,H-7α呈四重峰,H-5β呈宽的单峰, C-3的2个质子在δ 1.6~2.8成AB四重峰,偶合常数为15 Hz左右, 但有时与H-14β的化学位移相重合[46-50]. C-10为羟基时因与C-9羰基形成氢键甚至在氘代氯仿中都可以看到C-10位羟基的信号(图11,12).图11 化合物15的1H NMR图谱Fig.11 1H NMR spectrum of compound 15 图12 化合物16的1H NMR图谱Fig.12 1H NMR spectrum of compound 16 2.8 11(15→1),11(10→9)双重排的紫杉烷类化合物的氢谱11(15→1),11(10→9)双重排的紫杉烷类化合物被发现的较晚,1994年才首次从喜马拉亚红豆杉(T. Wallichiana)中分离出来[51],到目前为止也只有区区几个. 在这类化合物中C-2都是苯甲酰基取代,因此,H-2β出现在最低场(δ 5.8左右). 现在被发现的此类化合物中C-7和C-13都是羟基取代,H-7α和H-13β出现在δ 4.2~4.8之间,且都为三重峰. H-20a与H-20b呈AB四重峰,当C-5(20)是四元氧环时,H-20a与H-20b的化学位移在δ 4.0~4.5之间,偶合常数约有8 Hz ; 当C-5(20)的四元氧环开环时,H-20a与H-20b的化学位移在δ 3.6~3.9(C-20为羟基)或δ 4.2~4.6(C-20为乙酰化的羟基)之间,偶合常数也相应的变大,大约有11~13 Hz. 这类化合物的另一特点是观察不到在其它类型的紫杉烷类化合物中比较特征的H-9β和H-10α的信号[52,53]. 我们的核磁共振研究表明,化合物17在氘代氯仿中放置一定时间可以自动转化成18,且随着时间的延长,转化更加明显(图13).图13 化合物17的1H NMR图谱Fig.13 1H NMR spectrum of compound 17 2.9 其它类型的紫杉烷化合物的氢谱具有这类新骨架的紫杉烷类化合物仅此两个,分别从我国台湾产的T. Sumatrana和加拿大产的T. canadensis的红豆杉中分离得到. 19是唯一一个含有21个碳原子骨架的紫杉烷类化合物,与前述的Taxinine M相比仅在δ 3.8左右多一个相当于2个氢的二重峰(J≈ 8 Hz). 20中由于双键由C-4(20)转移到C-3(4)并且C-20与C-14相连,H-20a与H-20b分别在δ 2.1和δ 2.9左右裂分成两个四重峰[5,54].具有21,22这类骨架的紫杉烷类化合物首先发现于加拿大红豆杉T. canadensis中[55,56]. 其特点是18-Me 作为一个单峰明显向髙场位移;在化合物21中,H-20a 和H-20b 分别作为dd四重峰出现在δ 2.0~3.0之间(图14). 在化合物22中,H-20a 和H-20b 分别作为二重峰出现在δ 2.0左右,偶合常数为11.4 Hz(图15).图14 化合物21的1H NMR图谱Fig.14 1H NMR spectrum of compound 21 图15 化合物22在不同溶剂中的1H NMR图谱(上为氘代丙酮,下为氘代氯仿)Fig.15 1H NMR spectra of compound 22 in different solvent (above in acetone-D6,below in CDCl3)3 紫杉烷类化合物中取代基的氢谱特征紫杉烷类化合物中常见的取代基有乙酰基,苯甲酰基,肉桂酰基,Winterstein酰基,N-苯甲酰基-3′-苯基-异丝氨酰基,Phenyisoserinate,木糖,葡萄糖等. 乙酰基在紫杉烷类化合物中最常见,一般出现在δ 1.91~2.46,呈尖锐单峰. 苯甲酰基和肉桂酰基上的芳氢由于受酰基的影响分别裂分成两组和三组. 肉桂酰基上α-氢与β-氢由于受酰基吸电子基的影响化学位移值相差较大(大于1),肉桂酰基双键顺式时,α与β氢的偶合常数为12 Hz, 反式时为16 Hz, 很容易区别. 在Winterstein酰基中,由于苯环上的氢不再受酰基的影响,与苯甲酰基和肉桂酰基中的芳氢相比位于较高场且不再裂分成两组或三组. 2′上的2个偕氢与3 ′的氢构成一组ABM系统,比较容易辨别. N上的2个甲基的化学位移绝大多数情况下是相等的,位于δ 2.2左右[57,58], 只有在母核是Taxinine M 时N上的2个甲基的化学位移是不相等的并向低场位移(δ 2.8~3.0左右)[59,60]. 但当N进一步质子化成盐后N上的2个甲基的化学位移也不相等并向低场位移,位于δ 2.5~3.8左右[61]. 在Phenyisoserinate取代基中,2′位上有一个羟基时,2′-H与3′-H构成一组容易辨别的AB四重峰,但有时仅呈现两个很宽的峰包[62]. 当N上的一个甲基被氢取代时,在氢谱中剩下的一个N-甲基的化学位移没有明显变化,但在碳谱中,剩下的一个N-甲基的化学位移有明显变化,向高场位移约δ 7~8[63,64]. 当一个N-甲基被氧化成醛基时导致侧链在溶液中存在两种构象,此时可以明显看到醛基上的氢质子信号(图16). 苯甲酰基-3′-苯基-异丝氨酰基(仅位于C-13)和木糖 (仅位于C-7位) 到目前仅见于紫杉醇(图17)及其衍生物中. 含有葡萄糖的紫杉烷类化合物主要是近年才有报道,其母核目前都是6/8/6骨架的紫杉烷,葡萄糖可连在C-5或C-7,C-10,C-13和C-14位. 紫杉烷的葡萄糖苷在氘代氯仿中呈凝胶状,峰形较宽不易辨认,但在氘代丙酮中峰形很尖锐,且能看到羟基的信号,配合氢-氢相关谱,很容易确定(图18)[65-67].图16 N上具有甲酰基的紫杉烷的1H NMR图谱Fig.16 1H NMR spectrum of taxane with a N-formyl side chain图17 紫杉醇在氘代氯仿中的1H NMR图谱Fig.17 1H NMR spectrum ofTaxol® in CDCl3图18 一个紫杉烷糖苷在低场区的1H NMR图谱Fig.18 1H NMR spectrum of a taxane glycoside in deshielded region总之,紫杉烷类化合物的光谱特征比较强,并已积累了丰富的参考数据,对于绝大多数的紫杉烷类化合物来说,通过和已知的化合物相比较,仅借助氢谱基本上可以完成结构的确定. 但对于新骨架的确定还需要各种二维谱的帮助才能完成[54-56,68]. 关于紫杉烷类化合物的碳谱特征可参考有关综述[69-71].参考文献:【相关文献】[1] Georg G I, Chen T T, Ojima I, et al. Taxane anticancer agents: basic science and current status[M]. Washington DC: American Chemical Society, 1995.[2] Farina V. The chemistry and pharmacology of taxol and its derivatives[M]. Amsterdam: Elsevier Science, 1995.[3] Tian J G(田建广), Wei C H(魏昌华), Feng R(冯锐), et al. In vivo studies of taxol chemotherapy in a mouse S180 sarcoma by 31P magnetic resonce spectroscopy(紫杉醇治疗小鼠S180肉瘤的体内31P MRS 研究)[J]. Chinese J Magn Reson(波谱学杂志), 1999, 16(1): 5-10.[4] Morita H, Machida I, Hirasawa Y, et al. Taxezopidines M and N, taxoids from the Japanese yew, Taxus cuspidata[J]. J Nat Prod, 2005, 68(6): 935-937.[5] Shen Y C, Lin Y S, Cheng Y B, et al. Novel taxane diterpenes from Taxus sumatrana with the first C-21 taxane ester[J]. Tetrahedron, 2005, 61(5): 1 345-1 352.[6] Shi Q W, Cao C M, Gu J S, et al. Four new epoxy taxanes from needles of Taxus cuspidata[J]. Nat Prod Res, 2006, 20(2): 173-179.[7] Zhou J Y(周金云), Fang Q C(方启程). The 1H-NMR features of natural taxane diterpenoid compounds(天然紫杉烷类二萜化合物的核磁共振氢谱规律)[J]. Acta Botanica Sinica (植物学报), 1997, 39(5): 467-476.[8] Chen W M(陈未名). Chemical components and bioactivities of Taxus spices(红豆杉属植物的化学成分和生理活性)[J]. Acta Pharm Sinca (药学学报), 1990, 25(3): 227-240.[9] Kobayashi J, Hosoyama H, Shigemori H, et al. Taxuspine D, a new taxane diterpene from Taxus cuspidata with potent inhibitory activity against Ca2+-induceddepolymerization of microtubules[J]. Experientia, 1995, 51(6): 592-595. (This paper reported the NMR data in C6H6-D6, our spectrum was recorded in CDCl3.)[10] Shi Q W, Saurol F, Mamer O, et al. New taxanes from the needles of Taxus canadensis[J]. J Nat Prod, 2003, 66(4): 470-476.[11] Shi Q W, Saurol F, Mamer O, et al. New minor taxanes analogues from the needles of Taxus canadensis[J]. Bioorg Med Chem, 2003, 11(2): 293-303.[12] Shi Q W, Lederman Z, Saurol F, et al. A yew in Israel, new taxane derivatives[J]. J Nat Prod, 2004, 67(2): 168-173.[13] Petzke T L, Shi Q W, Saurol F, et al. Taxanes from the rooted cuttings of Taxus canadensis[J]. J Nat Prod, 2004, 67(11): 1 864-1 869.[14] Zamir L O, Zhang J Z, Kutterer K, et al. 5-Epi-canadensede and other novel metabolites of Taxus canadensis[J]. Tetrahedron, 1998, 54(52): 15 845-15 860.[15] Shi Q W, Oritani T, Horiguchi T, et al. Four novel taxane diterpenoids from the needles of Japanese yew, Taxus cuspidata[J]. Biosci Biotech Bioch, 1999, 63(5): 924-929. [16] Shigemori H, Sakurai C A, Hosoyama H, et al. Taxezopidine J, K and L, new taxoids from Taxus cuspidata inhibiting Ca2+-induced depolymerization of microtubules[J]. Tetrahedron, 1999, 55(9): 2 553-2 558.[17] Chauviere G, Guenard D, Pascard C, et al. Taxagifine: new taxane derivative from Taxus baccata L. (Taxaceae) [J]. J Chem Soc, Chem Commun, 1982, 9: 495-496.[18] Barboni L, Gariboldi P, Torregiani E, et al. Minor taxoids from Taxus wallichiana[J]. J Nat Prod, 1995, 58(6): 934-939.[19] Fukushima M, Takeda J, Fukamiya N, et al. A new taxoid, 19-cetoxytaxagifine, from Taxus chinensis[J]. J Nat Prod, 1999, 62(1): 140-142.[20] Wang X X, Shigemori H, Kobayashi J. Taxuspines Q, R, S, and T, new taxoids from Japanese yew Taxus cuspidata[J]. Tetrahedron, 1996, 52(37): 12 159-12 164.[21] Zhang Z P, Jia Z J. Taxanes from Taxus yunnanensis[J]. Phytochemistry, 1990, 29(11): 3673-3675.[22] Barboni L, Gariboldi P, Torregiani E, et al. Taxane from the needles of Taxus wallichiana[J]. Phytochemistry, 1993, 33(1): 145-150.[23] Zamir L O, Nedea M E, Belair S, et al.Taxane isolated from Taxus canadensis[J]. Tetrahedron Lett, 1992, 33(36): 5 173-5 176.[24] Barboni L, Lambertucci C, Gariboldi P, et al. A taxane epoxide from Taxus wallichiana[J]. Phytochemistry, 1997, 46(1): 179-180.[25] Murakami R, Shi Q W, Oritani T. A taxoid from the needles of the Japanese yew, Taxus cuspidata[J]. Phytochemistry, 1999, 52(8): 1 577-1 580.[26] Appendino G, Barboni L, Gariboldi P, et al. Revised structures of brevfoliol and some baccatin VI derivatives[J]. J Chem Soc, Chem Commun, 1993, 20: 1 587-1 589.[27] Barboni L, Gariboldi P, Torregiani E, et al. Chemistry and occurence of taxane derivatives. Part 16. Rearranget taxoids from Taxus×media Rehd. Cv Hicksii. X-ray molecular structure of 9-O-benzoyl-9,10-dide-O-acetyl-11(15→1)abeo-baccatin VI[J]. J Chem Soc Perk T I, 1994, 21: 3 233-3 238.