大学数学实验线性代数分册习题
(完整版)线性代数习题集(带答案)(最新整理)

第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ().(A) 24315 (B) 14325(C) 41523(D)243512.如果阶排列的逆序数是, 则排列的逆序数是( ).n n j j j 21k 12j j j n (A)(B)(C)(D)k k n -k n -2!k n n --2)1(3. 阶行列式的展开式中含的项共有()项.n 1211a a (A) 0(B)(C) (D) 2-n )!2(-n )!1(-n 4.( ).=0001001001001000(A) 0 (B) (C) (D) 21-15.( ).=01100000100100(A) 0 (B) (C) (D) 21-16.在函数中项的系数是( ).1000323211112)(x x x x x f ----=3x (A) 0(B) (C)(D) 21-17. 若,则 ( ).21333231232221131211==a a a a a a a a a D =---=3231333122212321121113111222222a a a a a a a a a a a a D (A) 4 (B)(C) 2 (D) 4-2-8.若,则 ( ).a a a a a =22211211=21112212ka a ka a(A) (B) (C) (D)ka ka -a k 2ak 2-9. 已知4阶行列式中第1行元依次是, 第3行元的余子式依次为3,1,0,4-, 则().x ,1,5,2-=x (A) 0(B)(C)(D) 23-310. 若,则中第一行元的代数余子式的和为().5734111113263478----=D D (A)(B)(C)(D)1-2-3-011. 若,则中第四行元的余子式的和为( ).2235001011110403--=D D (A)(B)(C)(D)1-2-3-012. 等于下列选项中哪个值时,齐次线性方程组有非零解.k ⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x ( )(A) (B)(C)(D)1-2-3-0二、填空题1. 阶排列的逆序数是.n 2)12(13)2(24-n n 2.在六阶行列式中项所带的符号是.261365415432a a a a a a 3.四阶行列式中包含且带正号的项是.4322a a 4.若一个阶行列式中至少有个元素等于, 则这个行列式的值等于n 12+-n n 0.5. 行列式.=01001110101001116.行列式.=-0100002000010 nn 7.行列式.=--0001)1(2211)1(111 n n n n a a a a a a 8.如果,则.M a a a a a a a a a D ==333231232221131211=---=3232333122222321121213111333333a a a a a a a a a a a a D 9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式.=--+---+---1111111111111111x x x x 11.阶行列式.n =+++λλλ11111111112.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式,为D 中第四行元的代数余子式,5678123487654321=D j A 4)4,3,2,1(=j 则.=+++44434241234A A A A 14.已知, D 中第四列元的代数余子式的和为.db c a c c a b b a b c a c b a D =15.设行列式,为的代数余子式,则62211765144334321-==D jA 4)4,3,2,1(4=j a j ,.=+4241A A =+4443A A16.已知行列式,D 中第一行元的代数余子式的和为nn D10301002112531-=.17.齐次线性方程组仅有零解的充要条件是.⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 18.若齐次线性方程组有非零解,则=.⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x k 三、计算题1.; 2.;cb a d b a dc ad c b dc b a dc b a dc b a++++++++33332222yx yx x y x y y x y x +++3.解方程; 4.;0011011101110=x x xx 111111321321221221221----n n n n a a a a x a a a a x a a a a x a a a a x5. (); na a a a111111111111210n j a j ,,1,0,1 =≠6. bn bb ----)1(1111211111311117. ; 8.; n a b b b a a b b a a a b 321222111111111xa a a a x a a a a x a a a a x n nn 3212121219.;10.2212221212121111nn n nnx x x x x x x x x x x x x x x +++210001200000210001210001211..aa a a a a a a aD ---------=111100011000110001四、证明题1.设,证明:.1=abcd 011111111111122222222=++++dddd c c c c b b b b a a a a 2..3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a x b a -=++++++3..))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a dc b a +++------=4..∏∑≤<≤=----=nj i i j n i i nnn nn nn n nna a a a a a a a a a a a a a a 1121222212222121)(1115.