螺栓螺纹有限元分析
Abaqus螺栓有限元分析

Abaqus螺栓有限元分析1.分析过程1.1.理论分析1.2.简化过程如果将Pro/E中的3D造型直接导入Abaqus中进行计算,则会出现裂纹缝隙无法修补,给后期的有限元分析过程造成不必要的麻烦,因此,在Abaqs中进行计算之前,对原来的零件模型进行一些简化和修整。
A.法兰部分不是分析研究的重点,因此将其简化掉;B.经计算,M24×3的螺纹的升角很小,在度,因此可以假设螺旋升角为0;C.忽略螺栓和螺母的圆角等细节;1.3.Abaqus中建模查阅机械设计手册,得到牙型如下图所示,在Abaqus中按照下图所示创建出3D模型,如图错误!文档中没有指定样式的文字。
-1所示。
同样的方式,我们建立螺母的3D模型nut,如图错误!文档中没有指定样式的文字。
-2所示。
图错误!文档中没有指定样式的文字。
-1图错误!文档中没有指定样式的文字。
-2建立材料属性并将其赋予模型。
在Abaqus的Property模块中,选择Material->Manager->Create,创建一个名为Bolt&Nut的新材料,首先设置其弹性系数。
在Mechanical->Elastic中设置其杨氏模量为193000Mpa,设置其泊松比为0.3,如图错误!文档中没有指定样式的文字。
-4所示。
建立截面。
点击Section->Manager->Creat,建立Solid,Homogeneous的各向同性的截面,选择材料为Bolt&Nut,如图错误!文档中没有指定样式的文字。
-5所示。
将截面属性赋予模型。
选择Assign->Section,选择Bolt模型,然后将刚刚建立的截面属性赋予它。
如图错误!文档中没有指定样式的文字。
-3所示。
同样,给螺母nut赋予截面属性。
图错误!文档中没有指定样式的文字。
-3图错误!文档中没有指定样式的文字。
-4图错误!文档中没有指定样式的文字。
-5然后,我们对建立的3D模型进行装配,在Abaqus中的Assembly模块中,我们同时调入两个模型,然后使用Constraint->Coaxial命令和Translate和Instance命令对模型进行移动,最终的装配结果如图错误!文档中没有指定样式的文字。
螺栓螺纹三维接触有限元分析

机械 2010年第5期 总第37卷 计算机应用技术 ・31・———————————————收稿日期:2009-12-06作者简介:李波(1981-),湖北武汉人,硕士研究生,主要研究方向为机械结构分析。
螺栓螺纹三维接触有限元分析李波(华中科技大学 机械科学与工程学院,湖北 武汉 430074)摘要:在对螺栓螺纹的分析中,一般采用的方法是将螺栓简化为轴对称,建立轴对称有限元模型进行分析,即使是建立三维模型也是忽略了螺纹部分对整个有限元模型分析的影响。
在一些特殊的分析情况下,这样会大大降低分析的精度。
比如,在对螺栓螺纹防松机理方面的研究中,就必须考虑螺纹部分及其接触对整个分析过程的影响,而采用单一的有限元软件又很难完成。
正是基于这一原因,根据UG 、HyperMesh 和ANSYS 软件的特点,综合运用其长处可以完成螺栓螺纹从几何建模、网格划分、分析计算到结果处理的整个过程.实例表明,综合运用各种软件,有利于发挥每种软件的优点,大大提高有限元分析的效率。
关键词:螺栓螺纹;UG ;HyperMesh ;ANSYS ;三维接触中图分类号:TH131.3 文献标识码:A 文章编号:1006-0316 (2010) 05-0031-03Three-dimensional contact ofthreaded bolt finite element analysisLI Bo(Mechanical Engineering College ,Huazhong University of Science and Technology ,Wuhan 430074,China) Abstract :Generally, we using axis symmetry in the screw thread of bolt finite element analyse. Even though, neglecting the effect of screw thread to the whole three-dimensional finite element model. Reducing precision in some special occasion. For instance ,in research of preventing screw thread of bolt from loosening, it must take into account of the compact of the screw thread and the contact. But it hard to accomplish the mission in using single software. With the issues that finite element analysis using single software is complicated and low efficient ,the UG ,HyperMesh and ANSYS softwares are synthetically applied in the course of modeling ,plotting finite element grids ,calculating and analyzing ,and result dealing based on their respective characteristic .The example indicates that the comprehensive application of various finite element softwares can exert their corresponding advantages and make the analysis more efficient .Key words :threaded bolt ;UG ;HyperMesh ;ANSYS ;three-dimensional contact有限元法是随着计算机的发展而迅速发展起来的一种现代计算方法。
螺纹连接预紧力有限元分析及实验研究