[28] Li B, Tanaka K, Fuji K, et al. Three new diterpenoids from Taxus chinensis[J]. Chem Pharm Bull, 1993, 41(9): 1 672-1 673.[29] Guo Y W, Diallo B, Jaziri M, et al. Immunological detection and isolation of a new taxoids from the stem bark of Taxus baccata[J]. J Nat Prod, 1996, 59(2): 169-172.[30] Fuji K, Tanaka K, Li B, et al. Structures of nine new diterpenoids from Taxus chinensis[J]. Tetrahedron, 1995, 51(37): 10 175-10 188.[31] Shi Q W, Oritani T, Sugiyama T. Three new rearranged taxane diterpenoids from the bark of Taxus Chinensis var. mairei and the needles of Taxus cuspidata[J]. Heterocycles, 1999, 51(4): 841-850.[32] Zamir L O, Zhou Z H, Caron G, et al. Isolation of a putative biogenetic taxane precursor from Taxus canadensis needles[J]. J Chem Soc, Chem Commun, 1995, 5: 529-530.[33] Fang W S, Fang Q C, Liang X T, et al. Taxachintrienes A and B, two new bicyclic taxane diterpenoids from Taxus chinensis[J]. Tetrahedron, 1995, 51(31): 8 483-8 491.[34] Baloglu, E, Kingston D G I. The taxane diterpenoids[J]. J Nat Prod, 1999, 62(10): 1448-1472.[35] Parmar V S, Jha A, Bisht KS, et al. Constituents of yew trees[J]. Phytochemistry, 1999, 50(8): 1 267-1 304.[36] Shi Q W, Kiyota K. New natural taxane diterpenoids from Taxus species since 1999[J]. Chem Biodiv, 2005, 2(12): 1 597-1 623.[37] Shi Q W, Oritani T, Sugiyama T. Two bicyclic taxane diterpenoids from the needles of Taxus mairei[J]. Phytochemistry, 1999, 50(4): 633-636.[38] Shi Q W, Nikolakakis A, Sauriol F, et al. Canadensenes: Natural and semi-synthetic analogs[J]. Can J Chem 2003, 81(5): 406-411.[39] Shi Q W, Oritani T, Sugiyama T, et al. Two novel bicyclic 3,8-ecotaxoids from the neddles of Taxus mairei[J]. Nat Prod Lett, 1999, 13(3): 171-178.[40] Shi Q W, Oritani T, Horigucg T, et al. Isolation and structural determination of a novel bicyclic taxane diterpene from the needles of the Chinese yew, Taxus mairei[J]. Biosci Biotech Bioch, 1999, 63(4): 756-759.[41] Shi Q W, Oritani T, Sugiyama T, et al. Three new bicyclic taxane diterpenoids from the needles of Japanese yew, Taxus cuspidata Sieb. et Zucc[J]. J Asian Nat Prod Res, 1999, 2(1): 63-70.[42] Shi Q W, Oritani T, Sugiyama T. Bicyclic taxane with a verticillene skeleton from theneedles of Chinese yew. Taxus mairei[J]. Nat Prod Lett, 1999, 13(1): 81-88.[43] Shi Q W, Oritani T, Sugiyama T. Three novel bicyclic taxane diterpenoids with verticillene skeleton from the needles of Chinese yew, Taxus chinensis var. mairei[J]. Planta Med, 1999, 65(4): 356-359.[44] Shi Q W, Oritani T, Sugiyama T, et al. Three novel bicyclic 3,8-secotaxane diterpenoids from the needles of the Chinese yew, Taxus chinensis var. mairei[J]. J Nat Prod, 1998,61(11): 1 437-1 440.[45] Graf E, Kirfel A, Wolff G J, et al. A alkaloid taxin A from Taxus baccata[J]. Liebigs Ann Chem, 1982, 376-381.[46] Shi Q W, Oritani T, Zhao D, et al. Three new taxoids from the seeds of Japanese yew, Taxus cuspidata[J]. Planta Med, 2000, 66(3): 294-299.[47] Shi Q W, Oritani T, Sugiyama T, et al. Three new taxane diterpenoids from the seeds of Taxus yunnanensis cheng et l. k. fu and T. cuspidata Sieb et aucc[J]. Tetrahedron, 1999, 55(28): 8 365-8 376.[48] Shi Q W, Oritani T, Horiguchi T, et al. A newl y rearranged 2(3→20) abeotaxane yew, Taxus mairei[J]. Biosci Biotech Bioch, 1998, 62(11): 2 263-2 266.[49] Shi Q W, Oritani T, Kiyota H, et al. Taxane diterpenoids from Taxus yunnanensis and Taxus cuspidata[J]. Phytochemistry, 2000, 54(8): 829-834.[50] Shi Q W, Sauriol F, Mamer O, et al. New minor taxanes analogues from the needles of Taxus canadensis[J]. Bioorg Med Chem, 2003, 11(2): 293-303.[51] Vander V D G, Georg G I, Gollapudi S R, et al. Wallifoliol, a taxol congener with a novel carbon skeleton, from Himalayan yew Taxus wallichiana[J]. J Nat Prod, 1994, 57(6): 862-867.[52] Li L G, Tu G Z, Jin Y Z, et al. Structure identification of two bisabeotaxane lactones from the needles of Taxus cuspidata[J]. Zhongcaoyao, 2006, 37(10): 1 454-1 458.[53] Kiyot a H, Shi Q W, Oritani T, et al. New 11(15→1)abeotaxane, 11(15→1,1(10→9)bisabeotaxane and 3,11-cyclotaxanes from Taxus yunnanensis[J]. Biosci Biotech Bioch, 2001, 65(1): 35-40.[54] Shi Q W, Sauriol F, Mamer O, et al. A novel minor metabolite (taxane?) from the Taxus canadensis needles[J]. Tetrahedron Lett, 2002, 43(38): 6 869-6 873.[55] Shi Q W, Sauriol F, Mamer O, et al. First example of a taxane-derived dipropellane from the needles of Taxus canadensis[J]. J Chem Soc, Chem Commun, 2003, 1: 68-69. [56] Shi Q W, Sauriol F, Mamer O, et al. First three example of taxane-derived di-propellane from the needles of Taxus canadensis[J]. J Chem Soc, Chem Commun, 2004, 5: 544-545.[57] Shi Q W, Oritani T, Meng Q Z, et al. Four novel pseudoalkaloid taxanes from the seeds of the Chinese yew, Taxus chinensis var. mairei[J]. Tohoku J Agr Res, 1999, 50(1): 33-46.[58] Shi Q W, Oritani T, Zhao D, et al. Three new taxoids from the seeds of Japanese yew, Taxus cuspidata[J]. Planta Med, 2000, 66(3): 294-299.[59] Morita H, Machida I, Hirasawa Y, et al. Taxezopidines M and N, taxoids from the Japanese yew, Taxus cuspidata[J]. J Nat Prod, 2005, 68(6): 935-937.[60] Kumar P J K, Stefanowicz P, Kiyota T, et al. Taxines from the needles of Taxus wallichiana[J]. Phytochemistry, 2001, 58(8): 1 167-1 170.[61] Li L G, Tu G Z, Jin Y Z, et al. Taxane diterpenes from the rooted cuttings of Taxus canadensis[J]. Nat Prod R & D, 2007, 19(2): 215-219.[62] Shi Q W, Sauriol F, Mamer O, et al. Taxanes in rooted cuttings versus mature Japanese yew[J]. J Can Chem, 2003, 90(1): 64-74.[63] Shi Q W, Ji X H, Lesimple A, et al. Taxanes with C-5-amino-side chains from the needles of Taxus canadensis[J]. Phytochemistry, 2004, 65(23): 3 097-3 016.[64] Shi Q W, Oritani T, Sugiyama T, et al. Two novel pseudoalkaloid taxanes from the Chinese yew, Taxus chinensis var. mairei[J]. Phytochemistry, 1999, 52(8): 1 571-1 575. [65] Shi Q W, Sauriol F, Mamer O, et al. New minor taxane derivatives from the needles of Taxus canadensis[J]. J Nat Prod, 2003, 66(11): 1 480-1 486.[66] Wang C L, Zhang M L, Cao C M, et al. First example of 11,12-epoxytane-glycoside from the needles of Taxus cuspidata[J]. Hetero Cycl Commun, 2005, 11(3-4): 211-214. [67] Li S H, Zhang H J, Niu X M, et al. Novel taxoids from the Chinese yew Taxus yunnanensis[J]. Tetrahedron, 2003, 59(1): 37-45.[68] Kong M(孔漫), He W Y(贺文义), Cheng K D(程克棣). 2D NMR and NOEDS study on a new taxane diterpene compound(用2D NMR及NOE差谱研究一个新的紫杉烷二萜化合物)[J]. Chinese J Magn Reson(波谱学杂志), 1996, 13(1): 75-80.[69] Rojas A C, De M D, Mendez B, et al. 13C NMR spectra of taxane type diterpenes: oxiranes and oxetenes[J]. Org Magn Res, 1983, 21(4): 259-266.[70] Bao G H, Liang J Y, Lin Y X. The 13C NMR studies on the compounds of nature taxane diterpenes[J]. Strait Pharm J, 1998, 10(1): 3-8.[71] Zhou J Y(周金云), Chen W M(陈未名), Fang Q C(方起程) . The 13C NMR feature discussion of natural taxane diterpenoid compounds(天然紫杉烷类二萜化合物的核磁共振碳谱规律的探讨)[J]. Acta Botanica Sinica(植物学报), 2000, 42(1): 1-9.。