设两两不等,证明的充要条件是.c b a ,,0111333=c b a c ba 0=++cb a参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.;2.;3.;4.;5.;6.;7.n ”“-43312214a a a a 00!)1(1n n --; 8.; 9.; 10.; 11.; 12.;1)1(212)1()1(n n n n n a a a ---M 3-160-4x 1)(-+n n λλ2-13.; 14.; 15.; 16.; 17.; 18.009,12-)11(!1∑=-nk k n 3,2-≠k 7=k 三.计算题1.; 2. ;))()()()()()((c d b d b c a d a c a b d c b a ------+++-)(233y x +-3. ;4.1,0,2-=x ∏-=-11)(n k kax 5.;6. ;)111()1(00∑∏==-+-nk k nk k a a ))2(()1)(2(b n b b ---+- 7. ;8. ;∏=--nk k kna b1)()1(∏∑==-+nk k nk k a x a x 11)()(9. ;10. ;∑=+nk k x 111+n 11. .)1)(1(42a a a ++-四. 证明题 (略)第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
线性代数习题及解答完整版

线性代数习题及解答完整版线性代数习题及解答HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】线性代数习题一说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=() A .-6 B .-3 C .3D .62.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =() A .E +A -1B .E -AC .E +AD .E -A -13.设矩阵A ,B 均为可逆方阵,则以下结论正确的是()A .??A B 可逆,且其逆为-1-1A B B .??A B 不可逆 C .??A B 可逆,且其逆为-1-1?? ???B AD .??A B 可逆,且其逆为-1-1??A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是()A .向量组α1,α2,…,αk 中任意两个向量线性无关B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示5.已知向量2(1,2,2,1),32(1,4,3,0),T T+=---+=--αβαβ则+αβ=() A .(0,-2,-1,1)TB .(-2,0,-1,1)TC .(1,-1,-2,0)TD .(2,-6,-5,-1)T6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是()A .1B .2C .3D .47.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是()A .α+β是Ax =0的解B .α+β是Ax =b 的解C .β-α是Ax =b 的解D .α-β是Ax =0的解8.设三阶方阵A 的特征值分别为11,,324,则A -1的特征值为() A .12,4,3 B .111,,243C .11,,324D .2,4,39.设矩阵A =121-,则与矩阵A 相似的矩阵是()A .11123--B .01102C .211- D .121-10.以下关于正定矩阵叙述正确的是() A .正定矩阵的乘积一定是正定矩阵 B .正定矩阵的行列式一定小于零 C .正定矩阵的行列式一定大于零D .正定矩阵的差一定是正定矩阵二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。
线性代数练习册附答案

第1章 矩阵 习 题1. 写出下列从变量x ,y 到变量x 1, y 1的线性变换的系数矩阵:(1)⎩⎨⎧==011y x x ; (2)⎩⎨⎧+=-=ϕϕϕϕcos sin sin cos 11y x y y x x2.(通路矩阵)a 省两个城市a 1,a 2和b 省三个城市b 1,b 2,b 3的交通联结情况如图所示,每条线上的数字表示联结这两城市的不同通路总数.试用矩阵形式表示图中城市间的通路情况.3. 设⎪⎪⎪⎭⎫ ⎝⎛--=111111111Α,⎪⎪⎪⎭⎫ ⎝⎛--=150421321B ,求3AB -2A 和A T B .4. 计算(1) 2210013112⎪⎪⎪⎭⎫ ⎝⎛(2) ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛1)1,,(212221211211y x c b b b a a b a a y x5. 已知两个线性变换32133212311542322yy y x y y y x y y x ++=++-=+=⎪⎩⎪⎨⎧,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,写出它们的矩阵表示式,并求从321,,z z z 到321,,x x x 的线性变换.6. 设f (x )=a 0x m + a 1x m -1+…+ a m ,A 是n 阶方阵,定义f (A )=a 0A m + a 1A m -1+…+ a m E .当f (x )=x 2-5x +3,⎪⎪⎭⎫⎝⎛--=3312A 时,求f (A ).7. 举出反例说明下列命题是错误的.(1) 若A2= O,则A= O.(2) 若A2= A,则A= O或A= E..7. 设方阵A满足A2-3A-2E=O,证明A及A-2E都可逆,并用A分别表示出它们的逆矩阵.8.用初等行变换把下列矩阵化成行最简形矩阵:(1)⎪⎪⎪⎭⎫ ⎝⎛------=132126421321A(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=03341431210110122413B .9. 对下列初等变换,写出相应的初等方阵以及B 和A 之间的关系式.⎪⎪⎪⎭⎫ ⎝⎛--=121121322101A ~122r r -⎪⎪⎪⎭⎫⎝⎛---121123302101~13c c +⎪⎪⎪⎭⎫⎝⎛--131123302001=B .10. 设ΛAP P =-1,其中⎪⎪⎭⎫ ⎝⎛--=1141P ,⎪⎪⎭⎫⎝⎛-=2001Λ,求A 9.11. 设⎪⎪⎪⎭⎫ ⎝⎛-=200030004A ,矩阵B 满足AB =A+2B ,求B .12. 