螺纹连接预紧力有限元分析及实验研究摘要:本文运用有限元理论,以ANSYS软件为分析平台,建立了螺栓连接的有限元模型,分析了螺栓在预紧过程中各圈螺纹副的受力情况,通过积分求得了螺纹副间的摩擦力矩,确定了预紧力与预紧力矩之间的关系,并通过实验进行了验证,得到一个可以应用到工程实际中的预紧扭矩系数值,为提高扭矩法控制螺纹连接预紧力的精度和建立各种型号螺栓连接的预紧力—扭矩关系数据库奠定了基础。
关键词:螺纹连接预紧力扭矩系数有限元1 引言螺纹连接结构简单,拆装方便,是机械结构中应用最广泛连接方式。
受轴向预紧力的螺纹连接应用最为广泛。
施加合适的螺纹连接预紧力,能提高结构的承载能力、改善结构的应力分布、增加结构的工作可靠性。
预紧力过大,将导致结构承载能力的下降,螺栓在载荷作用下会发生螺纹屈服、松脱、延迟断裂;预紧力不足,被连接件在载荷作用下会产生间隙或松动,改变螺栓的受力状态,降低螺栓强度,降低疲劳强度。
预紧力控制不均匀,将导致螺栓受力不均,个别螺栓超过设计载荷,导致螺栓组整体强度下降,整个机械结构、设备安装连接失效。
因此,预紧力控制对机械结构显得尤为重要。
目前控制螺纹预紧力的方法有四种,即螺栓伸长法,扭矩法,扭矩—转角法和屈服点法。
螺栓伸长法、屈服点法这二种方法因为其工程实用性差,控制成本高,现在只在实验室研究中应用;扭矩-转角法则因其设备昂贵,并且应用起来不方便,主要应用于发动机缸盖联接等重要特殊部位。
扭矩法在工程中应用最方便、最广泛,经济性最好,但控制精度需要提高。
目前,通过力矩控制法来控制预紧力是经济型最高的控制方法,并且大范围的应用,但是在通过预紧力与预紧扭矩的关系,求取扭矩系数K值的时候,螺纹连接采用的是简化模型,认为整个螺旋副上的受力均等,这个模型有很大的局限性,因为实际情况,每圈螺纹的受力情况都是不同的,从而求得的K值不准确,从而预紧后得到预紧力的离散度大,使得扭矩控制法的精度受到影响。
往往在实际操作中,有很多螺纹没有达到预紧目的,对设备运行的可靠性影响很大。
(完整)螺栓连接的有限元分析

1 概述螺栓是机载设备设计中常用的联接件之一.其具有结构简单,拆装方便,调整容易等优点,被广泛应用于航空、航天、汽车以及各种工程结构之中。
在航空机载环境下,由于振动冲击的影响,设备往往产生较大的过载,对作为紧固件的螺栓带来强度高要求。
螺栓是否满足强度要求,关系到机载设备的稳定性和安全性.传统力学的解析方法对螺栓进行强度校核,主要是运用力的分解和平移原理,解力学平衡方程,借助理论和经验公式,理想化和公式化.没有考虑到连接部件整体性、力的传递途径、部件的局部细节(如应力集中、应力分布)等等。
通过有限元法,整体建模,局部细化,可以弥补传统力学解析的缺陷.用有限元分析软件MSC。
Patran/MSC。
Nastran提供的特殊单元来模拟螺栓连接,过程更方便,计算更精确,结果更可靠。
因此,有限元在螺栓强度校核中的应用越来越广泛.2 有限元模型的建立对于螺栓的模拟,有多种模拟方法,如多点约束单元法和梁元法等。
多点约束单元法(MPC)即采用特殊单元RBE2来模拟螺栓连接.在螺栓连接处,设置其中一节点为从节点(Dependent),另外一个节点为主节点(Independent)。
主从节点之间位移约束关系使得从节点跟随主节点位移变化。
比例因子选为1,使从节点和主节点位移变化协调一致,从而模拟实际工作状态下,螺栓对法兰的连接紧固作用.梁元法模拟即采用两节点梁单元Beam,其能承受拉伸、剪切、扭转。
通过参数设置,使梁元与螺栓几何属性一致.本文分别用算例来说明这两种方法的可行性。
2.1 几何模型如图1所示组合装配体,底部约束。
两圆筒连接法兰通过8颗螺栓固定.端面受联合载荷作用。
图1 三维几何模型2。
2 单元及网格抽取圆筒壁中性面建模,采用四节点壳元(shell),设置壳元厚度等于实际壁厚。
法兰处的过渡圆弧处网格节点设置密一些,其它可以相对稀疏。
在法兰上下两节点之间建立多点约束单元(RBE2,算例1,图3)或梁元(Beam, 算例2,图4)来模拟该位置处的螺栓连接。
螺栓连接地有限元分析报告

