大学物理第2章 运动定律与力学中的守恒定律

合集下载

大学物理第2章质点动力学基本定律

大学物理第2章质点动力学基本定律
9
变力问题:
t
v
(1) F(t)dt mdv
0
v0
t
v
(2) dt m
dv
0
v0 F (v)
dv dx
dv x
v
(3)F(x) m mv dt dx dx
F(x)dx mvdv
x0
v0
(4)F( ) m dv d m v dv dt d R d
v
F( )Rd mvdv
质点动力学
1 牛顿运动定律 2 动量定理和动量守恒定律 3 角动量定理和角动量守恒定律 4 功和能
1
§ 牛顿运动定律
一.牛顿运动定律
1 .第一定律(惯性定律) 任何物体只要没有外力的作用, 或合外力为零, 都保持静止或匀速直线运动的状态。
第一定律包含两个概念: 力:使物体改变其运动状态的原因 惯性—任何物体都具有保持其运动状态不变的 性质。
dt dsdt Rd
vdv Rg cos α dα
12
v
0 vdv 0 Rg cos d A
v 2Rg sin
FN
mg sin
m
2Rg sin R
3mg sin
en
FN
et
mg
13
例 一根长为L,质量为M的柔软的链条,开始时链条
静止,长为L-l 的一段放在光滑的桌面上,长为 l 的
非惯性系中如何研究运动的动力学规律呢?
引入惯性力
17
1.加速惯平性动系参S考:系SF’ (相m对a惯性①系S有加速度a0)
相对运动关系:
a
a
a
0
代入①并移项
F
(ma
)
ma
假定:

大学物理-运动定律与力学中的守恒定律

大学物理-运动定律与力学中的守恒定律

二、质点系的动量定理
n1 第i个质点受到的合力为 Fi外 f ji j 1
Fi外
f ji
mi
mj f ij
F j外
对第i个质点 t f ji dt mi vi 2 i i1 运用动量定理有:t Fi外 j 1 n n n1 n n t t Fi外 dt t f ij dt mi vi 2 mi vi1 t i 1 i 1 i 1 i 1 j 1
2、惯性系与非惯性系 问 题 a=0时人和小球的状态符合牛顿定律 a≠0时人和小球的状态为什麽不符合牛顿定律? 结论:牛顿定律成立的参照系称为惯性系。相对惯性 系作加速运动的参照系是非惯性系。而相对惯性系作 匀速直线运动的参照系也是惯性系。 根据天文观察,以太阳系作为参照系研究行星运动时发现 行星运动遵守牛顿定律,所以太阳系是一个惯性系。
y
O
v2 30o
I F 6.14N t
6.14 10 2 Ns
45o x
v1
n
mv 2 F t sin sin 105
F
51.86 tsin 0.7866

v1 v1
v2
51.86 45 6.86
x
例:质量 m1 0.25kg 的小球,静止在光滑水平面上, 受到另一质量 m2 0.30kg ,速度 v20 0.5m / s 的小球斜碰。设碰后小球 m2 的速度v2 0.3m / s 运动方向与原方向成 30 ,求小球 m1 碰撞后 速度的大小和方向。 v 2 解:把两球看作一 v20 x m2 m2 个系统,系统 m1 v10 0 不受外力, 故动量守恒: v1

大学物理:2-1 机械能守恒定律

大学物理:2-1 机械能守恒定律

26
例2 求使物体不仅摆脱地球引力作用, 而且脱离太 阳引力作用的最小速度。(第三宇宙速度)
解 根据机械能守恒定律有
1 2
mv22
G
m ms r0
0
v2
2Gms 42.1103 m s-1 r0
地球公转速度 v1 物体相对于地球速度
Gms 29.7 103 m s-1 r0
v v2 v1 (42.1103 29.7 103 )m s- 1 12.4 103 m s-1
y
A
小mg球和在F滚N 两动个过力程的中作受用到。 h
合力为
F mg FN
O
FN
mg
B
x
根据动能定理有
B A
F
d
r
1 2
mvB2
1 2
mv
2 A