举例NO4(H-NMR)

举例NO4(H-NMR)

5 推断下列化合物各类质子间有无偶合, 指出各质子裂分峰的数目及裂分小峰的 面积比,画出a,b,c,d各个化合物的H-NMR 可能的图形. (P173)
P174
6 异香草醛(1)与一分子溴在HOAc中溴化 得(2), (2)的羟基被甲基化,主要产物为 (3). (3)的NMR图谱如下,溴的位置在何 处? 7 丙酰胺的图谱如下,说明图谱中各组峰 对应分子中哪类质子.
经验计算
烷烃
Shoolery经验计算: Shoolery经验计算:δ-CH< = 0.23 + ∑Ci 经验计算 X-CH2CH2-Y: δ(X-CH2) = αx + βy –1.33 – δ(Y-CH2) = αy +βx –1.33
烯烃 δ=C-H = 5.25 + Z同 + Z顺 + Z反 =C-
脂肪羧酸化合物的H 脂肪羧酸化合物的H化学位移
酰胺的H化学位移和J 酰胺的H化学位移和J
取代苯衍生物的H 取代苯衍生物的H化学位移
∑S
活泼氢
ROH ArOH COOH >C=C(OH) CHO RSH RNH2 ArNH2 RCONH2 ArCONH2
氨基酸的H化学位移和J 氨基酸的H化学位移和J
1 活泼氢(OH,NH或活泼的CH)可进行D2O 交换 2 个别吸收峰发生严重的重叠现象, 可 以更换溶剂, 拉开谱峰 3 使用高场仪器
a:纯液,b:CDCl3 a:纯液,b:CDCl
n+1规则 n+1规则
多重峰的强度为:1:1, 1:2:1, 1:3:3:1, 1:4:6:4:1……等, 比例数字为(a+b)n展 开式系数比
8 下列一组NMR谱图内标物皆为TMS,试推 测结构. C5H12O2 C6H12O2 C10H13Cl

利用NMR技术研究极性二肽与金属离子间的相互作用

利用NMR技术研究极性二肽与金属离子间的相互作用

利用NMR技术研究极性二肽与金属离子间的相互作用刘絮;彭苗苗;郭艳春;曹书霞;赵玉芬【摘要】利用核磁滴定法研究了极性链状二肽(均为LL构型)与金属离子之间的相互作用。

极性二肽在与一价金属离子相互作用时,两者间的化学计量比为1∶1,并求得Li+与10种极性二肽结合常数的大小,其中与L-Glu-L-Glu的结合常数最大,这可能与L-Glu-L-Glu含有较多的富电子原子有关。

在此基础上又研究了Cu2+,Zn2+,Co2+3种二价金属离子与极性二肽间的相互作用,结果表明,二价金属离子与二肽间的相互作用是通过两步完成的。

%The interactions of 10 polar chain dipeptides( L-L configuration) with metal ions were exam-ined by NMR. These polar chain dipeptides exhibited a tremendous selectivity toward monovalent mental ion, showing a stoichiometric binding with 1∶1, and the association constants of dipeptides with Li+ were acquired. The results showed that L-Glu-L-Glu had stronger binding ability toward Li+ ions than other dipeptides, and suggested the electron-rich atoms in L-Glu-L-Glu molecular were favorable for the inter-action with metal ions. Furthermore, the interactions of divalent metal ions( Cu2+, Zn2+, Co2+) with 10 polar chain dipetieds were studied, which implied the interaction between them was carried out in two stages.【期刊名称】《郑州大学学报(理学版)》【年(卷),期】2015(000)003【总页数】5页(P82-86)【关键词】核磁共振;极性二肽;金属离子;结合常数【作者】刘絮;彭苗苗;郭艳春;曹书霞;赵玉芬【作者单位】郑州大学化学与分子工程学院河南郑州450001;郑州大学化学与分子工程学院河南郑州450001;郑州大学化学与分子工程学院河南郑州450001;郑州大学化学与分子工程学院河南郑州450001;郑州大学化学与分子工程学院河南郑州450001; 厦门大学化学化工学院福建厦门361005【正文语种】中文【中图分类】O482.53分子识别是生物体系的基本特征,是一种有目的、有选择的过程,此过程可能引起体系的电学、光学性质及构象的变化,也可能引起化学性质的变化,从而引起化学信息的存储、传递及处理.因此,分子识别在信息处理及传递、分子及超分子器件制备过程中起着重要作用[1].分子识别属于超分子化学范畴,是研究一个给定的受体或主体分子与底物或客体分子的相互作用.在生物体内,各类氨基酸以及肽类化合物经常与不同的金属离子结合形成超分子化合物,此类化合物在生物体的生命活动中起着重要的作用[2-3].核磁共振法是一种比较直观地反映主、客体之间相互作用的方法,此方法的多种参数使它成为研究溶液中分子结构的有力工具.通过测定1H,13C,15N,31P及各种二维谱,可以得到有关化学位移、耦合常数、化学交换和扩散系数等方面的信息[4-6].化学位移是最直观反映分子间相互作用的参数,核的化学位移的变化反映了核周围的磁场变化,由此可以推断是否有分子间相互作用的存在以及分子构象是否发生改变等.随着NMR技术解析得到的蛋白质和核酸的数量越来越多,化学位移数据库不断完善,使化学位移成为除耦合常数和NOE以外的大分子结构计算的重要参数[7-8].文[9]利用核磁共振和紫外光谱研究了水溶性的纤维低聚糖与CBDN1间的相互作用,并根据NMR-1H,15N化学位移和紫外吸收的变化,计算出不同低聚糖与CBDN1作用的结合常数.文[10]运用核磁共振技术研究了金属钙离子与蛋白之间的相互作用,并进行了三级结构的解析,为蛋白与金属间相互作用的研究提供了很好的参考数据.肽是指氨基酸之间以酰胺键连接的一类化合物,可以由两个氨基酸或多个氨基酸脱水缩合得到,是蛋白的主要组成成分.二肽是其中最简单的分子,通常根据构成二肽的氨基酸的极性特征,将二肽分为极性二肽和非极性二肽.即连有极性侧链的氨基酸构成的二肽,称为极性二肽;反之,连有非极性侧链的氨基酸构成的二肽,称为非极性二肽.作者通过核磁共振技术,利用核磁滴定法测定了10种极性二肽分子与Li+间的结合常数,并探讨了这10种极性二肽与3种二价金属离子间的相互作用,为完善金属离子与二肽之间相互作用的理论研究以及揭示超分子识别作用的机制奠定了良好的实验基础.Bruker DPX 400 MHz核磁共振仪,Sartorius BP211D分析天平,TGL-16台式离心机,XW-80A漩涡混合器.LiCl和CsCl购自上海市新华化工厂;NaCl购自天津市德恩化学试剂有限公司;KCl购自北京市双环化学试剂厂;Cu(NO3)2·3H2O购自天津市化学试剂三厂;Zn(NO3)2·6H2O购自上海市振欣试剂厂;Co(NO3)2·6H2O购自天津市科密欧化学试剂公司;d6-DMSO由北京市崇熙科技孵化器有限公司提供;L-Asp-L-Asp,L-Glu-L-Glu,L-Thr-L-Thr,L-Arg-L-Arg,L-His-L-Lys,L-Tyr-L-Arg,L-Asp-L-Tyr,L-Gln-L-Gly,L-Asp-L-Pro和Gly-Gly二肽均购于吉尔生化(上海)有限公司,其化学结构如图1所示.2.1 溶液的配制以氘代的DMSO为溶剂,配制0.2 mol/L的极性链状二肽溶液和一系列不同浓度的金属离子溶液,将二者等体积混合,使得极性链状二肽的最终浓度均为0.1mol/L,同时极性链状二肽的浓度与金属离子的浓度比分别为1∶0,1∶1,1∶2,1∶3,1∶4,1∶5,1∶6,1∶7,1∶8,1∶9,1∶10,1∶15和1∶20.对各组样品进行1H-NMR检测.2.2 结合常数的计算首先利用核磁滴定法测定二肽与一价金属离子的化学计量比,图2为L-Glu-L-Glu 与Li+的NMR Job plot曲线.不断改变L-Glu-L-Glu浓度(ca)与金属离子浓度(cb),而保持二者的总浓度为0.1 mmol/L.随着二者浓度比例的改变,L-Glu-L-Glu氨基上N—H的化学位移也会随之变化,根据离子浓度与氨基上N—H化学位移的变化值,利用 Job plot 方程拟合[11],可知L-Glu-L-Glu与Li+的化学计量比为1∶1.当两者结合比为1∶1时,极性链状二肽与一价金属离子相互作用的结合常数,是由极性链状二肽氨基上N—H的化学位移值对加入的金属离子的浓度进行非线性最小二乘法拟合得到的.在滴定过程中,随着金属离子浓度的不断增加,直链二肽N—H的化学位移随之改变.根据化学位移的变化可以计算两者的结合常数,相应的计算公式如下[9]:其中,fci=(δi- δf)/( δc- δi),δf为未加金属离子时二肽N—H的化学位移值;δc为金属离子与二肽完全结合时二肽N—H的化学位移值;δi为核磁滴定时任一状态下二肽N—H的化学位移值;[Lt]i为任一时刻金属离子的浓度.对于二价金属离子,由于离子势、离子半径等不尽相同并且其本身具有顺反磁性,可以采用固定金属离子浓度的方法,逐渐滴加二肽,根据N—H化学位移的变化来定性比较它们之间相互作用的强弱.通过对含有酰胺键的类肽化合物及肽类化合物与金属离子间相互作用的研究发现[12]:不论是类肽化合物还是肽类化合物,与金属离子配位的除了骨架上氨基氮原子之外,酰胺键上的氧原子也同样可以参与配位.对于所研究的10种极性链状二肽,通过核磁滴定发现,随着金属离子浓度的不断增加,只有氨基N—H的化学位移发生了变化,因此可以判断与金属离子配位的原子只有氨基氮原子.一价金属离子与二肽之间相互作用形成配合物的通式为:ML.如图3所示,在L-Glu-L-Glu的核磁堆积图中骨架上氨基的N—H化学位移随着Li+浓度的增加而发生变化,说明此氨基与Li+发生了直接的相互作用.3.1 极性链状二肽与一价金属离子的相互作用分别研究了10种极性链状二肽与4种一价金属离子(Li+,Na+,K+和Cs+)的相互作用.现主要以L-Glu-L-Glu在加入Li+后氨基N—H化学位移的变化来说明它们之间的相互作用.3.1.1 L-Glu-L-Glu与Li+的结合常数L-Glu-L-Glu与Li+以不同的浓度配比1∶0,1∶1,1∶2,1∶3,1∶4,1∶5,1∶6,1∶7,1∶8,1∶9,1∶10,1∶15,1∶20对其进行1H-NMR的测定,相应N—H的化学位移值δi分别为8.188 4,8.415 1,8.488 2,8.527 4,8.548 9,8.564 6,8.575 8,8.583 3,8.589 5,8.593 7,8.597 9,8.615 2,8.618 4.当二肽与金属离子的浓度比ca∶cb=1∶0时,δi即为δf.为了更直观地观察L-Glu-L-Glu氨基N—H化学位移变化规律,以ca∶cb为横坐标,δi(N—H)为纵坐标作图.如图4所示,当Li+的浓度配比不断增加时,N—H的化学位移也会随之增大,但其增大的幅度在不断减小.当二肽与金属离子的浓度比为1∶15时,随着金属离子浓度的增大,N—H的化学位移值变化不再明显,此时可认为两者之间的结合已经达到饱和状态,即使再增大金属离子浓度也不会引起化学位移值明显的变化,此时的N—H化学位移值即为δc.将不同浓度比下L-Glu-L-Glu中N—H的化学位移值代入公式(1),即可计算出两者之间相互作用的结合常数Ka=36.4 L/mol.3.1.2 极性链状二肽与Li+的结合常数根据以上计算方法,运用公式(1)可以求出Gly-Gly,L-Asp-L-Asp,L-Arg-L-Arg,L-Thr-L-Thr,L-Glu-L-Glu,L-His-L-Lys,L-Tyr-L-Arg,L-Gln-L-Gly,L-Asp-L-Tyr,L-Asp-L-Pro与Li+相互作用的结合常数Ka,结果分别为7.4,11.6,29.5,34.3,36.4,31.1,22.8,16.3,14.8,10.0 L/mol.由于不同的极性链状二肽含有不同的侧链基团,当它们与金属离子作用时,其结合能力也各不相同.L-Glu-L-Glu与L-Asp-L-Asp相比,前者侧链比后者多两个碳原子,更易于折叠弯曲,能更好地与金属离子结合,因此前者与Li+的结合常数较后者大.L-Glu-L-Glu,L-Thr-L-Thr,L-His-L-Lys以及L-Arg-L-Arg这4种二肽因为含有较多的富电子原子,如N,O等,能够更好地向缺电子的Li+提供电子,因而其结合常数比其他二肽大.尤其是L-Glu-L-Glu,因其含有较多的氧原子以及更长的碳链,更易于折叠扭曲,其与Li+的结合常数为最大.与之相反,Gly-Gly不仅没有侧链基团,而且其在氘代试剂中溶解度很小,所以与Li+的结合能力最弱.由于Na+,K+和Cs+形成的盐在各种氘代试剂中的溶解性极小,导致利用NMR法测定它们与二肽的结合常数均很小,且重现性不好,不能真实反映二者间相互作用的能力,故未列出.3.2 极性链状二肽与二价金属离子的相互作用二价金属离子与二肽之间的相互作用通常被认为是经过两步反应,最终形成可逆的配合物[13],通式为:ML2.以L-Gln-L-Gly为例,利用核磁滴定法研究二肽与二价金属离子间的相互作用.溶液的配制及测定方法与一价金属离子的相同,只是采用固定金属离子浓度的方法,逐渐滴加二肽,不断改变二肽与金属离子的浓度比,考察N—H化学位移的变化.以ca∶cb为横坐标,以δi(N—H)为纵坐标作图.图5~7是L-Gln-L-Gly分别与Cu2+,Zn2+和Co2+之间相互作用的线性关系图.从3个关系图中可以看出,固定某种金属离子的含量不变,当不断向体系中滴加二肽时,N—H的化学位移并不像一价金属离子那样呈规律性增加,而是出现随着二肽的滴加,N—H的化学位移值不断减小或者不断增大的现象,并且在减小和增大的过程中有拐点出现,即在作图时会出现两条斜率不同的直线.这种现象的产生可能与金属离子本身具有一定的磁性(Cu2+,Zn2+为抗磁性,Co2+为顺磁性)以及由于电荷离域化而诱导出接触位移有关.研究[14-15]表明,在金属离子和有机分子相互作用的过程中,所呈现出来的线性关系图的斜率跟结合常数直接相关.由此可以判定,二价金属离子与二肽的相互作用是通过两步进行的.根据线性关系图的斜率,可以定性地判断极性链状二肽与Co2+的结合能力稍强于与Zn2+的结合能力.【相关文献】[1] 刘育, 尤长城, 张衡益. 超分子化学:合成受体的分子识别与组装 [M]. 天津:南开大学出版社,2001: 1-5.[2] Grese R P, Cerny R L, Gross M L. Metal ion-peptide interactions in the gas phase: a tandem mass spectrometry study of alkali metal cationized peptides [J]. J Am Chem Soc, 1989, 111(8): 2835-2842.[3] Teesch L M, Adams J. Intrinsic interactions between alkaline earth metal ions and peptides: a gas-phase study [J]. J Am Chem Soc, 1990, 112(11): 4110-4120.[4] 姜凌. ATP与某些金属离子相互作用的NMR研究 [D]. 武汉: 中国科学院研究生院, 2002.[5] Case D A, Dyson H J, Wright P E. Use of chemical shifts and coupling constants in nuclear magnetic resonance structural studies on peptides and proteins [J]. Methods Enzymol, 1994, 239: 392-416.[6] Szilgyi L. Chemical shifts in proteins come of age [J]. Prog Nucl Magn Reson Spectrosc, 1995, 27(4): 325-442.[7] Wishart D S, Sykes B D. Chemical shifts as a tool for structure determination [J]. Methods Enzymol, 1994, 239: 363-392.[8] Wijmenga S S, Kruithof M, Hilbers C W. Analysis of 1H chemical shifts in DNA: assessment of the reliability of 1H chemical shift calculations for use in structure refinement [J]. J Biomol NMR, 1997, 10(4): 337-350.[9] Johnson P E, Tomme P, Joshi M D, et al. Interaction of soluble cellooligosaccharides with the N-terminal cellulose-binding domain of cellulomonas fimi CenC:2. NMR and ultraviolet absorption spectroscopy [J]. Biochemistry,1996, 35(44):13895-13906.[10]洪晶, 郭晨云, 刘华, 等. 八肋游仆虫中心蛋白的核磁共振研究 [J]. 福州大学学报:自然科学版, 2012, 40(6): 823-827.[11]Huang C Y. Determination of binding stoichiometry by the continuous variationmethod: the Job plot[J]. Methods Enzymol, 1982, 87: 509-525.[12]Gooding J, Hibbert D B, Yang W R. Electrochemical metal ion sensors: exploiting amino acids and peptides as recognition elements [J]. Sensors, 2001, 1: 75-90.[13]Nakon R, Angelici R J. Copper (Ⅱ) and zinc (Ⅱ) binding of optically active dipeptides [J]. J Am Chem Soc, 1974, 96(13): 4178-4182.[14]Perlmutter-Hayman B. Cooperative binding to macromolecules: a formal approach [J]. Acc Chem Res, 1986, 19(3):90-96.[15]Thordarson P. Determining association constants from titration experiments in supramolecular chemistry [J]. Chem Soc Rev, 2011, 40(3): 1305-1323.。