设102212533A --⎛⎫ ⎪=- ⎪⎪-⎝⎭,利用初等行变换求A -1.复习题一1. 设A , B , C 均为n 阶矩阵,且ABC =E ,则必有( ). (A) ACB =E ; (B) CBA =E ; (C) BAC =E ; (D) BCA =E .2. 设⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a a a a a a a a A ,⎪⎪⎪⎭⎫⎝⎛+++=133312321131131211232221a a a a a a a a a a a a B ,⎪⎪⎪⎭⎫ ⎝⎛=1000010101P ,⎪⎪⎪⎭⎫ ⎝⎛=1010100012P ,则必有 ( ) .(A) AP 1P 2=B ; (B )AP 2P 1=B ; (C) P 1P 2A =B ; (D) P 2P 1A =B .3. 设A 为4阶可逆矩阵,将A 的第1列与第4列交换得B ,再把B 的第2列与第3列交换得C ,设⎪⎪⎪⎪⎪⎭⎫⎝⎛=00010100001010001P ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=10000010010000012P ,则C -1=( ). (A) A -1P 1P 2; (B)P 1A -1P 2; (C) P 2P 1A -1; (D) P 2A -1P 1.4. 设n 阶矩阵A 满足A 2-3A +2E =O ,则下列结论中一定正确的是( ). (A) A -E 不可逆 ; (B) A -2E 不可逆 ; (C) A -3E 可逆; (D) A -E 和A -2E 都可逆.5. 设A =(1,2,3),B =(1,1/2,1/3),令C =A T B ,求.6. 证明:如果A k =O ,则(E -A )-1=E +A +A 2+…+A k -1,k 为正整数.7.设A ,B 为三阶矩阵,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=710004100031A ,且A -1BA =6A +BA ,求B .8. 设n 阶矩阵A 及s 阶矩阵B 都可逆,求1-⎪⎪⎭⎫⎝⎛O O B A .9. 设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-0000000000000000121n n aa a a X (021≠n a a a ),求X -1. 第2章 行列式习 题1.利用三阶行列式解下列三元线性方程组⎪⎩⎪⎨⎧=-+-=-+-=+-013222321321321x x x x x x x x x2.当x 取何值时,0010413≠xx x .3.求下列排列的逆序数:(1) 315624; (2)13…(2n-1)24…(2n).4.证明:3232a cb a b a ac b a ba acb a=++++++.. .5. 已知四阶行列式|A |中第2列元素依次为1,2,-1,3,它们的余子式的值依次为3,-4,-2,0 ,求|A |.6. 计算下列行列式: (1) 1111111111111111------(2)yx y x x y x y yx y x +++(3) 0111101111011110(4)1222123312111x x x x x x(5)nn a a a D +++=11111111121,其中021≠n a a a .7.设n 阶矩阵A 的伴随矩阵为A *,证明: |A *|=|A |n-1,(n ≥2)...8. 设A ,B 都是三阶矩阵,A *为A 的伴随矩阵,且|A |=2,|B |=1,计算 |-2A *B -1|.9.设⎪⎪⎪⎭⎫ ⎝⎛--=111012112A ,利用公式求A -1. 复习题二1.设A ,B 都是n 阶可逆矩阵,其伴随矩阵分别为A *、B *,证明:(AB )*=B *A *.2.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=2200020000340043A ,求A -1.3.已知A 1, A 2, B 1, B 2都是3⨯1矩阵,设A =( A 1, A 2, B 1,),B =( A 1, A 2, B 2),|A |=2,|B |=3,求|A+2B |...4.设A ,B 都是n 阶方阵,试证:AB E E A BE -=.第3章 向量空间习 题1.设α1=(1,-1,1)T , α2=(0,1,2)T , α3=(2,1,3)T ,计算3α1-2α2+α3.2.设α1=(2,5,1,3)T , α2=(10,1,5,10)T , α3=(4,1,-1,1)T ,且3(α1- x )+2(α2+x )=5(α3+x ) ,求向量x .3. 判别下列向量组的线性相关性:(1) α1=(-1,3,1)T , α2=(2,-6,-2)T , α3=(5,4,1)T ;(2) β1=(2,3,0)T , β2=(-1,4,0)T ,β3=(0,0,2)T .4.设β1=α1, β2=α1+α2, β3=α1+α2+a3,且向量组α1, α2, α3线性无关,证明向量组β1, β2, β3线性无关.5.设有两个向量组α1, α2, α3和β1=α1-α2+α3, β2=α1+α2-α3,β3= -α1+α2+α3,证明这两个向量组等价.6.求向量组α1=(1,2,-1)T, α2=(0,1,3)T, α3=(-2,-4,2)T,α4=(0,3,9)T的一个极大无关组,并将其余向量用此极大无关组线性表示...7.设α1, α2,…, αn是一组n维向量,已知n维单位坐标向量ε1,ε2,…,εn能由它们线性表示,证明:α1, α2,…,αn线性无关.8.设有向量组α1, α2, α3,α4, α5,其中α1, α2, α3线性无关,α4=aα1+bα2,α5=cα2+dα3(a, b, c, d均为不为零的实数),求向量组α1, α3,α4, α5的秩.9.设矩阵A= (1,2,…,n), B=(n,n-1,…,1),求秩R(A T B).10.设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=97963422644121121112A ,求A 的秩,并写出A 的一个最高阶非零子式.11.已知矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+---=120145124023021t t A ,若A 的秩R (A )=2,求参数t 的值...12. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------=5913351146204532A ,求A 的列向量组的秩,并写出它的一个极大无关组.13. 设A 为n 阶矩阵,E 为n 阶单位矩阵,证明:如果A 2=A ,则R (A )+R (A -E )=n .14.已知向量空间3R 的两组基为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=010,01121αα,⎪⎪⎪⎭⎫ ⎝⎛=1130α和⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=111,01121ββ-,⎪⎪⎪⎭⎫ ⎝⎛-=1103β, 求由基α1, α2, α3到基β1, β2,β3的过渡矩阵.复习题三1.设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k k k k 111111111111A ,已知A 的秩为3,求k 的值.2.设向量组A : α1, …,αs 与B :β1,…,βr ,若A 组线性无关且B 组能由A 组线性表示为(β1,…,βr )=(α1, …,αs )K ,其中K 为r s ⨯矩阵, 试证:B 组线性无关的充分必要条件是矩阵K 的秩R (K )=r ...3.设有三个n 维向量组A :α1, α2, α3;B :α1, α2, α3, α4;C :α1, α2, α3, α5.若A 组和C 组都线性无关,而B 组线性相关,证明向量组α1, α2, α3, α4-α5线性无关.4.设向量组A : α1=(1,1,0)T ,α2=(1,0,1)T ,α3=(0,1,1)T 和B : β1=(-1,1,0)T ,β2=(1,1,1)T ,β3=(0,1,-1)T(1) 证明:A 组和B 组都是三维向量空间3R 的基;(2) 求由A 组基到B 组基的过渡矩阵;(3) 已知向量α在B 组基下的坐标为(1,2,-1)T ,求α在A 组基下的坐标.第4章 线性方程组习 题 1.写出方程组⎪⎩⎪⎨⎧=+++=+++=+322 3512254321432121x x x x x x x x x x 的矩阵表示形式及向量表示形式.2.用克朗姆法则解下列线性方程组⎪⎩⎪⎨⎧=+=+--=-0322az cx bc bz cy ab ay bx ,其中0≠abc3.问μλ,取何值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++02 00 321321321x x x x x x x x x μμλ有非零解?4. 设有线性方程组⎪⎩⎪⎨⎧-=+-=++=++42 - 4 3212321321x x x k x kx x x k x x ,讨论当k 为何值时, (1)有唯一解?(2)有无穷多解?(3)无解?5. 求齐次线性方程组⎪⎩⎪⎨⎧=-++=-++=++-0 26 83054202108432143214321x x x x x x x x x x x x 的一个基础解系...6.设四元非齐次线性方程组的系数矩阵的秩为3,已知η1, η2, η3是它的三个解向量,且η1=(2,3,4,5)T , η2+η3=(1,2,3,4)T ,求此方程组的的通解.7 .求下列非齐次线性方程组的通解:⎪⎩⎪⎨⎧=+++=+++=+322 3512254321432121x x x x x x x x x x8.设有向量组A :12122,131-==-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αα,3110-=⎛⎫ ⎪ ⎪ ⎪⎝⎭α及向量131β=-⎛⎫ ⎪ ⎪ ⎪⎝⎭, 问向量β能否由向量组A 线性表示?. .9. 设η*是非齐次线性方程组AX =b 的一个解,ξ1, ξ2,…, ξn -r 是它的导出组的一个基础解系,证明:(1)η*, ξ1, ξ2,…, ξn -r 线性无关;(2)η*, η*+ξ1, η*+ξ2,…, η*+ξn -r 线性无关.复习题四 1.设⎪⎪⎪⎭⎫ ⎝⎛=101102121a a a A ,且方程组AX =θ的解空间的维数为2,则a =.2.设齐次线性方程组a 1x 1+a 2x 2+…+a n x n =0,且a 1,a 2,…,a n 不全为零,则它的基础解系所含向量个数为.3.设有向量组π:α1=(a ,2,10)T , α2=(-2,1,5)T , α3=(-1,1,4)T 及向量β=(1,b ,-1)T ,问a , b 为何值时,(1)向量β不能由向量组π线性表示;(2)向量β能由向量组π线性表示,且表示式唯一;(3)向量β能由向量组π线性表示,且表示式不唯一,并求一般表示式.4.设四元齐次线性方程组(Ⅰ)⎩⎨⎧=-=+004221x x x x (Ⅱ)⎩⎨⎧=+-=+-00432321x x x x x x 求: (1) 方程组(Ⅰ)与(Ⅱ)的基础解系;(2) 方程组(Ⅰ)与(Ⅱ)的公共解.5.设矩阵A =(α1, α2, α3, α4),其中α2, α3, α4线性无关,α1=2α2-α3,向量β=α1+α2+α3+α4,求非齐次线性方程组Ax=β的通解.6. 设⎪⎪⎪⎭⎫ ⎝⎛=321a a a α,⎪⎪⎪⎭⎫ ⎝⎛=321b b b β,⎪⎪⎪⎭⎫ ⎝⎛=321c c c γ,证明三直线⎪⎩⎪⎨⎧=++=++=++0:0:0:333322221111c y b x a l c y b x a l c y b x a l 3,2,1,022=≠+i b a i i相交于一点的充分必要条件是向量组βα,线性无关,且向量组γβα,,线性相关.第5章 矩阵的特征值和特征向量习 题1.已知向量α1=(1,-1,1)T ,试求两个向量α2, α3,使α1, α2, α3为R 3的一组正交基.2.设A , B 都是n 阶正交矩阵,证明AB 也是正交矩阵...3. 设A 是n 阶正交矩阵,且|A |=-1,证明:-1是A 的一个特征值.4.求矩阵⎪⎪⎪⎭⎫⎝⎛----201335212的特征值和特征向量.5. 已知三阶矩阵A 的特征值为1,2,3,计算行列式|A 3-5A 2+7E |.6.设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=12422421x A 与⎪⎪⎪⎭⎫ ⎝⎛-=40000005y Λ相似,求y x ,;并求一个正交矩阵P ,使P -1AP =Λ.7.将下列对称矩阵相似对角化:(1)⎪⎪⎪⎭⎫ ⎝⎛----020212022..