B mg d r
A
B A FN
d
r
1 2
mvB2
1 2
mv2A
12

FN
始终垂直于
dr

所以
B A FN dr 0
(2)功和动能都是与参照系有关的量。但动能定理 在不同惯性系中都成立,这是力学相对性原理的必 然结果。在一般情况下,如无特别声明,就是指以 地面为参照系。
11
例3 小球以初速率vA 沿光滑曲面向下滚动,
如图所示。问当小球滚到距出发点A的垂直距离
为h 的B 处时, 速率为多大 ?
解 建立右图的坐标系,
F3 F3n Fn3 Fn
所以 A外 + A非保内 = (EkQ +EpQ ) (EkP + EpP ) 22
系统的动能与势能之和称为系统的机械能,用E表示 于是有 A外 + A非保内 = E(Q) E(P)

大学物理第二章习题质点力学的基本规律 守恒定律

大学物理第二章习题质点力学的基本规律 守恒定律
第2章 质点力学的基本规律 守恒定律
基本要求
掌握经典力学的基本原理及会应用其分析和处理质点动力学问题,理 解力学量的单位和量纲。掌握动量、冲量、动量定理,动量守恒定律。并 能分析和计算二维平面简单力学问题。理解惯性系概念及经典力学的基本 原理的适用范围。掌握功与功率、动能、势能(重力势能、弹性势能、引 力势能)概念,动能定理、功能原理、机械能守恒定律。
教学基本内容、基本公式
1.牛顿定律
解牛顿定律的问题可分为两类: 第一类是已知质点的运动,求作用于质点的力; 第二类是已知作用于质点的力,求质点的运动.
2.基本定理 动量定理
动能定理

I
t2 t1
F (t )dt

mv

mv0
A12

2
F
(r)

dr

1
1 2
mv
2 2

1 2
解:根据牛顿第二定律
f

k x2
m dv dt
m dv d x dx dt
mv
dv dx

k x2
mv
dv dx
v
dv

k
dx mx2

v
v
0
dv

A/4

A
k mx2
d
x
1v2 k (4 1) 3 k 2 m A A mA
另解:根据动能定理
v 6k /(mA)
(2)写出初末态系统的动量
t 时刻水平方向动量
dm m
t+dt时刻水平方向动量
O
x
(3)求出系统水平方向动量的增量

大学物理学习指导(第2章)

大学物理学习指导(第2章)
^
^!"自(!饥
1 6,1
(? !
在经典力学中,77^恒定不变,上式则为
在直角坐标系中,其分量5^为
凡 二
饥"I

1/
0
尺 二
1
尺 二
5?
对于平面曲线运动,常用自然坐标系,其分量式为
1^『^ 171(1^ ^
舰":
9
3^动量定理 微分形式 积分形式 ^
^1^1
^ 6(7^^ ^
二 ^ (!^ 171^ ^
的夹角为0,现沿斜面以恒力I拉杆,求杆内各部分间的相互作用〖张力)沿棒长方 向的变化规律。 解取杆V^为研究对象,设加速度为"则有 V

31X10
^
771^1
(!)
再取长为工的一段/10:为研究对象,设在0:点杆内张力为/,^(:段受力如图所
示,则有
第 页
山 # 、理工大学备课欽
^ 、 月

卞 习题2-2图
771^ ―
^
X;2。求跳伞员的运
2 二 6.1
分离变量两边积分
3。
、2一 解得 厂 2

V 」 瑝 "广"& 二 1 1 1 饥8

,

"

/ , 十
V
^
口 ( ? , / , " ) 十 丄 ] " 口 ( ; , 〃 。 ― 1〕
当,—①,极限速率为 1^
11
5 ?
2 - 8
一质量为7^
^
101^8的质点,在力7 ^ ^ 5111处,其速度^0
0.21
5,这力应在这物体上作用多少时间?试就一