电子能谱学

电子能谱学

当光子的能量远比电子所在能级的电离能大时,光电子将 以很高的速度离开原子。
由于电子从原子内壳层的突然离开,将会引起中心电位的 突然改变。
原子最外层轨道的电子受到这种电位变化的影响,使得它 们从外层原子轨道上发射出去。这种现象称为光子振动发 射(photo shake off)。
由于是两个电子同时发射,也称为双电子发射光电离。也 就是说,在光子从原子内壳层激发出光电子的同时,还可 以激发出原子最外层轨道上的另一个电子。
2024/5/1
清华大学化学系
9
弛豫势能模型
当弛豫能表达为: 化学位移可用下式表达:
弛豫势能模型与静电势能模型相比,能更好地解 释化学位移效应。
下图是两种模型获得的N1s化学位移理论值与实 验结果的比较。
由此可见,弛豫势能模型与实验结果具有较好的 相关。对于固体样品,还必须考虑晶体结构的弛 豫能的影响。
2024/5/1
清华大学化学系
5
电荷势模型
对原Y原子芯能级所感受到的化学位移可用下式表达。
由此可见,化学位移主要来自价电子转移所引起的势能变化。
在一般的多原子体系中,原子i上的电荷为qi,原子i与其周围 的原子j相结合,其化学位移ΔEi可用下式描述。
其中k为原子i的一个芯能级电子与其上的一个价电子间的平 均排坼能(即单中心积分)。上式表面元素的化学位移与qi 间有线性关系。
2024/5/1
清华大学化学系
23
多重裂分(静电裂分)
2024/5/1
清华大学化学系
24
多重裂分(静电裂分
同样对于Cr的配合物的Cr3s谱,在Cr(CO)6中没 有出现Cr3s的分裂峰,表面不存在未成对电子。 实验也证明该物质是反磁性的。

锂离子电池非水电解质中Li +迁移特性

锂离子电池非水电解质中Li +迁移特性

收稿:2006年12月,收修改稿:2007年5月 3通讯联系人 e 2mail :hexm @锂离子电池非水电解质中的Li +迁移特性赵吉诗 王 莉 何向明3 姜长印 万春荣(清华大学核能与新能源技术研究院 北京102201)摘 要 电解质是锂离子电池的重要组成部分之一,其中Li +的迁移特性对电池性能具有显著影响。

本文综述了用于锂离子电池的凝胶、聚合物和非水液态电解质中Li +迁移特性的研究进展,分析了影响Li +迁移的主要因素,并提出了进一步的研究重点和新的研究方法。

关键词 锂离子电池 非水电解质 电导率 Li +迁移数中图分类号:O646;T M911 文献标识码:A 文章编号:10052281X (2007)1021467208Transport Properties of Lithium 2Ion of E lectrolyte Usedin Lithium 2Ion B atteriesZhao Jishi Wang Li He Xiangming3 Jiang Changyin Wan Chunrong(Institute of Nuclear &New Energy T echnology ,Tsinghua University ,Beijing 102201,China )Abstract The ability to conduct ions is the basic function of non 2aqueous electrolytes used in the lithium 2ion batteries.It determines how fast the energy stored in electrodes can be delivered.Recent advances of the transport properties of the lithium ion in the non 2aqueous electrolyte including the gel ,polymer and liquid systems are reviewed.The factors in fluencing the trans fer of the lithium ion and the prospects of the research are als o discussed.K ey w ords lithium 2ion batteries ;non 2aqueous electrolyte ;conductivity ;lithium 2ion transport number1 引言锂离子电池已经在便携式电子设备中得到了广泛的应用,随着信息时代的到来,其应用范围正在迅速扩展。

第九章 核磁共振波谱法

第九章 核磁共振波谱法

TMS
Si 1.8
4.26
3.40
3.05
2.68
2.16
0.23
0.0
吸电子作用强,电子云密度降低,屏蔽作用减弱, 信号峰在低场出现。
36
(1) 诱导效应
CH3 , =1.6~2.0;-CH2I, =3.0 ~ 3.5
37
(1) 诱导效应
间隔键数增多,诱导效应减弱 CH3Br Nobel Prize in Chemistry 2002
"for the development of methods for identification and structure analyses of biological macromolecules" "for their development of soft desorption ionisation methods for mass spectrometric analyses of biological macromolecules"
47
自旋偶合与自旋裂分
48
自旋偶合与自旋裂分
49
乙 醇 谱的 高 分 辨 与 低 分 辨
峰面积 1:2:3
NMR
自旋偶合与自旋裂分
裂分峰是由于分子内部邻近氢核自旋的相互 干扰引起的。 邻近氢核自旋之间的相互干扰作用称为自旋耦合。
由自旋耦合引起的谱线增多现象称为自旋裂分。
51
自旋偶合与自旋裂分
Ä (ppm) ¦
影响化学位移的因素
(1)诱导效应
(2)共轭效应 (3)磁各相异性效应 (4)范得华效应 (5)氢键去屏蔽效应
改变电子 云密度
35
(1) 诱导效应