(2)⎪⎪⎪⎭⎫ ⎝⎛310130004.8. 设λ是可逆矩阵A 的特征值,证明:(1)λA是A *的特征值.(2)当1,-2,3是3阶矩阵A 的特征值时,求A *的特征值.9.设三阶实对称矩阵A 的特征值为λ1=6, λ2=λ3=3,属于特征值λ1=6的特征向量为p 1=(1,1,1)T ,求矩阵A .复习题五1.设n 阶矩阵A 的元素全为1,则A 的n 个特征值是.2.已知3阶矩阵A , A -E ,E +2A 都不可逆,则行列式|A +E |=.3.设⎪⎪⎪⎭⎫ ⎝⎛=11111b b a a A ,⎪⎪⎪⎭⎫ ⎝⎛=200010000B ,已知A 与B 相似,则a , b 满足. 4.设A 为2阶矩阵, α1, α2为线性无关的2维列向量,A α1=0, A α2=2α1+, α2,则A 的非零特征值为.5.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=50413102x A 可相似对角化,求x .6.设矩阵A 满足A 2-3A +2E =O ,证明A 的特征值只能是1或2.7.已知p 1=(1,1,-1)T 是对应矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的特征值λ的一个特征向量. (1) 求参数a , b 及特征值λ; (2) 问A 能否相似对角化?说明理由.8. 设⎪⎪⎭⎫ ⎝⎛--=3223A ,求φ(A )=A 10-5A 9. 第6章 二次型习 题1.写出下列二次型的矩阵表示形式:42324131212423222146242x x x x x x x x x x x x x x f -+-+-+++=2.写出对称矩阵⎪⎪⎪⎭⎫ ⎝⎛----=32201112121A 所对应的二次型.3.已知二次型322123222132164),,(x x x x ax x x x x x f ++++=的秩为2,求a 的值.4.求一个正交变换将322322213214332),,(x x x x x x x x f +++=化成标准形.5.用配方法将二次型31212322214253x x x x x x x f -+++=化成标准形,并写出所用的可逆线性变换.6. 设二次型)0(233232232221>+++=a x ax x x x f ,若通过正交变换Py x =化成标准形23222152y y y f ++=,求a 的值.7. 判别下列二次型的正定性:(1)312123222122462x x x x x x x f ++---=(2)4342312124232221126421993x x x x x x x x x x x x f --+-+++=8. 设3231212322214225x x x x x ax x x x f +-+++=为正定二次型,求a 的取值X 围.复习题六1. 设A 为n m ⨯矩阵,B =λE +A T A ,试证:λ>0时,矩阵B 为正定矩阵.2.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2100120000010010A ,写出以A , A -1为矩阵的二次型,并将所得两个二次型化成标准形.3. 已知二次曲面方程5223121232221=-+++x x x bx ax x x ,通过正交变换X=PY 化为椭圆柱面方程522221=+y y ,求b a ,的值.4. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,2)(A E B +=k ,其中k 为实数,求对角矩阵Λ,使B与Λ相似,并讨论k 为何值时,B 为正定矩阵.测试题一一、计算题:1.计算行列式111131112+=n D n .2.设⎪⎪⎪⎭⎫ ⎝⎛-=201A ,⎪⎪⎪⎭⎫ ⎝⎛---=210530001B ,计算T B A 3.3.设A 、B 都是四阶正交矩阵,且0<B ,*A 为A 的伴随矩阵,计算行列式*2BAA -.4.设三阶矩阵A 与B 相似,且⎪⎪⎪⎭⎫ ⎝⎛=321A ,计算行列式E B 22-. 5.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=2411120201b a A ,且A 的秩为2,求常数b a ,的值. 二、解答题: 6.设4,3,2,1),,,1(32==i t t t T i i i i α,其中4321,,,t t t t 是各不相同的数,问4维非零向量β能否由4321,,,αααα线性表示?说明理由.7.求齐次线性方程组 ⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x 的一个基础解系.8.问k 取何值时,线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211k x x kx k x kx x kx x x(1)有唯一解;(2)有无穷多解;(3)无解.9.已知四阶方阵A =(4321,,,αααα),其中321,,ααα线性无关,3243ααα-=,求方程组4321αααα+++=Ax 的通解.10.三阶实对称矩阵A 的特征值是1,2,3.矩阵A 的属于特征值1,2的特征向量分别是T )1,1,1(1--=α,T )1,2,1(2--=α,求A 的属于特征值3的所有特征向量,并求A 的一个相似变换矩阵P 和对角矩阵Λ,使得Λ=-AP P 1. 三、证明题:11.设2112ααβ+=,32223ααβ+=,13334ααβ+=,且321,,ααα线性无关,证明:321,,βββ也线性无关.12.设A 为实对称矩阵,且满足O E A A =--22,证明E A 2+为正定矩阵. 测试题二一、填空题:1、若规定自然数从小到大的次序为标准次序,则排列134782695的逆序数为;2、已知A 为三阶正交矩阵,且A <0,则*AA =;3、设方阵A =⎪⎪⎪⎭⎫ ⎝⎛--24523121x ,若A 不可逆,则=x ; 4、设Λ=-AP P 1,其中⎪⎪⎭⎫ ⎝⎛=5432P ,⎪⎪⎭⎫ ⎝⎛-=Λ1001,则6A =; 5、“若向量组321,,ααα线性无关,向量组432,,ααα线性相关,则4α一定能由32,αα线性表示”.该命题正确吗? 。
线性代数练习题库及答案