大学物理非惯性系惯性力

大学物理非惯性系惯性力

第2章 运动定律与力学中的守恒定律
* 2–2 非惯性系 惯性力
5
3.科里奥利力
一圆盘绕铅直轴以角速转动,盘心
有一光滑小孔,沿半径方向有一光滑槽, 槽中有一小球被穿过小孔的细线所控制,
u相
使其只能沿槽做匀速运动,现小球沿槽以
u 相 向外运动。
从圆盘上观察,则小球仅有径
向匀速运动,即小球处于平衡态,
圆心,但小球仍处于静
fc
m 2r
止状态
此时
as
2
r
第2章 运动定律与力学中的守恒定律
* 2–2 非惯性系 惯性力
4
重力W实际上应是F引和ƒ*c的合力
W F引 f 惯 W F引 m 2R cos2
地球自转角速度很小 2 7.3105 rad / s
24 3600
所以除精密计算外,通常把 F引 视为物体的重力。
* 2–2 非惯性系 惯性力
1
惯性力— 惯性在非惯性系中
的表现.
mas
➢ 平动非惯性系中惯性力
N
P
m a'
as
F惯 mas
➢ 非惯性系中牛顿第二定律 F mas ma'
注意 1) 惯性力是引入的虚拟的力.
2)惯性力不是物体间的相互作用,不存在惯性力的 反作用力, 找不出它的施力物体.
3)在研究地面上物体的运动时,地球可近似地看成 是惯性参考系 .
分量式
解得
第2章 运动定律与力学中的守恒定律
*性力——惯性离心力
如图所示,在光滑水平圆盘上,用一轻弹簧栓一
小球,圆盘以角速匀速转动,这时弹簧被拉伸后而
静止。
地面观察者:小球受到弹性
力,且指向圆心,作圆周运动;

大学物理第2章-质点动力学基本定律

②保守力作功。
势能的绝对值没有意义,只关心势能的相对值。 势能是属于具有保守力相互作用的系统 计算势能时必须规定零势能参考点。但是势能差是一定的,与零点的选择无关。 如果把石头放在楼顶,并摇摇欲坠,你就不会不关心它。 一块石头放在地面你对它并不关心。
重力势能:以地面为势能零点
01
万有引力势能:以无限远处为势能零点
m
o
θ
设:t 时刻质点的位矢
质点的动量
运动质点相对于参考原点O的角动量定义为:
大小:
方向:右手螺旋定则判定
若质点作圆周运动,则对圆心的角动量:
质点对轴的角动量:
质点系的角动量:
设各质点对O点的位矢分别为
动量分别为
二.角动量定理
对质点:
---外力对参考点O 的力矩
力矩的大小:
力矩的方向:由右手螺旋关系确定
为质点系的动能,

---质点系的动能定理
讨论
内力和为零,内力功的和是否为零?
不一定为零
A
B
A
B
S
L
例:炸弹爆炸,过程内力和为零,但内力所做的功转化为弹片的动能。
内力做功可以改变系统的总动能
例 用铁锤将一只铁钉击入木板内,设木板对铁钉的阻力与铁钉进入木板之深度成正比,如果在击第一次时,能将钉击入木板内 1 cm, 再击第二次时(锤仍以第一次同样的速度击钉),能击入多深? 第一次的功 第二次的功 解:
(1)重力的功
重力做功仅取决于质点的始、末位置za和zb,与质点经过的具体路径无关。
(2) 万有引力的功
*
设质量M的质点固定,另一质量m的质点在M 的引力场中从a运动到b。
M
a
b

第2章 运动定律与力学中的守恒定律 2


mi vi2 mi vi1
i 1
i 1
定义:一个孤立的力学系统(系统不受外力作用)或合外力为
零的系统,系统内各质点间动量可以交换,但系统的总动量
保持不变,这就是动量守恒定律。
注意
n
1. 守恒条件是 Fi外 0
n
i 1
Fi外 0 有以下几种情况:
i 1
①不受外力。 ② 外力矢量和为零。③内力〉〉外力。
(2) 若t=0.01s
2
2
Fx 6.1N Fy 0.7N F F x F y 6.14N
例:一细绳跨过一轴承光滑的定滑轮,绳的两端 分别悬有质量为m1和m2的物体(m1<m2),如图所示。设 滑轮和绳的质量可忽略不计,绳不能伸长, 试求物体的加速度以及悬挂滑轮的绳中张力
解 选取对象 m1、m2及滑轮
分析运动
m1,以加速度a1向上运动
m2,以加速度a2向下运动
分析受力
T1
隔离体受力如图所示