核磁溶剂峰

Organometallics XXXX,XXX,000–000ADOI:10.1021/om100106eNMR Chemical Shifts of Trace Impurities:Common Laboratory Solvents,Organics,and Gases in DeuteratedSolvents Relevant to the OrganometallicChemistGregory R.Fulmer,*,†Alexander ler,‡Nathaniel H.Sherden,‡Hugo E.Gottlieb,§Abraham Nudelman,§Brian M.Stoltz,‡John E.Bercaw,‡andKaren I.Goldberg ††Department of Chemistry,University of Washington,Box 351700,Seattle,Washington 98195-1700,‡Arnold and Mabel Beckman Laboratories of Chemical Synthesis and Caltech Center for Catalysis andChemical Synthesis,Division of Chemistry and Chemical Engineering,California Institute of Technology,Pasadena,California 91125,and §Department of Chemistry,Bar Ilan University,Ramat Gan 52900,IsraelReceived February 11,2010Tables of 1H and 13C NMR chemical shifts have been compiled for common organic compounds often used as reagents or found as products or contaminants in deuterated organic solvents.Building upon the work of Gottlieb,Kotlyar,and Nudelman in the Journal of Organic Chemistry,signals for common impurities are now reported in additional NMR solvents (tetrahydrofuran-d 8,toluene-d 8,dichloromethane-d 2,chlorobenzene-d 5,and 2,2,2-trifluoroethanol-d 3)which are frequently used in organometallic laboratories.Chemical shifts for other organics which are often used as reagents or internal standards or are found as products in organometallic chemistry are also reported for all the listed solvents.Hanging above the desk of most every chemist whose work relies heavily on using NMR spectroscopy 1is NMR Chemi-cal Shifts of Common Laboratory Solvents as Trace Impu-rities by Gottlieb,Kotlyar,and Nudelman.2By compiling the chemical shifts of a large number of contaminants commonly encountered in synthetic chemistry,the publica-tion has become an essential reference,allowing for easy identification of known impurities in a variety of deuter-ated organic solvents.However,despite the utility of Gottlieb et al.’s work,3the chemical shifts of impurities in a number of NMR solvents often used by organometallic chemists were not included.Tetrahydrofuran-d 8(THF-d 8),toluene-d 8,dichloromethane-d 2(CD 2Cl 2),chlorobenzene-d 5(C 6D 5Cl),and 2,2,2-trifluoroethanol-d 3(TFE-d 3)are com-monplace in laboratories practicing inorganic syntheses.Therefore,we have expanded the spectral data compilation with the inclusion of chemical shifts of common impurities recorded in the deuterated solvents heavily employed in our organometallic laboratories.The chemical shifts of various gases (hydrogen,methane,ethane,propane,ethylene,propylene,and carbon dioxide)often encoun-tered as reagents or products in organometallic reactions,along with organic compounds relevant to organometallic chemists (allyl acetate,benzaldehyde,carbon disulfide,carbon tetrachloride,18-crown-6,cyclohexanone,diallyl carbonate,dimethyl carbonate,dimethyl malonate,furan,Apiezon H grease,hexamethylbenzene,hexamethyldisil-oxane,imidazole,pyrrole,and pyrrolidine),have also been added to this expanded list.Experimental SectionAll deuterated solvents were obtained commercially through Cambridge Isotope Laboratories,Inc.NMR spectra were recorded at 298K using 300,500,or 600MHz spectrometers (13C{1H}NMR frequencies of 75.5,126,or 151MHz,res-pectively).Adopting the previously reported strategy,2standard solutions of mixtures of specific impurities were used to reduce the number of necessary individual NMR experiments.The combinations of organic compounds were chosen in a way in which intermolecular interactions and resonance convolution would be minimized.Unless otherwise stated,the standard solutions were prepared with qualitatively equal molar amounts of the following compounds:(solution 1)acetone,dimethylform-amide,ethanol,toluene;(solution 2)benzene,dimethyl sulf-oxide,ethyl acetate,methanol;(solution 3)acetic acid,chloro-form,diethyl ether,2-propanol,tetrahydrofuran;(solution 4)acetonitrile,dichloromethane,1,4-dioxane,n -hexane,hexa-methylphosphoramide (HMPA);(solution 5)1,2-dichloroethane,n -pentane,pyridine,hexamethylbenzene;(solution 6)tert -butyl alcohol,2,6-di-tert -butyl-4-methylphenol (BHT),cyclohexane,*To whom correspondence should be addressed.E-mail:fulmerg@.(1)For general information on 1H and 13C{1H}NMR spectroscopy,see:Balc ı,M.Basic 1H-and 13C-NMR Spectroscopy ;Elsevier:Amsterdam,2005.(2)Gottlieb,H.E.;Kotlyar,V.;Nudelman,.Chem.1997,62,7512.(3)According to ACS Publications as of December 2009(/),Gottlieb et al.’s publication 2is the most downloaded Journal of Organic Chemistry article over the preceding 12months.B Organometallics,Vol.XXX,No.XX,XXXX Fulmer et al.Table1.1H NMR Data aproton mult THF-d8CD2Cl2CDCl3toluene-d8C6D6C6D5Cl(CD3)2CO(CD3)2SO CD3CN TFE-d3CD3OD D2Osolvent residual signals 1.72 5.327.26 2.087.16 6.96 2.05 2.50 1.94 5.02 3.31 4.79 3.58 6.97 6.99 3.887.017.147.09water OH s 2.46 1.52 1.560.430.40 1.03 2.84b 3.33b 2.13 3.66 4.87acetic acid CH3s 1.89 2.06 2.10 1.57 1.52 1.76 1.96 1.91 1.96 2.06 1.99 2.08 acetone CH3s 2.05 2.12 2.17 1.57 1.55 1.77 2.09 2.09 2.08 2.19 2.15 2.22 acetonitrile CH3s 1.95 1.97 2.100.690.58 1.21 2.05 2.07 1.96 1.95 2.03 2.06 benzene CH s7.317.357.367.127.157.207.367.377.377.367.33tert-butyl alcohol CH3s 1.15 1.24 1.28 1.03 1.05 1.12 1.18 1.11 1.16 1.28 1.40 1.24 OH s c 3.160.580.63 1.30 4.19 2.18 2.20chloroform CH s7.897.327.26 6.10 6.15 6.748.028.327.587.337.9018-crown-6CH2s 3.57 3.59 3.67 3.36 3.39 3.41 3.59 3.51 3.51 3.64 3.64 3.80 cyclohexane CH2s 1.44 1.44 1.43 1.40 1.40 1.37 1.43 1.40 1.44 1.47 1.451,2-dichloroethane CH2s 3.77 3.76 3.73 2.91 2.90 3.26 3.87 3.90 3.81 3.71 3.78 dichloromethane CH2s 5.51 5.33 5.30 4.32 4.27 4.77 5.63 5.76 5.44 5.24 5.49 diethyl ether CH3t,7 1.12 1.15 1.21 1.10 1.11 1.10 1.11 1.09 1.12 1.20 1.18 1.17 CH2q,7 3.38 3.43 3.48 3.25 3.26 3.31 3.41 3.38 3.42 3.58 3.49 3.56 diglyme CH2m 3.43 3.57 3.65 3.43 3.46 3.49 3.56 3.51 3.53 3.67 3.61 3.67 CH2m 3.53 3.50 3.57 3.31 3.34 3.37 3.47 3.38 3.45 3.62 3.58 3.61OCH3s 3.28 3.33 3.39 3.12 3.11 3.16 3.28 3.24 3.29 3.41 3.35 3.37 dimethylformamide CH s7.917.968.027.577.637.737.967.957.927.867.977.92 CH3s 2.88 2.91 2.96 2.37 2.36 2.51 2.94 2.89 2.89 2.98 2.99 3.01CH3s 2.76 2.82 2.88 1.96 1.86 2.30 2.78 2.73 2.77 2.88 2.86 2.85 1,4-dioxane CH2s 3.56 3.65 3.71 3.33 3.35 3.45 3.59 3.57 3.60 3.76 3.66 3.75 DME CH3s 3.28 3.34 3.40 3.12 3.12 3.17 3.28 3.24 3.28 3.40 3.35 3.37 CH2s 3.43 3.49 3.55 3.31 3.33 3.37 3.46 3.43 3.45 3.61 3.52 3.60 ethane CH3s0.850.850.870.810.800.790.830.820.850.850.850.82 ethanol CH3t,7 1.10 1.19 1.250.970.96 1.06 1.12 1.06 1.12 1.22 1.19 1.17 CH2q,7d 3.51 3.66 3.72 3.36 3.34 3.51 3.57 3.44 3.54 3.71 3.60 3.65OH s c,d 3.30 1.33 1.320.830.50 1.39 3.39 4.63 2.47ethyl acetate CH3CO s 1.94 2.00 2.05 1.69 1.65 1.78 1.97 1.99 1.97 2.03 2.01 2.07C H2CH3q,7 4.04 4.08 4.12 3.87 3.89 3.96 4.05 4.03 4.06 4.14 4.09 4.14CH2C H3t,7 1.19 1.23 1.260.940.92 1.04 1.20 1.17 1.20 1.26 1.24 1.24 ethylene CH2s 5.36 5.40 5.40 5.25 5.25 5.29 5.38 5.41 5.41 5.40 5.39 5.44 ethylene glycol CH2s e 3.48 3.66 3.76 3.36 3.41 3.58 3.28 3.34 3.51 3.72 3.59 3.65 H grease f CH3m0.85-0.910.84-0.900.84-0.870.89-0.960.90-0.980.86-0.920.900.82-0.880.88-0.940.86-0.93CH2br s 1.29 1.27 1.25 1.33 1.32 1.30 1.29 1.24 1.33 1.29 hexamethylbenzene CH3s 2.18 2.20 2.24 2.10 2.13 2.10 2.17 2.14 2.19 2.24 2.19n-hexane CH3t,70.890.890.880.880.890.850.880.860.890.910.90 CH2m 1.29 1.27 1.26 1.22 1.24 1.19 1.28 1.25 1.28 1.31 1.29 HMDSO CH3s0.070.070.070.100.120.100.070.060.070.080.070.28 HMPA CH3d,9.5 2.58 2.60 2.65 2.42 2.40 2.47 2.59 2.53 2.57 2.63 2.64 2.61 hydrogen H2s 4.55 4.59 4.62 4.50 4.47 4.49 4.54 4.61 4.57 4.53 4.56 imidazole CH(2)s7.487.637.677.307.337.537.627.637.577.617.677.78 CH(4,5)s 6.947.077.10 6.86 6.907.017.047.017.017.037.057.14 methane CH4s0.190.210.220.170.160.150.170.200.200.180.200.18 methanol CH3s g 3.27 3.42 3.49 3.03 3.07 3.25 3.31 3.16 3.28 3.44 3.34 3.34 OH s c,g 3.02 1.09 1.09 1.30 3.12 4.01 2.16nitromethane CH3s 4.31 4.31 4.33 3.01 2.94 3.59 4.43 4.42 4.31 4.28 4.34 4.40 n-pentane CH3t,70.890.890.880.870.870.840.880.860.890.900.90 CH2m 1.31 1.30 1.27 1.25 1.23 1.23 1.27 1.27 1.29 1.33 1.29 propane CH3t,7.30.900.900.900.890.860.840.880.870.900.900.910.88 CH2sept,7.3 1.33 1.32 1.32 1.32 1.26 1.26 1.31 1.29 1.33 1.33 1.34 1.30 2-propanol CH3d,6 1.08 1.17 1.220.950.95 1.04 1.10 1.04 1.09 1.20 1.50 1.17 CH sept,6 3.82 3.97 4.04 3.65 3.67 3.82 3.90 3.78 3.87 4.05 3.92 4.02 propylene CH3dt,6.4,1.5 1.69 1.71 1.73 1.55 1.55 1.58 1.68 1.68 1.70 1.70 1.70 1.70 CH2(1)dm,10 4.89 4.93 4.94 4.92 4.95 4.91 4.90 4.94 4.93 4.93 4.91 4.95CH2(2)dm,17 4.99 5.03 5.03 4.98 5.01 4.98 5.00 5.03 5.04 5.03 5.01 5.06CH m 5.79 5.84 5.83 5.70 5.72 5.72 5.81 5.80 5.85 5.87 5.82 5.90 pyridine CH(2,6)m8.548.598.628.478.538.518.588.588.578.458.538.52 CH(3,5)m7.257.287.29 6.67 6.66 6.907.357.397.337.407.447.45CH(4)m7.657.687.68 6.99 6.987.257.767.797.737.827.857.87 pyrrole NH br t9.968.698.407.717.808.6110.0210.759.27CH(2,5)m 6.66 6.79 6.83 6.43 6.48 6.62 6.77 6.73 6.75 6.84 6.72 6.93CH(3,4)m 6.02 6.19 6.26 6.27 6.37 6.27 6.07 6.01 6.10 6.24 6.08 6.26 pyrrolidine h CH2(2,5)m 2.75 2.82 2.87 2.54 2.54 2.64 2.67 2.75 3.11 2.80 3.07 CH2(3,4)m 1.59 1.67 1.68 1.36 1.33 1.43 1.55 1.61 1.93 1.72 1.87 silicone grease CH3s0.110.090.070.260.290.140.13-0.060.080.160.10 tetrahydrofuran CH2(2,5)m 3.62 3.69 3.76 3.54 3.57 3.59 3.63 3.60 3.64 3.78 3.71 3.74 CH2(3,4)m 1.79 1.82 1.85 1.43 1.40 1.55 1.79 1.76 1.80 1.91 1.87 1.88 toluene CH3s 2.31 2.34 2.36 2.11 2.11 2.16 2.32 2.30 2.33 2.33 2.32 CH(2,4,6)m7.107.157.17 