线性代数练习册答案第五章 相似矩阵及二次型51ξ- 内积52ξ- 方阵的特征值与特征向量一.填空题:1.A 是正交矩阵,则A1A =± . 2.已知n 阶方阵A 的特征值为12,,,n λλλ⋅⋅⋅, 则E A λ-= ()()()12n λλλλλλ--⋅⋅⋅- .3.已知3阶方阵A 的特征值为1,1,2-,则232B A A =-的特征值为 1,5,8 ;A = 2- ;A 的对角元之和为 2 .4.若0是A 的特征值,则A 不可逆 (可逆,不可逆).5.A 是n 阶方阵,A d =,则AA *的特征值是 ,,,d d d ⋅⋅⋅(共n 个) . 二.用施密特法把下列向量组规范正交化123111(,,)124139ααα⎛⎫⎪= ⎪ ⎪⎝⎭解:()111,1,1Tβα==[]()()()2122121,61,2,31,1,11,0,13TT Tαββαββ=-=-=- [][]313233122212,,αβαββαββββ=--()()()1481211,4,91,1,11,0,1,,32333TTTT⎛⎫=---=- ⎪⎝⎭故)1111,1,1T b ββ==,)2221,0,1T b ββ==-,)3331,2,1Tb ββ==-.三.求下列矩阵的特征值和特征向量1. 1221A ⎛⎫= ⎪⎝⎭2. 100020012B ⎛⎫⎪= ⎪ ⎪⎝⎭解:1. A 的特征多项式为12(3)(1)21A E λλλλλ--==-+-故A 的特征值为123,1λλ==-.当13λ=时,解方程()30A E x -=.由221132200rA E --⎛⎫⎛⎫-= ⎪ ⎪-⎝⎭⎝⎭:得基础解系111P ⎛⎫= ⎪⎝⎭,故1(0)kPk ≠是对应于13λ=的全部特征向量. 当21λ=-时,解方程()0A E x +=.由22112200r A E ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭:得基础解系211P -⎛⎫= ⎪⎝⎭,故2(0)kP k ≠是对应于21λ=-的全部特征向量.2. B 的特征多项式为2100020(1)(2)012B E λλλλλλ--=-=--- 故B 的特征值为1231,2λλλ===.当11λ=时,解方程()0B E x -=.由000011010010011000r B E ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭:得基础解系1100P ⎛⎫⎪= ⎪ ⎪⎝⎭,故1(0)kP k ≠是对应于11λ=的全部特征向量. 当232λλ==时,解方程()20B E x -=.由1001002000000010010r B E -⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭:得基础解系2001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,故2(0)kP k ≠是对应于232λλ==的全部特征向量.四.证明下列各题1. x 为n 维列向量,且1T x x =,求证:2T H E xx =-是对称的正交阵.2. 设A 、B 为同阶正交阵,证明:AB 也是正交阵. 证明:1. ()()222TTTTT TT T H E xx H E xxE xx H =-⇒=-=-=故H 为对称阵.又()()()224444T T T T T T T T H H E xx E xx E xx x x x x E xx xx E =--=-+=-+=故H 为正交阵.2. 因,A B 为同阶正交阵,故,T T A A E B B E ==. 又()()TT T T T AB AB B A AB B EB B B E ====,故AB 为正交阵.五.A 是n 阶方阵,命题P 为:A 的特征值均不为0.请尽量多的列举与P 等价的命题.(如A 可逆.至少列举3个) 解:等价命题:1P :A 的列(行)向量组线性无关 2P :0A ≠3P :齐次线性方程组0Ax =只有0解 4P :A 的秩为n53ξ- 相似矩阵54ξ- 实对称矩阵的相似矩阵一.填空题:1.若ξ是A 的特征向量,则 1P ξ- 是1P AP -的特征向量.2.若A 与B 相似,则A.3.20000101A x ⎛⎫ ⎪= ⎪ ⎪⎝⎭与20000001B y ⎛⎫ ⎪= ⎪ ⎪-⎝⎭相似,则x = 0 ,y = 1 .4.若λ是A 的k 重特征根,则必有k 个相应于λ的线性无关的特征向量, 不对 (对,不对),若A 是实对称的呢? 对 (对,不对).二.多项选择题(选出全部正确的选项,可能不只一个)1.n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个( C ) (A )互不相同的特征值; (B )互不相同的特征向量; (C )线性无关的特征向量; (D )两两正交的特征向量;2.方阵A 与B 相似,则必有( BD )(A )E A E B λλ-=-; (B )A 与B 有相同的特征值; (C )A 与B 有相同的特征向量; (D )A 与B 有相同的秩; 3.A 为n 阶实对称矩阵,则( ACD )(A )属于不同特征值的特征向量必定正交; (B )0A >;(C )A 必定有n 个两两正交的特征向量; (D )A 的特征值均为实数;三.100021012A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,试求一个可逆矩阵P 使得1P AP -为对角阵,并求m A .解:先求A 的特征值和特征向量.2100021(1)(3)012E A λλλλλλ--=-=--- 故A 的所有特征值为1233,1λλλ===.当13λ=时,解方程()30A E x -=.2001003011011011000rA E -⎛⎫⎛⎫⎪ ⎪-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭:令1011P ⎛⎫⎪= ⎪ ⎪⎝⎭,则1P 即为对应于13λ=的特征向量. 当231λλ==时,解方程()0A E x -=.000000011011011000r A E ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭:令23100,101P P ⎛⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则23,P P 即为对应于231λλ==的特征向量.显然,123,,P P P 线性无关.令()123010,,101101P P P P ⎛⎫⎪==- ⎪ ⎪⎝⎭,则11110031313102211313022mm m m mm P AP A P P A P P ---⎛⎫ ⎪⎛⎫ ⎪+-+ ⎪⎪Λ==⇒=Λ⇒=Λ= ⎪⎪⎪ ⎪⎝⎭-++ ⎪⎪⎝⎭四.