恒矢量
F

ma

F1 F2
(2)质点的动量定理
动量
P

mv
冲量 动量定理

I
t2
F

dt
t1
微分形式 积分形式


dI
tFdt

dp

I t0 Fdt p p0
二、质点系的动量定理
n 个质点的质点系m1、m2、..... mn ,对第 i 个质点

k m
dt
因t=0时,=0;并设t时,速度为 . 取定积分
则有
d
0 T2 2

大学物理习题集(上,含解答)

大学物理习题集(上册,含解答)第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t-=+,并由上述数据求出量值. [证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:22(1)(1)n sa n t-=+. 计算得加速度为:22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m).根据自由落体运动公式s = gt 2/2,得下落的时间为:2t =.图1.3因此人飞越的时间为:t = t 1 + t 2 = 6.98(s). 人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得:0(sin t v g θ=.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k =+. [证明](1)分离变量得2d d vk t v =-, 故 020d d v t v v k t v =-⎰⎰,可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则 d v /d t = -kv n . (1)如果n = 1,则得d d vk t v=-, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .而d v = v 0e -kt d t ,积分得:0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此0(1-e )kt vx k -=.(2)如果n ≠1,则得d d n vk t v=-,积分得11n v kt C n -=-+-. 当t = 0时,v = v 0,所以101n v C n-=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为am·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =-+.即 201cos cos 2x v t a t θα=⋅+⋅, 201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自v 图1.7由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于212t h a t =∆, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为2n v a R== 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at =+;螺帽做竖直上抛运动,位移为22012h v t gt =-. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t .算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为02l t v =; (2)如果气流的速度向东,证明来回飞行的总时间为01221/t t u v =-;(3)如果气流的速度向北,证明来回飞行的总时间为2t =.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为1222l l vl t v u v u v u =+=+-- 022222/1/1/t l v u v u v==--. (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB方向的速度大小为V =,所以飞行时间为22l t V ==== 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?AB AB vv + uv - uABvuuvv[解答]雨对地的速度2v 等于雨对车的速度3v 加车对地的速度1v ,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以:12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+. 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为 l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为 x = v 0t ,2211sin 22y at g t α==⋅.将t = x/v 0,代入后一方程得质点的轨道方程为22sin g y x v α=,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一质量m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力F 拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N),图1.101h lα图2.1这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮质量均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 12212(2)/22F m m g a m m μ-+=+= 4.78(m·s -2),绳对它的拉力为2112(/2)/22m T F m g m m μ=-+= 1.35(N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式12111k k k =+; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 1212F F F kk k =+,即:12111k k k =+. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度1a 沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度1b 把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度2b (b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力12图2.32 图2.4的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g );绳子张力等于摆所受的拉力:T ==(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的矢量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:cos tan sin mb mg mb ϕθϕ=+,因此角度为cos arctansin b g b ϕθϕ=+;而张力为T=.(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大?(3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为 22d d s F ma m t ==,其中s 表示弧长.由于s = Rθ = lθ,所以速度为d d d d s v l t t θ==,因此d d d d d d d d v v m v F mm v t t l θθθ===,即 v d v = -gl sin θd θ, (1) 取积分60d sin d Bv v v gl θθ︒=-⎰⎰,(2)图2.6得2601cos 2B v gl θ︒=,解得:B v =s -1).由于:22B BB v v T mg m m mgR l -===,所以T B = 2mg = 1.96(N).(2)由(1)式积分得21cos 2C v gl C θ=+,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为C v =切向加速度为a t = g sin θ;法向加速度为2(2cos 1)Cn v a g R θ==-.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为2t a g== 8.49(m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为22d d sF ma m t ==,s 表示弧长.由于d d s v t =,所以 22d d d d d d d ()d d d d d d d s s v v s v v t t t t s t s ====,因此 v d v = g cos θd s = g d h ,h 表示石下落的高度.