6.96-7.017.027.01-7.087.10-7.207.187.10-7.307.10-7.307.16CH(3,5)m7.197.247.257.097.137.10-7.177.10-7.207.257.10-7.307.10-7.307.16 triethylamine CH3t,70.970.99 1.030.950.960.930.960.930.96 1.31 1.050.99 CH2q,7 2.46 2.48 2.53 2.39 2.40 2.39 2.45 2.43 2.45 3.12 2.58 2.57a Except for the compounds in solutions8-10,as well as the gas samples,hexamethylbenzene,and the corrected values mentioned in the Supporting Information,all data for the solvents CDCl3,C6D6,(CD3)2CO,(CD3)2SO,CD3CN,CD3OD,and D2O were previously reported in ref2.b A signal for HDO is also observed in(CD3)2SO(3.30ppm)and(CD3)2CO(2.81ppm),often seen as a1:1:1triplet(2J H,D=1Hz).c Not all OH signals were observable.d In some solvents,the coupling interaction between the CH2and the OH protons may be observed(J=5Hz).e In CD3CN,the OH proton was seen as a multiplet at2.69ppm,as well as extra coupling to the CH2resonance.f Apiezon brand H grease.g In some solvents,a coupling interaction between the CH3and the OH protons may be observed(J=5.5Hz).h Pyrrolidine was observed to react with(CD3)2CO.Article Organometallics,Vol.XXX,No.XX,XXXX CTable2.13C{1H}NMR Data acarbon THF-d8CD2Cl2CDCl3toluene-d8C6D6C6D5Cl(CD3)2CO(CD3)2SO CD3CN TFE-d3CD3OD D2O solvent signals67.2153.8477.16137.48128.06134.1929.8439.52 1.3261.5049.0025.31128.87129.26206.26118.26126.28127.96128.25125.13125.9620.43acetic acid CO171.69175.85175.99175.30175.82175.67172.31171.93173.21177.96175.11177.21 CH320.1320.9120.8120.2720.3720.4020.5120.9520.7320.9120.5621.03 acetone CO204.19206.78207.07204.00204.43204.83205.87206.31207.4332.35209.67215.94 CH330.1731.0030.9230.0330.1430.1230.6030.5630.91214.9830.6730.89 acetonitrile CN116.79116.92116.43115.76116.02115.93117.60117.91118.26118.95118.06119.68 CH30.45 2.03 1.890.030.200.63 1.12 1.03 1.79 1.000.85 1.47 benzene CH128.84128.68128.37128.57128.62128.38129.15128.30129.32129.84129.34tert-butyl alcohol(CH3)3C67.5069.1169.1568.1268.1968.1968.1366.8868.7472.3569.4070.36(C H3)3C30.5731.4631.2530.4930.4731.1330.7230.3830.6831.0730.9130.29 carbon dioxide CO2125.69125.26124.99124.86124.76126.08125.81124.21125.89126.92126.31carbon disulfide CS2193.37192.95192.83192.71192.69192.49193.58192.63193.60196.26193.82197.25 carbon tetrachloride CCl496.8996.5296.3496.5796.4496.3896.6595.4496.6897.7497.2196.73 chloroform CH79.2477.9977.3677.8977.7977.6779.1979.1679.1778.8379.4418-crown-6CH271.3470.4770.5570.8670.5970.5571.2569.8571.2270.8071.4770.14 cyclohexane CH227.5827.3826.9427.3127.2326.9927.5126.3327.6328.3427.961,2-dichloroethane CH244.6444.3543.5043.4043.5943.6045.2545.0245.5445.2845.11 dichloromethane CH254.6754.2453.5253.4753.4653.5454.9554.8455.3254.4654.78diethyl ether CH315.4915.4415.2015.4715.4615.3515.7815.1215.6315.3315.4614.77 CH266.1466.1165.9165.9465.9465.7966.1262.0566.3267.5566.8866.42 diglyme CH358.7258.9559.0158.6258.6658.4258.7757.9858.9059.4059.0658.67 CH271.1770.7070.5170.9270.8770.5671.0369.5470.9973.0571.3370.05CH272.7272.2571.9072.3972.3572.0772.6371.2572.6371.3372.9271.63 dimethylformamide CH161.96162.57162.62161.93162.13162.01162.79162.29163.31166.01164.73165.53 CH335.6536.5636.5035.2235.2535.4536.1535.7336.5737.7636.8937.54CH330.7031.3931.4530.6430.7230.7131.0330.7331.3230.9631.6132.03 1,4-dioxane CH267.6567.4767.1467.1767.1666.9567.6066.3667.7268.5268.1167.19 DME CH358.7259.0259.0858.6358.6858.3158.4558.0358.8959.5259.0658.67 CH272.5872.2471.8472.2572.2171.8172.4771.1772.4772.8772.7271.49 ethane CH3 6.79 6.91 6.89 6.94 6.96 6.91 6.88 6.61 6.997.01 6.98ethanol CH318.9018.6918.4118.7818.7218.5518.8918.5118.8018.1118.4017.47 CH257.6058.5758.2857.8157.8657.6357.7256.0757.9659.6858.2658.05 ethyl acetate C H3CO20.4521.1521.0420.4620.5620.5020.8320.6821.1621.1820.8821.15 CO170.32171.24171.36170.02170.44170.20170.96170.31171.68175.55172.89175.26CH260.3060.6360.4960.0860.2160.0660.5659.7460.9862.7061.5062.32CH314.3714.3714.1914.2314.1914.0714.5014.4014.5414.3614.4913.92 ethylene CH2123.09123.20123.13122.92122.96122.95123.47123.52123.69124.08123.46 ethylene glycol CH264.3564.0863.7964.2964.3464.0364.2662.7664.2264.8764.3063.17 H grease b CH230.4530.1429.7130.3130.2230.11hexamethylbenzene C131.88132.09132.21131.72131.79131.54132.22131.10132.61134.04132.53 CH316.7116.9316.9816.8416.9516.6816.8616.6016.9417.0416.90n-hexane CH314.2214.2814.1414.3414.3214.1814.3413.8814.4314.6314.45 CH2(2,5)23.3323.0722.7023.1223.0422.8623.2822.0523.4024.0623.68CH2(3,4)32.3432.0131.6432.0631.9631.7732.3030.9532.3633.1732.73 HMDSO CH3 1.83 1.96 1.97 1.99 2.05 1.92 2.01 1.96 2.07 2.09 1.99 2.31 HMPA c CH336.8936.9936.8736.8036.8836.6437.0436.4237.1037.2137.0036.46 imidazole CH(2)135.72135.76135.38135.57135.76135.50135.89135.15136.33136.58136.31136.65 CH(4,5)122.20122.16122.00122.13122.16121.96122.31121.55122.78122.93122.60122.43 methane CH4-4.90-4.33-4.63-4.34-4.29-4.33-5.33-4.01-4.61-5.88-4.90 methanol CH349.6450.4550.4149.9049.9749.6649.7748.5949.9050.6749.8649.50d nitromethane CH362.4963.0362.5061.1461.1661.6863.2163.2863.6663.1763.0863.22 n-pentane CH314.1814.2414.0814.2714.2514.1014.2913.2814.3714.5414.39 CH2(2,4)23.0022.7722.3822.7922.7222.5422.9821.7023.0823.7523.38CH2(3)34.8734.5734.1634.5434.4534.2634.8333.4834.8935.7635.30 propane CH316.6016.6316.6316.6516.6616.5616.6816.3416.7316.9316.80 CH216.8216.6316.3716.6316.6016.4816.7815.6716.9117.4617.192-propanol CH325.7025.4325.1425.2425.1825.1425.6725.4325.5525.2125.2724.38 CH66.1464.6764.5064.1264.2364.1863.8564.9264.3066.6964.7164.88 propylene CH319.2719.4719.5019.3219.3819.3219.4219.2019.4819.6319.50 CH2115.74115.70115.74115.89115.92115.86116.03116.07116.12116.38116.04CH134.02134.21133.91133.61133.69133.57134.34133.55134.78136.00134.61 pyridine CH(2,6)150.57150.27149.90150.25150.27149.93150.67149.58150.76149.76150.07149.18 CH(3,5)124.08124.06123.75123.46123.58123.49124.57123.84127.76126.27125.53125.12CH(4)135.99136.16135.96135.17135.28135.32136.56136.05136.89139.62138.35138.27 pyrrole CH(2,5)118.03117.93117.77117.61117.78117.65117.98117.32118.47119.61118.28119.06 CH(3,4)107.74108.02107.98108.15108.21108.03108.04107.07108.31108.85108.11107.83 pyrrolidine e CH2(2,5)45.8247.0246.9347.1246.8646.7546.5147.5747.4347.2346.83 CH2(3,4)26.1725.8325.5625.7525.6525.5925.2626.3425.7326.2925.86 silicone grease CH3 1.20 1.22 1.19 1.37 1.38 1.09 1.40 2.87 2.10 tetrahydrofuran CH2(2,5)68.0368.1667.9767.7567.8067.6468.0767.0368.3369.5368.8368.68 CH2(3,4)26.1925.9825.6225.7925.7225.6826.1525.1426.2726.6926.4825.67 toluene CH321.2921.5321.4621.3721.1021.2321.4620.9921.5021.6221.50 C(1)138.24138.36137.89137.84137.91137.65138.48137.35138.90139.92138.85CH(2,6)129.47129.35129.07129.33129.33129.12129.76128.88129.94130.58129.91CH(3,5)128.71128.54128.26128.51128.56128.31129.03128.18129.23129.79129.20CH(4)125.84125.62125.33125.66125.68125.43126.12125.29126.28126.82126.29 triethylamine CH312.5112.1211.6112.3912.3511.8712.4911.7412.389.5111.099.07 CH247.1846.7546.2546.8246.7746.3647.0745.7447.1048.4546.9647.19a Except for the compounds in solutions8-10,as well as the gas samples,hexamethylbenzene,and the corrected values mentioned in the Supporting Information,all data for the solvents CDCl3,C6D6,(CD3)2CO,(CD3)2SO,CD3CN,CD3OD,and D2O were previously reported in ref2.b Apiezon c2d eD Organometallics,Vol.XXX,No.XX,XXXX Fulmer et al.1,2-dimethoxyethane(DME),nitromethane,poly(dimethylsiloxane) (silicone grease),triethylamine;(solution7)diglyme,dimethyl-acetamide,ethylene glycol,ethyl methyl ketone;(solution8) allyl acetate,2,6-di-tert-butyl-4-methoxyphenol(BHA),long-chain,linear aliphatic hydrocarbons from pump oil;4(solu-tion9)benzaldehyde,carbon disulfide,carbon tetrachloride, cyclohexanone,dimethyl malonate,furan,Apiezon H grease (H grease);(solution10)18-crown-6,diallyl carbonate,dimethyl carbonate,hexamethyldisiloxane(HMDSO),imidazole,pyrrole, pyrrolidine.5In the case of TFE-d3,nitromethane was omitted from solution6and run separately,since the protons of nitro-methane exchange with deuterium from TFE-d3in the presence of triethylamine.In the case of(CD3)2CO,pyrrolidine was omitted from solution10,since the two compounds were observed to react with each other.The gases used in this study included hydrogen,methane,ethane,propane,ethylene,propylene,and carbon dioxide.Before examining the various standard contaminant solu-tions by1H NMR spectroscopy,solvent residual signals6and chemical shifts for H2O7for each NMR solvent were refer-enced against tetramethylsilane(TMS,δ0ppm)and reported. Before collecting13C{1H}NMR spectral data,solvent signals6 were recorded with reference to the signal of a TMS internal standard.For D2O,1H NMR spectra were referenced to the methyl signal(δ0ppm)of sodium3-(trimethylsilyl)propane-sulfonate,8,9and13C{1H}NMR spectra were referenced to the signal for the methyl group of methanol(one drop,added as an internal standard),which was set to49.50ppm.2In a typical experiment for collecting1H NMR spectral data,a 3μL sample of a standard contaminant solution was added to an NMR tube containing approximately0.4mL of a deuterated solvent.For13C{1H}NMR spectral data collection,an approxi-mately50μL sample of the standard contaminant solution was added.When there was any uncertainty in the assignment of a resonance,the solution was spiked with an additional1-2μL of the impurity in question to accurately identify its chemical shift.In cases where the chemical shifts of resonances were highly dependent on the concentration of the impurities pre-sent,ambiguous resonances were instead resolved via gradient-selected heteronuclear single-quantum coherence(gs-HSQC) and gradient-selected heteronuclear multiple-quantum coherence (gs-HMQC)NMR spectroscopies.For the experiments