1 概述螺栓是机载设备设计中常用的联接件之一。
其具有结构简单,拆装方便,调整容易等优点,被广泛应用于航空、航天、汽车以及各种工程结构之中。
在航空机载环境下,由于振动冲击的影响,设备往往产生较大的过载,对作为紧固件的螺栓带来强度高要求。
螺栓是否满足强度要求,关系到机载设备的稳定性和安全性。
传统力学的解析方法对螺栓进行强度校核,主要是运用力的分解和平移原理,解力学平衡方程,借助理论和经验公式,理想化和公式化。
没有考虑到连接部件整体性、力的传递途径、部件的局部细节(如应力集中、应力分布)等等。
通过有限元法,整体建模,局部细化,可以弥补传统力学解析的缺陷。
用有限元分析软件MSC.Patran/MSC.Nastran提供的特殊单元来模拟螺栓连接,过程更方便,计算更精确,结果更可靠。
因此,有限元在螺栓强度校核中的应用越来越广泛。
2 有限元模型的建立对于螺栓的模拟,有多种模拟方法,如多点约束单元法和梁元法等。
多点约束单元法(MPC)即采用特殊单元RBE2来模拟螺栓连接。
在螺栓连接处,设置其中一节点为从节点(Dependent),另外一个节点为主节点(Independent)。
主从节点之间位移约束关系使得从节点跟随主节点位移变化。
比例因子选为1,使从节点和主节点位移变化协调一致,从而模拟实际工作状态下,螺栓对法兰的连接紧固作用。
梁元法模拟即采用两节点梁单元Beam,其能承受拉伸、剪切、扭转。
通过参数设置,使梁元与螺栓几何属性一致。
本文分别用算例来说明这两种方法的可行性。
2.1 几何模型如图1所示组合装配体,底部约束。
两圆筒连接法兰通过8颗螺栓固定。
端面受联合载荷作用。
图1 三维几何模型2.2 单元及网格抽取圆筒壁中性面建模,采用四节点壳元(shell),设置壳元厚度等于实际壁厚。
法兰处的过渡圆弧处网格节点设置密一些,其它可以相对稀疏。
在法兰上下两节点之间建立多点约束单元(RBE2,算例1,图3)或梁元(Beam, 算例2,图4)来模拟该位置处的螺栓连接。
经验公式与有限元分析相结合的螺栓强度校核方法

经验公式与有限元分析相结合的螺栓强度校核方法1. 概述螺栓是应用广泛的可拆卸紧固件,实际工程中经常需要进行螺栓强度校核和选型。
机械设计手册中给出了螺栓选型的经验公式,这些公式是合理有效的,但需要明确输入螺栓的轴向和横向载荷,这些载荷通常很难用理论计算或经验估计方法确定。
有限元分析能够处理螺栓连接的结构,但有限元分析中的螺栓连接通常是做了大量简化,导致螺栓应力结果不准确,无法作为螺栓校核选型的依据。
因此,本文考虑将经验公式与有限元分析相结合来进行螺栓校核选型。
通过有限元分析来确定螺栓所受的轴向和横向载荷,以此作为经验公式的输入,完成螺栓校核选型计算。
关于螺栓选型,需要明确最小拉力载荷和保证载荷这两个概念。
当试验拉力达到最小拉力载荷时,要求螺栓不得发生断裂。
在试件上施加保证载荷后,其永久伸长量(包括测量误差),不应大于12.5微米。
最小拉力载荷和保证载荷的具体数值参见GB/T 3098.1-2000~ GB/T 3098.17-2000。
跟螺栓选型相关的几个标准规范如下:· GB/T 3098-2000 紧固件机械性能· GB/T 16823.1-1997 螺纹紧固件应力截面积和承载面积· QC/T 518-2007 汽车用螺纹紧固件紧固扭矩· GB/T 5277-1985 紧固件螺栓和螺钉通孔2. 螺栓强度校核经验公式2.1 受横向载荷普通紧螺栓在预紧力作用下,压紧被连接件,被连接件间产生摩擦力,抵抗横向载荷。
螺栓杆受拉伸扭转综合作用。
如果连接件之间的摩擦力不足以抵消横向载荷,则被连接件发生横向错动,螺杆可能被剪断。
图1受横向载荷普通紧螺栓其强度校核计算公式如下: 螺栓所受横向外载荷为F A 。
为产生足够的摩擦力抵抗F A ,所需最小预紧力F p 为:上式中,K f 为可靠性系数,一般取1.1-1.3;m 为结合面数目;f为结合面摩擦系数。
按照最小预紧力F p 计算螺栓应力σ,进而确定所需的螺栓屈服强度σs ,最终可选定螺栓公称直径和强度等级。
高强度螺栓螺纹根部应力集中的有限元分析