积分得 212v gh C =+,当h = 0时,v = 0,所以C = 0,因此速率为v =2.8 质量为m 的物体,最初静止于x 0,在力2kf x =-(k 为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程图2.7222d d k x f ma m x t =-==利用v = d x/d t ,可得22d d d d d d d d d d x v x v v v t t t x x ===,因此方程变为2d d k xmv v x =-,积分得212k mv C x =+.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此2012k k mv x x =-,即v =证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得21d 2nx mv k x =-⎰. (1)当n = 1时,可得21ln 2mv k x C =-+利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此 21ln 2x mv k x =, 即v =(2)如果n ≠1,可得21121n k mv x C n -=-+-.利用初始条件x = x 0时,v = 0,所以101n k C x n -=--,因此 2110111()21n n k mv n x x --=--, 即v =当n = 2时,即证明了本题的结果.2.9 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程d d vf mg kv mt =--=,分离变量得d d()d v m mg kv t m mg kv k mg kv +=-=-++,积分得ln ()mt mg kv C k =-++.当t = 0时,v = v 0,所以0ln ()mC mg kv k =+,因此00/ln ln/m mg kv m mg k v t k mg kv k mg k v ++=-=-++, 小球速率随时间的变化关系为0()exp()mg kt mgv v k m k =+--.(2)当小球运动到最高点时v = 0,所需要的时间为00/ln ln(1)/mg k v kv m m T k mg k k mg +==+.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以0d [()exp()]d mg kt mg x v t k m k =+--,即0(/)d d exp()d m v mg k kt mgx tk m k +=---,积分得0(/)exp()`m v mg k kt mgx t C k m k +=---+, 当t = 0时,x = 0,所以0(/)`m v mg k C k +=,因此0(/)[1exp()]m v mg k kt mg x tk m k +=---.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为d d vf mg kv mt =-=,用同样的步骤可以解得小球速率随时间的变化关系为0()exp()mg mg ktv v k k m =---.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m =mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因数为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得2d d k v v f m m R t μ=-=, 即 : 2d d k vt R v μ=-.积分得:1k t C R v μ=+.当t = 0时,v = v 0,所以01C v =-, 因此 011kt Rv v μ=-.解得 001/k v v v t R μ=+.由于0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++, 积分得0ln (1)`k kv tR x C Rμμ=++,当t = 0时,x = x 0,所以C = 0,因此0ln (1)k kv tRx Rμμ=+.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = mω2R sin θ,可得2cos mgR ωθ=,解得2arccosg R θω=±.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t , 积分得冲量为 /20(cos )d I kA t tωω=-⎰π,/20sin kAkAtωωωω=-=-π方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的质量为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,mg图2.11小球获得的冲量为I = p 2 – p 1 = -mωA , 可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义21p p p ∆=- 得:21p p p =+∆,由此可作矢量三角形,可得:p ∆==. 因此向心力给予小球的的冲量大小为I p =∆= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量24v TI Ft mR ==2/42R T T mv mvR ππ==.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得 /4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==,/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==,合冲量为I ==,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为y v =s -1),其速度的增量为v ∆== 24.4(m·s -1). 棒给球冲量为I = m Δv = 7.3(N·s), 对球的作用力为(不计重力):F = I/t = 366.2(N).v xΔvv y2.15 如图所示,三个物体A 、B 、C ,每个质量都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2, 可得B 拉C之前的运动时间;t =. 此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`, 因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作矢量三角形,列方程得 /2`cos 452mmv v =︒,所以 v` = v /cos45°= 0cos θ.2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的质量为m ,它与路面的滑动摩擦因数为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移d s 的大小为d s = R d θ. 重力G 的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为1d d cos(/2)d W G s G s θ=⋅=+π sin d mgR θθ=-,积分得重力所做的功为454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-.摩擦力f 的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为2d d cos d W f s f s =⋅=πcos d k u mg R θθ=-,积分得摩擦力所做的功为图2.174520(cos )d k W mgR μθθ︒=-⎰450sin k k mgR mgR μθ︒=-=.要使雪橇缓慢地匀速移动,雪橇受的重力G 、摩擦力f 和马的拉力F 就是平衡力,即0F G f ++=,或者 ()F G f =-+.拉力的功元为:d d (d d )W F s G s f s =⋅=-⋅+⋅12(d d )W W =-+,拉力所做的功为12()W W W =-+(1)k mgR μ=.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一质量为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因数;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:20()d 2k k W mgr mgrπμθπμ=-=-⎰.由于W = ΔE ,可得滑动摩擦因数为20316k v gr μ=π.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为22008223k v v r s a g πμ===,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。