involving gases,a J.Young NMR tube containing approximately0.4mL of NMR solvent was first degassed with three freeze-pump-thaw ing a vacuum line equipped with a gas manifold,1atm of the desired gas was added to the tube.Each gas was run separately,degassing between each gas sample.Results and DiscussionChemical shifts for each of the impurities are reported in the tables:1H and13C{1H}NMR spectral data of all sub-strates are presented in Tables1and2,respectively.Notably, physically larger tables,containing all the data from Tables1 and2as well as the chemical shifts of additional organic compounds,are provided in the Supporting Information. Unless noted otherwise,coupling constants(reported in Hz) and resonance multiplicities(abbreviated as follows:s= singlet,d=doublet,t=triplet,q=quartet,p=pentet, sept=septet,m=multiplet,br=broad)were observed to be solvent-independent.It was noted that the amount of gas dissolved in solution gave1H NMR signal integrations that were qualitatively comparable to those for the solutions made with the3μL additions of the liquid or solid contaminants.However,typi-cally in order to observe signals for the gas samples by13C{1H} NMR spectroscopy,additional time for data collection was required.The solubility of each gas in D2O was extremely limited,making13C detection impractical.Of all the gases, methane required the most number of transients in order to obtain an observable signal by13C{1H}NMR spectroscopy. In most cases,the13C chemical shift of methane was acquired through the use of gs-HMQC NMR spectroscopy to provide enhanced sensitivity.In order to reflect what would be ob-served in typical NMR-scale experiments,13C detection was not pursued with isotopically enriched gases.A number of misreported values were discovered in the years since the original publication10and in the preparation of this paper. These are detailed in the Supporting Information,and the values are now correctly listed in Tables1and2.Acknowledgment.G.R.F.and K.I.G.thank the Depart-ment of Energy(Contract No.DE-FG02-06ER15765)for support.A.J.M.M.and J.E.B.thank the Moore Founda-tion for support.N.H.S.and B.M.S.thank Abbott Labora-tories,Amgen,Merck,Bristol-Myers Squibb,Boehringer Ingelheim,the Gordon and Betty Moore Foundation,and Caltech for financial support.Supporting Information Available:Large-format tables of the all the NMR data.This material is available free of charge via the Internet at .(4)VWR brand vacuum pump oil#19.(5)The components of solution10were stable together in dilute solution but unstable when neat mixtures were prepared.In general,it was observed that the nitrogen-containing compounds and possibly 18-crown-6catalyzed the hydrolysis of the carbonates,reacted directly with them,or both.Therefore,for the purpose of storage,the solution was partitioned into two subsolutions:(solution10A)18-crown-6, imidazole,pyrrole,pyrrolidine;(solution10B)diallyl carbonate,di-methyl carbonate,hexamethyldisiloxane.These subsolutions were stable for long periods as neat mixtures and were combined to form solution10by adding equal portions to an NMR tube containing the desired deuterated solvent.(6)For1H NMR spectra,the solvent residual signals arise from the proton of isotopomers containing one less deuterium atom than the perdeuterated solvent:e.g.,CDHCl2in CD2Cl2.For13C NMR spectra, the solvent signals arise from the13C atoms at natural abundance in the perdeuterated solvent.(7)The chemical shift for H2O can vary depending on the tempera-ture,[H2O],and the solutes present:e.g.,a downfield shift may be observed in the presence of any hydrogen bond acceptors.For more information see page75of ref1.(8)Harris,R.K.;Becker,E.D.;Cabral de Menezes,S.M.;Granger, P.;Hoffman,R.E.;Zilm,K.W.Pure Appl.Chem.2008,80,59. (9)For information on the temperature dependence of HDO chemi-cal shifts in D2O,see ref2.(10)The misreported value for acetonitrile in C6D6from the original paper2was also pointed out by Dr.Jongwook Choi,to whom we are grateful.NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities Hugo E.Gottlieb,*Vadim Kotlyar,andAbraham Nudelman*Department of Chemistry,Bar-Ilan University,Ramat-Gan52900,IsraelReceived June27,1997In the course of the routine use of NMR as an aid for organic chemistry,a day-to-day problem is the identifica-tion of signals deriving from common contaminants (water,solvents,stabilizers,oils)in less-than-analyti-cally-pure samples.This data may be available in the literature,but the time involved in searching for it may be considerable.Another issue is the concentration dependence of chemical shifts(especially1H);results obtained two or three decades ago usually refer to much more concentrated samples,and run at lower magnetic fields,than today’s practice.We therefore decided to collect1H and13C chemical shifts of what are,in our experience,the most popular “extra peaks”in a variety of commonly used NMR solvents,in the hope that this will be of assistance to the practicing chemist.Experimental SectionNMR spectra were taken in a Bruker DPX-300instrument (300.1and75.5MHz for1H and13C,respectively).Unless otherwise indicated,all were run at room temperature(24(1°C).For the experiments in the last section of this paper,probe temperatures were measured with a calibrated Eurotherm840/T digital thermometer,connected to a thermocouple which was introduced into an NMR tube filled with mineral oil to ap-proximately the same level as a typical sample.At each temperature,the D2O samples were left to equilibrate for at least 10min before the data were collected.In order to avoid having to obtain hundreds of spectra,we prepared seven stock solutions containing approximately equal amounts of several of our entries,chosen in such a way as to prevent intermolecular interactions and possible ambiguities in assignment.Solution1:acetone,tert-butyl methyl ether,di-methylformamide,ethanol,toluene.Solution2:benzene,di-methyl sulfoxide,ethyl acetate,methanol.Solution3:acetic acid,chloroform,diethyl ether,2-propanol,tetrahydrofuran. Solution4:acetonitrile,dichloromethane,dioxane,n-hexane, HMPA.Solution5:1,2-dichloroethane,ethyl methyl ketone, n-pentane,pyridine.Solution6:tert-butyl alcohol,BHT,cyclo-hexane,1,2-dimethoxyethane,nitromethane,silicone grease, triethylamine.Solution7:diglyme,dimethylacetamide,ethyl-ene glycol,“grease”(engine oil).For D2O.Solution1:acetone, tert-butyl methyl ether,dimethylformamide,ethanol,2-propanol. Solution2:dimethyl sulfoxide,ethyl acetate,ethylene glycol, methanol.Solution3:acetonitrile,diglyme,dioxane,HMPA, pyridine.Solution4:1,2-dimethoxyethane,dimethylacetamide, ethyl methyl ketone,triethylamine.Solution5:acetic acid,tert-butyl alcohol,diethyl ether,tetrahydrofuran.In D2O and CD3OD nitromethane was run separately,as the protons exchanged with deuterium in presence of triethylamine.ResultsProton Spectra(Table1).A sample of0.6mL of the solvent,containing1µL of TMS,1was first run on its own.From this spectrum we determined the chemical shifts of the solvent residual peak2and the water peak. It should be noted that the latter is quite temperature-dependent(vide infra).Also,any potential hydrogen-bond acceptor will tend to shift the water signal down-field;this is particularly true for nonpolar solvents.In contrast,in e.g.DMSO the water is already strongly hydrogen-bonded to the solvent,and solutes have only a negligible effect on its chemical shift.This is also true for D2O;the chemical shift of the residual HDO is very temperature-dependent(vide infra)but,maybe counter-intuitively,remarkably solute(and pH)independent. We then added3µL of one of our stock solutions to the NMR tube.The chemical shifts were read and are presented in Table 1.Except where indicated,the coupling constants,and therefore the peak shapes,are essentially solvent-independent and are presented only once.For D2O as a solvent,the accepted reference peak(δ)0)is the methyl signal of the sodium salt of3-(trimeth-ylsilyl)propanesulfonic acid;one crystal of this was added to each NMR tube.This material has several disadvan-tages,however:it is not volatile,so it cannot be readily eliminated if the sample has to be recovered.In addition, unless one purchases it in the relatively expensive deuterated form,it adds three more signals to the spectrum(methylenes1,2,and3appear at2.91,1.76, and0.63ppm,respectively).We suggest that the re-sidual HDO peak be used as a secondary reference;we find that if the effects of temperature are taken into account(vide infra),this is very reproducible.For D2O, we used a different set of stock solutions,since many of the less polar substrates are not significantly water-soluble(see Table1).We also ran sodium acetate and sodium formate(chemical shifts: 1.90and8.44ppm, respectively).Carbon Spectra(Table2).To each tube,50µL of the stock solution and3µL of TMS1were added.The solvent chemical shifts3were obtained from the spectra containing the solutes,and the ranges of chemical shifts(1)For recommendations on the publication of NMR data,see:(2)I.e.,the signal of the proton for the isotopomer with one less deuterium than the perdeuterated material,e.g.,C H Cl3in CDCl3or C6D5H in C6D6.Except for CHCl3,the splitting due to J HD is typically observed(to a good approximation,it is1/6.5of the value of the corresponding J HH).For CHD2groups(deuterated acetone,DMSO, acetonitrile),this signal is a1:2:3:2:1quintet with a splitting of ca.2 Hz.(3)In contrast to what was said in note2,in the13C spectra the Figure1.Chemical shift of H DO as a function of tempera-ture..Chem.1997,62,7512-7515。