三阶实对称矩阵A 的特征值为0,2,2,又相应于特征值0的特征向量为1111P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求出相应于2的全部特征向量.解:因为A 为三阶实对称矩阵,故A 有三个线性无关的特征向量,且对应于不同特征值的 特征向量两两正交.已知对应于10λ=的特征向量为1P ,设对应于232λλ==的特征向量为23,P P ,则12130,0T T P P P P ==.即23,P P 为齐次线性方程组10T P x =的两个线性无关的解.由10T P x =得1230x x x ++=.令2310,01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则11,1x =--.取23111,001P P --⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则23,P P 即为对应于232λλ==的特征向量.令2233k P k P ξ=+(23,k k 不全为零),则ξ为对应于232λλ==的全部特征向量. 五.设3阶方阵A 的特征值为1231,0,1λλλ===-,对应的特征向量分别依次为1231222,2,1212P P P -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪==-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求A .解:因为123λλλ≠≠,故A 可对角化,且123,,λλλ所对应的特征向量123,,P P P 线性无关.显然()()112312323,,,,A P P P P P P λλλ⎛⎫⎪= ⎪ ⎪⎝⎭,令()123,,P PP P =, 故1112311021001231220A P P P P λλλ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.55ξ- 二次型及其标准形56ξ- 用配方法化二次型为标准形57ξ- 正定二次型一.填空题:1. 22(,)22f x y x xy y x =+++是不是二次型?答: 不是 .2. 123121323(,,)422f x x x x x x x x x =-++的秩是 3 ;秩表示标准形中 平方项 的个数.3.21101000A k k ⎛⎫⎪= ⎪ ⎪⎝⎭,A 为正定矩阵,则k 满足 大于1 .二.A 为实对称矩阵,选出全部的A 为正定矩阵的充分必要条件( 12346 ) 1.对任意的列向量0x ≠,0x Ax '> 2.存在可逆方阵C ,使得A C C '= 3.A 的顺序主子式全部大于零 4.A 的主子式全部大于零 5.A 的行列式大于零 6.A 的特征值全部大于零三.212312331001(,,)(,,)300430x f x x x x x x x x ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭1.求二次型123(,,)f x x x 所对应的矩阵A ;2.求正交变换x Py =,将二次型化为标准形.解:1. 2112312331232123001(,,)(,,)300(,,)343043x x f x x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪== ⎪⎪ ⎪ ⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭22212233343x x x x x =+++ 故二次型123(,,)f x x x 所对应的矩阵100032023A ⎛⎫⎪= ⎪ ⎪⎝⎭.2. 问题可转化为求正交矩阵P ,将A 化为对角形.21032(1)(5)023A E λλλλλλ--=-=--- 故A 的特征值为1231,5λλλ===.当121λλ==时,解方程()0A E x -=.000011022000022000r A E ⎛⎫⎛⎫⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭:.令1310,01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,得20,1x =-.取12100,101ξξ⎛⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则12,ξξ即为对应于121λλ==的特征向量.显然,12,ξξ正交.将12,ξξ单位化得121212010,0P P ξξξξ⎛⎫ ⎪ ⎪⎛⎫⎪==== ⎪ ⎪⎝⎭⎪ ⎪⎝⎭当35λ=时,解方程()50A E x -=.4001005022011022000rA E -⎛⎫⎛⎫⎪ ⎪-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭:.令31x =,得1201x x =⎧⎨=⎩.取3011ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则3ξ即为对应于35λ=的特征向量.将3ξ单位化得3330P ξξ⎛⎫⎪ ⎪==. 令()123P P P P =,则1115P AP -⎛⎫⎪= ⎪ ⎪⎝⎭.故123(,,)f x x x 的标准形为2221235y y y ++.四.已知A 和B 都为n 阶正定矩阵,求证A B +的特征值全部大于零. 证明:因为,A B 都为n 阶正定矩阵,则对任意n 维列向量0x ≠, 有()0,00T T T x Ax x Bx x A B x >>⇒+>.即A B +是正定矩阵. 故A B +的特征值全部大于零. 五.已知A 为n 阶正定矩阵,求证1A E +>.证明:因为A 为n 阶正定矩阵,则A 的n 个特征值12,,,n λλλ⋅⋅⋅全大于零且存在正交矩阵P ,使得112211n n P AP A P P λλλλλλ--⎛⎫⎛⎫⎪⎪⎪ ⎪=⇒= ⎪ ⎪⋅⋅⋅⋅⋅⋅⎪ ⎪⎝⎭⎝⎭. 由1122111n n A E P P PP P E P λλλλλλ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪⎪ ⎪+=+=+ ⎪ ⎪ ⎪⋅⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭121111n P P λλλ-+⎛⎫⎪+⎪= ⎪⋅⋅⋅ ⎪+⎝⎭,得()()()121121111111n n A E PP λλλλλλ-+++==++⋅⋅⋅+>⋅⋅⋅+六.