大学物理上第2章2-动量--角动量 守恒定律

(2)当外力作用远小于内力作用时,可近似认 为系统的总动量守恒。(如:碰撞,打击等)
动量守恒的分量式:
Px mivix 常量 Py miviy 常量 Pz miviz 常量
动量守恒定律是物理学中最重要、最普遍的规律 之一,它不仅适合宏观物体,同样也适合微观领域。
力矩 ( Moment of Force /Torque )

j)
2.质点系的动量定理
设有 n 个质点构成一个系统

第 i 个质点: 质量mi

Fi
内力 fi
初速度 末速度
外力
vviio
Fi
i
由质点动量定理:
fi
t
to
Fi
fi
dt mivi
mi vio
t




to Fi fi dt mi vi mivio
车辆超速容易 引发交通事故
结论: 物体的运动状态不仅取决于速度,而且与物 体的质量有关。
动量(Momentum) :运动质点的质量与
速度的乘p 积。mv
单位:kg·m·s-1
由n个质点所构成的质点系的动量:
p
n
pi
n
mivi
i1
i1
2-2-2 动量定理
1.质点的动量定理
冲量:作用力与作用时间的乘积
⑴ 恒力的冲量:
I F (t2 t1)
⑵ 变力的冲量:

I
t2
F
(t)

dt
t1
单位:N·s
⑶ 平均力的冲量:
牛顿运动定律:
F
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

F、 之间一一对应 a
矢量性:有大小和方向, 矢量性:有大小和方向,可合成与分解 力的叠加原理
i
F = F + F ++ FN = ∑F 1 2 i
N =1
4

分解: 分解 直角坐标系中: 直角坐标系中:
∑Fx = max = m
y y
∑F = ma = m dt dυ ∑F = ma = m dt
F = F2 1
作用力与反作用力: 作用力与反作用力: 总是成对出现,一一对应的. ①总是成对出现,一一对应的 不是一对平衡力. ②不是一对平衡力 是属于同一性质的力. ③是属于同一性质的力
6
解题的基本思路
1)确定研究对象进行受力分析; 确定研究对象进行受力分析; (隔离物体,画受力图) 隔离物体,画受力图) 2)取坐标系; 取坐标系; 3)列方程(一般用分量式); 列方程(一般用分量式); 4)利用其它的约束条件列补充方程; 利用其它的约束条件列补充方程; 5)先用文字符号求解,后带入数据计算结果. 先用文字符号求解,后带入数据计算结果.
第2章 运动定律与力学中的守恒定律 章
§2.1 §2.2 §2.3 §2.4 §2.5 牛顿运动定律 动量 动量守恒定律 功 动能 势能 机械能守恒定律 角动量 角动量守恒定律 刚体的定轴转动
1
物体间的相互作用称为力, 物体间的相互作用称为力,研究 物体在力的作用下运动的规律称为 动力学. 动力学
14
三、动量守恒定律
一个孤立的力学系统或合外力为零的系统, 一个孤立的力学系统或合外力为零的系统,系统 内各质点间动量可以交换,但系统的总动量保持不变。 内各质点间动量可以交换,但系统的总动量保持不变。 这就是动量守恒定律 动量守恒定律。 这就是动量守恒定律。 即:

i =1
n
Fi = 0 ,

i
1
分析受力 隔离体受力如图所示. 隔离体受力如图所示 列出方程 向上为正方向, 取a1向上为正方向,则有 T1-m1g=m1a1 =
a1
T2
a2
m1g
m2g
T1/ T2/
8