基于数据特征提取的AANN-ELM研究及化工应用

基于数据特征提取的AANN-ELM研究及化工应用彭荻;贺彦林;徐圆;朱群雄【摘要】The extreme learning machine usually exist the problems on high-dimensional data modeling in chemical process. Aiming at solving these problems, the auto-associative neural network is combined, in which the auto-associative neural network is constructed to filter redundant information and extract characteristic components, and these characteristic components are trained by extreme learning machine. Thus, a data feature extraction based auto-associative neural network-extreme learning machine (AANN-ELM) is formed. Meanwhile, the effectiveness of this network is verified by the UCI standard data sets and the purified terephthalic acid (PTA) solvent system. The result indicates that AANN-ELM has the characteristics of fast learning speed, stable network output, and high model precision in handling with high-dimensional data, which will provide a new way to apply the neural network in complex chemical production.%针对极限学习机不能有效解决化工过程中高维数据建模的问题,本文将其与自联想神经网络结合,通过自联想神经网络过滤输入数据中存在的冗余信息、提取特征分量,并对所提取的特征分量采用极限学习机进行训练,由此形成了一种基于数据特征提取的AANN-ELM (auto-associative neural network-extreme learning machine)神经网络.同时,以UCI标准数据集进行测试,以精对苯二甲酸(PTA)溶剂系统进行验证,结果表明,AANN-ELM在处理高维数据时具有学习速度快、网络稳定性强、建模精度高的特点,为神经网络在复杂化工生产中的应用提供了新思路.【期刊名称】《化工学报》【年(卷),期】2012(063)009【总页数】6页(P2920-2925)【关键词】极限学习机;自联想神经网络;高维数据;过程建模【作者】彭荻;贺彦林;徐圆;朱群雄【作者单位】北京化工大学信息科学与技术学院,北京100029;北京化工大学信息科学与技术学院,北京100029;北京化工大学信息科学与技术学院,北京100029;北京化工大学信息科学与技术学院,北京100029【正文语种】中文【中图分类】TP29化工过程具有高维数、强关联和非线性等特点,其过程模型复杂,难以利用机理进行求解。

温度对膜进样质谱溶解气渗透效率影响的研究


2 300 m 深度范围内 PDMS 膜在不同压力条件下的膜渗透效率数据,建立了能适应更深水域环境的压力
校准模型,提高了 PDMS 膜在更深水域中膜渗透效率测定的准确性和稳定性。Lapack 等[12]在研究膜表
面流速对膜渗透效率的影响时发现,当雷诺数大于 1 000 时,膜的渗透通量达到饱和,不再随膜表面流
溶解气是水体的重要组成部分[1-2],其含量和分布不仅反映水质的污染程度,还与物质循环和生态
平衡密切相关[3-4]。因此,溶解气的准确探测对深入了解水体的物化性质具有重要的科学意义和实际价
值。同时,在开展水质监测、生态环境保护研究等方面也具有重要意义。
收稿日期:2023-12-24;修回日期:2024-03-05
解气浓度的精准反演。Lapack 等[12]开展了不同温度下多种物质的膜渗透效率影响探究实验,获取了
25~85 ℃范围内膜渗透效率与温度的关系曲线,该实验揭示了温度对膜渗透效率的影响特征,进而阐
释了温度影响膜渗透性能的机制和规律。但该温度实验过程中仅有 4 个采样点,温度区间未能覆盖关
键温度段。Flaconneche 等[13]获取了 40~130 ℃条件下氦、氩、氮、甲烷和二氧化碳 5 种气体的膜渗透效
ture at the current moment,but also affected by the historical temperature. That is,the influence of
temperature on the membrane permeation efficiency has a hysteresis effect. This study quantifies the
率。该研究提出了该温度范围下膜渗透效率的求解方法,为开展温度对膜渗透效率影响的研究及 UMS

Cu(I)

Univ. Chem. 2023, 38 (11), 195–205 195收稿:2023-04-04;录用:2023-06-02;网络发表:2023-06-12 通讯作者,Email:***************.cn基金资助:四川省科技计划资助(2023NSFSC0101);四川省大学生创新创业项目(S202114389166)•化学实验•doi: 10.3866/PKU.DXHX202304015Cu(I)/TEMPO 体系催化空气氧化苄醇——一个有机化学综合实验设计奉强,王思宇,李倩意,王晓月,何冰*成都师范学院化学与生命科学学院,化学基础与创新四川省实验教学示范中心,成都 611130摘要:苄醇氧化制备苯甲醛在有机化学教学中占有重要地位,但其易于操作的合成方法常因环境不友好而难以进入大学有机化学基础实验教学课堂。

本文介绍一个有机化学综合实验,以氯化亚铜、2,2’-联吡啶(bpy)、N -甲基咪唑(NMI)和2,2,6,6-四甲基哌啶氧化物(TEMPO)作催化剂,空气作氧化剂,丙酮作溶剂,室温下将苄醇在少于30 min 的时间内高效氧化得到苯甲醛。

优选得到的组合催化体系,能通过颜色突变指示反应终点;可使实验微型化,缩短反应时间,节约实验成本;对不同电性的苄醇化合物进行拓展实验,反应具有广泛适应性。

该实验一定程度上弥补了大学化学教学实验中芳醛合成实验教学资源的匮乏。

关键词:有机化学综合实验;空气氧化;芳香醛;结构表征 中图分类号:G64;O6Air Oxidation of Benzyl Alcohol Catalyzed by Cu(I)/TEMPO System: An Comprehensive Experiment Design of Organic ChemistryQiang Feng, Siyu Wang, Qianyi Li, Xiaoyue Wang, Bing He *Chemical Basis and Innovation Sichuan Experimental Teaching Demonstration Center, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, China.Abstract: The oxidation of benzyl alcoyhol to benzaldehyde plays an important role in teaching organic chemistry. However, it is often difficult to enter basic university organic chemistry experimental teaching classes because of the unfriendly environment. In this paper, a comprehensive experiment in organic chemistry is introduced. Benzyl alcohol was efficiently oxidized to benzaldehyde in less than 30 min at room temperature using cuprous chloride, 2,2’-bipyridine (bpy), N -methylimidazole (NMI), and 2,2,6,6-tetramethylpiperidine oxide (TEMPO) as catalysts, air as oxidant, and acetone as solvent. The optimized combined catalytic system can indicate the endpoint of the reaction through color mutation; it can miniaturize the experiment, shorten the reaction time, and reduce experimental cost. Extensive experiments were conducted on benzyl alcohol compounds with different electrical properties, and the reaction exhibited wide adaptability. To some extent, this experiment compensates for the lack of experimental teaching resources for aromatic aldehyde synthesis in college chemistry teaching experiments.Key words: Comprehensive experiment of organic chemistry; Air oxidation; Aromatic aldehydes;Structural characterization苯甲醛是结构最为简单的芳香醛,也是一种重要的有机化工原料,广泛用作染料、香料及药物的重要中间体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

bond fluid depended on the number of arrangements of hydrogen bonds in the system but not on the distribution of the associates [20]. Recently, Panayiotou and Sanchez [11] made a significant step in this direction by incorporating the Perram-Veytsman theory of hydrogen bond into the original Sanchez-Lacombe equation of state[21]. It can successfully calculate some thermodynamic properties such as H and V
[7-10]
correlated parameter and parameters of the LFHB EOS, we also try to predict the 1H NMR chemical shift of the mixture at different temperatures.
1 Theory
[18]
. A detailed comparison of SAFT and Wilson local
[19]
composition model was also given . As a comparison and supplement we introduced LFHB EOS into our study and compare it with the popular chemical association theory. With the one
[5]
the second subscript 1 stands for the kind of acceptor, and N11 stands for the number of hydrogen bonds formed in the system.
0 0 0 In this model, the energy E 11 , entropy S 11 and volume V 11 of for
E E[22]
parable to the widely used values in various association models and can be used successfully to predict a microscopic property, the degree of hydrogen bond at different temperatures [23] . This selection of such values is, to some extent, arbitrary, and possibly other sets of values would reproduce experimental data more quantitatively [22] . Thus the chemical Gibbs free energy can be derived,
1
Abstract The lattice-fluid hydrogen bond equation of state model(LFHB model) is used to correlate 1H NMR chemi-
H NMR chemical shift,
Hydrogen bond,
Lattice fluid theory,
Received: March 22, 2005; Revised: May 10, 2005. Correspondent: LI, Hao-Ran(E-mail: lihr@zju. edu. cn; Tel: 86-571-87952424; Fax: 86-571-87951895).

The Project Supported by NSFC (20434020) and NSF of Zhejiang Province(RC01051)
LAN, Rong LI, Hao-Ran HAN, Shi-Jun
310027) (Department of Chemistry, Zhejiang University, Hangzhou
cal shift of the proton in hydroxyl(—OH) of alcohol + inert solvent mixtures. The 29 sets of data for 17 systems are correlated using only one parameter. In addition, this parameter can be used to predict the chemical shift of mixtures at different temperatures. Keywords:
and LFHB EOS
[11]
are based
on such assumption for hydrogen bonds in liquids, though their thermodynamical treatment differs. As previous work of our group, 1H NMR chemical shifts of DMF+H2O[12], NMA +CCl4 and NMA+H2O[13] were correlated by chemical association theory. Deng et al.[14] for the first time used a simple local composition model to correlate the chemical shifts of mixtures and successfully simultaneously correlated viscosity and 1H NMR chemical shift for DMF- methanol systems [15]. The local composition model is also used to predict vapor - liquid equilibrium [16] and viscosity [17]. The SAFT theory has also been applied to such studies on spectroscopy and satisfactory results achieved
1296
Acta Phys. -Chim. Sin.(Wuli Huaxue Xuebao),2005
Vol.21
bond extent, which is to be used in correlating NMR chemical shifts, from the LFHB theory. Invoking arguments originally proposed by Levine and Perram , Veytsman theorized that the properties of a hydrogen
Gutowsky et al .
[1]
presented such an assumption that the
measured chemical shift is a weight-average of all species shifts due to the fact that the lifetime of a hydrogen bond is much shorter than the NMR observation time. We assume that the observed chemical shifts of the hydroxyl proton are due to two species, i. e., hydrogen bond OH proton and non-bonded OH. Then the observed chemical shift is expressed as δobs = xf δf +xhb δhb=(1-xhb)δf+xhb δhb (1) Where xf and δf are molar fraction and chemical shift for nonbonded OH. xhb and δhb are molar fraction and chemical shift for hydrogen bond OH. xhb is also called the hydrogen bond extent. For pure alkanols, 0 0 (2) xhb = δobs-δf δhb-δf Where superscript 0 denotes pure material. Rewrite the above equation, we can get 0 (δobs -δf) + δf (3) δobs= xhb 0 xhb If we can calculate the hydrogen bond extent (xhb) in pure and mixed systems, only δf remains unknown in equation (3). Thus we can get δf by correlating experimental chemical shifts of mixtures. In this paper, we try to use the LFHB model on chemical shifts correlation. Firstly we will see how to get the hydrogen
相关文档
最新文档