因此, 不建议用增大螺栓螺距的方法来缓解螺纹 根部的应力集中。
%# 结论
(&) 在螺栓与螺母的联接组合中, 离支承面 越近, 螺栓螺纹根部的应力越大, 其最大应力出现 在螺栓与螺母啮合第一扣的螺栓螺纹根部, 因此 此处最容易发生断裂, 这与螺栓的实际断裂位置 是一致的, 说明本文建立的有限元接触分析模型 是正确的, 分析结果是可靠的。 (’ ) 对于标准 ($) 粗牙螺栓, 增大螺纹根部 圆角半径可以显著降低螺栓螺纹根部的应力, 从 而缓 解 应 力 集 中, 当 半 径 从 *" )+,, 增 大 到 &" *$,,时, 应力值降低超过 &!- , 但是当半径增 大到一定程度后, 继续增大半径对螺纹根部应力 的影响较小。 (! ) 减小 ($) 螺栓的螺纹深度, 使得螺纹根 部圆角半径进一步增大, 可以进一步降低螺栓螺 纹根部的应力。而且在半径相同的情况下, 螺纹 深度越小, 螺纹根部的应力也越小。 (% ) 依靠增大螺距来降低 ($) 螺栓螺纹根部 的应力, 效果不明显。 参考文献:
) ) 普通三角形螺纹根部应力集中系数大, 使得 现在使用的高强度螺栓存在严重的安全隐患, 而 且也严重影响了螺栓向更高强度发展。某 /%0 高强度螺栓从螺栓与螺母啮合的第一扣处螺纹根 部发生断裂, 严重影响了结构的安全可靠性。因 此, 有必要研究 /%0 高强度螺栓螺纹根部的应力 集中情况, 寻求减少螺纹根部应力集中、 改善螺纹 处应力分布的途径, 从而确保 /%0 高强度螺栓的 安全使用。 减少螺栓螺纹根部应力集中、 改善应力分布一 般可以通过以下方法实现: 一是增大螺纹根部的圆 角半径; 二是增大螺栓螺纹根部直径 ( 即减小螺纹 深度) ; 三是改变螺栓与螺母联接的结构
Abaqus螺栓有限元分析(汇编)

将截面属性赋予模型。选择Assign->Section,选择Bolt模型,然后将刚刚建立的截面属性赋予它。如图13所示。同样,给螺母nut赋予截面属性。
1.
1.1.
1.2.
如果将Pro/E中的3D造型直接导入Abaqus中进行计算,则会出现裂纹缝隙无法修补,给后期的有限元分析过程造成不必要的麻烦,因此,在Abaqs中进行计算之前,对原来的零件模型进行一些简化和修整。
A.法兰部分不是分析研究的重点,因此将其简化掉;
B.经计算,M24×3的螺纹的升角很小,在度,因此可以假设螺旋升角为0;
图112
图113
图114
第六步,定义接触面。接触面是Abaqus分析中非常重要的一环。进入Abaqus中的Interaction模块,先在Tools->Surface菜单中设置我们要定义的两个相互接触的面。如图115所示,螺栓上的接触面主要是螺纹的下表面,按着Shift键依次将其选中。如图116所示,螺母上的接触面主要是螺纹的上表面,同样按着Shift键依次将其选中。设置接触面的属性。选择Interaction->Manager->Creat中创建接触面,类型选择面和面接触,选择Mechanical->TangentialBehavior,输入摩擦系数为0.14,选择Mechanical->NormalBehavior,接受默认设置,最终设置如图117所示。选择Interaction->Creat,创建螺栓和螺母之间的接触,接触,类型选择刚刚定义的接触类型,设置结果如图118所示。