向下为正方向, 以a2向下为正方向,则有 m2g-T2=m2a2. - ② 根据题意有 T1=T2=T, a1=a2=a. , 联立① 联立①和②两式得
25
四、质点系的动能定理与功能原理
Ep 重 = mgz
24
对弹性势能 对弹性势能: 势能为零, 通常选弹簧自然长度时的 势能为零 则 1 2 Ep 弹 = kx 2 讨论: 讨论: 1.势能是相对量,其值与零势能参考点的选择有关 势能是相对量, 势能是相对量 其值与零势能参考点的选择有关. 2.势能函数的形式与保守力的性质密切相关 势能函数的形式与保守力的性质密切相关. 势能函数的形式与保守力的性质密切相关 3.势能是以保守力形式相互作用的物体系统所共有 势能是以保守力形式相互作用的物体系统所共有. 势能是以保守力形式相互作用的物体系统所共有 4.势能物理意义可解释为: 势能物理意义可解释为: 势能物理意义可解释为 一对保守力的功等于相关势能增量的负值. 一对保守力的功等于相关势能增量的负值
T=2m1 g
9
§2.2 动量 动量守恒定律
整个物理学大厦的基石,三大守恒定律: 整个物理学大厦的基石 三大守恒定律: 三大守恒定律 动量守恒定律 能量转换与守恒 角动量守恒
一.质点的动量定理
定义: 定义 质点的动量 质点的动量— 动量 状态矢量 △ 状态矢量 △ 相对量 定义: 定义 力的冲量 力的冲量 — I = ∫t F dt
0
p = mυ
t
10
若一个质点, 若一个质点,所受合外力为 F
d ( m υ ) dp F= = dt dt
质点动量定理: 质点动量定理: 微分形式 积分形式
dI = Fdt = dp
I = ∫ Fdt = p p0
t0
t
作用于物体上的合外力的冲量等于物体动量 动量定理。 的增量这就是质点的动量定理 的增量这就是质点的动量定理。
m iυ i =常矢量 常矢量
说明: 说明 1. 守恒条件是

i =1
n
Fi = 0 而不是
∫ (∑
t2 t1
F i ) dt = 0
2. 动量定理及动量守恒定律只适用于惯性系 动量定理及动量守恒定律只适用于惯性系. 3. 若某一方向的合外力零, 则该方向上动量守恒; 若某一方向的合外力零, 则该方向上动量守恒; 但总动量可能并不守恒。 但总动量可能并不守恒。 4.动量守恒定律是比牛顿定律更普遍、更基本的定 动量守恒定律是比牛顿定律更普遍、 动量守恒定律是比牛顿定律更普遍 律,它在宏观和微观领域均适用
7
例:一细绳跨过一轴承光滑的定滑轮,绳的两端分别 一细绳跨过一轴承光滑的定滑轮, 悬有质量为m 的物体(m ,如图所示.设滑轮 悬有质量为 1和m2的物体 1<m2),如图所示 设滑轮 和绳的质量可忽略不计,绳不能伸长, 和绳的质量可忽略不计,绳不能伸长,试求物体的加 速度以及悬挂滑轮的绳中张力. 速度以及悬挂滑轮的绳中张力 解:选取对象 a m1、m2及滑轮 m1 分析运动 m2 m1,以加速度 1向上运动 以加速度a m2,以加速度 2向下运动 以加速度a T T
15
我国长征系列火箭升空
16
§2-3 功 动能 势能 机械能守恒定律 一.功 功率
1.功:力在位移方向上的投影与该物体位移大小的 功 乘积. 乘积 b
dW = F dr
b
dr
θ
力沿路径 l 的线积分
W = ∫ F dr
a
F
a
直角坐标系中
F = F x i + F y j + Fz k
b x2 y2 a x1 y1
2
§2-1 牛顿运动定律 一、惯性定律 惯性参考系
1.牛顿第一定律 牛顿第一定律 一孤立质点将永远保持其原来静止或匀速直线运 动状态. 动状态. 牛顿第一定律又称为惯性定律. 牛顿第一定律又称为惯性定律 意义: 意义: (1) 定性给出了两个重要概念 力与惯性 定性给出了两个重要概念,力与惯性 力是物体与物体间的相互作用. 力是物体与物体间的相互作用 惯性是物体的固有属性. 惯性是物体的固有属性 (2) 定义了惯性参考系 惯性定律成立的参照系为惯性系。 惯性定律成立的参照系为惯性系。
υ =

t
0
F d t = mυ

t
0
F dt = m

3
0
3 + 4t dt 10
=2.7ms-1
(2)由动能定理 由动能定理 得 υ
= (∫
x

x
0
1 F dx i = m υ 2 2
0
3 2( 3 + 4 x ) 2F 1/2 dx ) = ( ∫ d x )1 / 2 0 m 10
=2.3ms-1
21
22
三、势能
重力的功
W = (mgz2 mgz1 )
1 2 1 2 W = ( kx2 kx1 ) 弹性力的功 2 2 相对位置有关 保守力的功只与 只与初 终态的相对位置有关, 保守力的功只与初、终态的相对位置有关,说 明系统存在一种只与相对位置有关的能量。 位置有关的能量 明系统存在一种只与相对位置有关的能量。 可引入一个 由物体相对位置所决定而又具有能量性质的函 势能函数。 表示. 称之为势能函数 数,称之为势能函数。用Ep表示
19
二、动能定理
质点的动能定理 dυ F =m dt
dυ F dr = m dr = mυ dυ dt
1 1 2 υ dυ = d (υ υ ) = d ( υ ) 2 2 1 F dr = d ( m υ 2 ) 2

2
1
1 Ek是状态量,相对量, 是状态量,相对量, E k = mυ 2 令 2 与参照系的选择有关 。 2 1 F dr = ∫ d ( m υ 2 ) 1 2 2 1 1 2 F d r = m υ 2 m υ 12 ∫1 2 2
z z
dυx dt dυy
z
定量的量度了惯性: 定量的量度了惯性:
mA aB = mB aA
质量是物体惯性大小的量度; 质量是物体惯性大小的量度;
5
三、牛顿第三定律
当物体A以力 作用在物体B上时 物体B也必定 上时, 当物体 以力F1作用在物体 上时,物体 也必定 以力 同时以力F 作用在物体A上 大小相等, 同时以力 2作用在物体 上.F1和F2大小相等,方向 相反,且力的作用线在同一直线上. 相反,且力的作用线在同一直线上
dr = dxi + dyj + dzk
z2 z1
W = ∫ F dr = ∫ Fx dx + ∫ Fy dy + ∫ Fz dz
17
3.保守力的功 保守力的功 (1) 重力的功 在重力作用下由a运动到 物体m在重力作用下由 运动到b, 物体 在重力作用下由 运动到 ,取地面为坐 标原点. 标原点 z
18
(2)弹簧弹性力的功 弹簧弹性力的功 x
0
F = kxi
W = ∫ F dr = ∫
1 2 x2 x1
x
1 2 1 2 kxi dxi = ( kx2 kx1 ) 2 2
保守力
∫F
l
dr ≡ 0
一质点相对于另一质点沿闭合路径运动一周时, 一质点相对于另一质点沿闭合路径运动一周时, 它们之间的保守力做的功必然是零。 它们之间的保守力做的功必然是零。

r2
r1
F保 dr = ( E p 2 E p1 ) = E P
23
保守力的功等于系统势能增量的负值。 保守力的功等于系统势能增量的负值。
相关文档
最新文档