求22:1L x xy y ++=围成的面积.解:设二次型()22112(,),112x f x y x xy y x y y ⎛⎫ ⎪⎛⎫=++=⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭. 令112112A ⎛⎫ ⎪=⎪ ⎪ ⎪⎝⎭,则A 是对称矩阵且正定.设12,λλ为A 的特征值,可知存在正交矩阵P ,使得11200T P AP P AP λλ-⎛⎫== ⎪⎝⎭.由0E A λ-=,得1213,22λλ==. 因为正交变换不改变向量的长度,故可用正交变换12z x P z y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,使得1221122T T T T X AX Z P APZ Z P APZ z z λλ-===+,其中12,z x X Z z y ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭. 综上可知,经过正交变换后,221213(,)22f x y z z =+.故L 的面积即为椭圆: 221213122z z +=的面积.面积S =.第五章 复习题三、计算题1、设3阶对称阵A 的特征值为6,3,3,与特征值6对应的特征向量为()11,1,1Tp =,求A解:因为对称矩阵对应于不同特征值的特征向量是两两正交的,所以求对应于3的特征向量即为求与()1,1,1T正交的特征向量。
线性代数练习题及答案10套

1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2
)
1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2
(完整)线性代数习题集(带答案)

第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( )。
(A) 24315 (B ) 14325 (C ) 41523 (D )24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( )。
(A )k (B)k n - (C )k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A ) 0 (B )2-n (C ) )!2(-n (D) )!1(-n4.=001001001001000( )。
(A ) 0 (B)1- (C) 1 (D ) 25.=001100000100100( )。
(A) 0 (B )1- (C ) 1 (D) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 27。
若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B ) 4- (C) 2 (D) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A )ka (B)ka - (C )a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B )3- (C ) 3 (D ) 210。
若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ).(A )1- (B)2- (C )3- (D )011。
若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B )2- (C)3- (D )012。
线性代数习题册参考解答.docx
第一章行列式1、 求下列排列的逆序数,并确定它们的奇偶性。
(1) 1347265; (2) 〃(〃 —1)・・・321。
【解(1) r(1347265)=0 + 0 + 0 + 0 + 3 + l + 2 = 6,偶排列;(2) "〃(〃_1)...321] = 0 + ] + 2 + ... + (〃_1) = 〃(;1)。
当〃=4奴4女+ 1时,〃(〃;1)=2机4*—1),2机4* + 1)为偶数,即为偶排列;当〃 = 412,413时,丝* = (2*+1)(4*+ 1),(2*+1)(4*+ 3)为奇数,即为奇 排列。
■2、 用行列式定义计算2x x 1 21x1-1 f (X )=-- [3 2x1111%中『和r 的系数,并说明理由。
【解】由行列式定义可知:含b 有的项只能是主对角线元素乘积,故的系数为2; 含有尸的项只能是(1, 2), (2, 1), (3, 3), (4, 4)的元素乘积项,而7(2134) = 0 + 1 + 0 + 0 = 1,故/的系数为一1. ■2-512 --37-14 3、 求 =o45 -9 2 7 4-612【解】三角化法:2-5121-522 1-522 尸2+八1-12 0 6C[0 2-160 113D 4 =- _八3-211 1 0 3 0 113 0 2-16 r 4+r 211 0 60 1160 1161 -52 2 r3~2r 2 0 11 3r4~r 2 00 -3 00 0 31111 rk~r l0 10 0=120= 120o )l=2,3,40 0 100 0 0 1【解】箭形行列式(爪形行列式):利用对角线上元素将第一行(或列)中元素1化为零。
1 x 2q+C2 +•••+&n D"=(,-就1 x 2-mi=l1x21 0 0C k -X L C I 凡 q (»i) k=2,3,---,n1 —m ••- 01 0…-m【解】观察特点: 行和相等。
南昌工程学院线性代数习题册参考答案
第一部分 练习1.11. 5, 1,abc -;2.4,16;3.②④;4.(1)0;(2)4.练习1.21.-4,-24;2.(1)0;(2)160;(3)2(2)!n --;(4)211ni i=-∑;(5)1[(1)]()n a n b a b -+--;(6)1211(1)nn i ia a a a =+∑ . 练习1.311k =-或2k =; 2.2k ≠; 3.(1)232330;30M A =-=;(2)0;(3)-45; 4.132)(2+-=x x x f 练习2.11.1y x =+2.322133342-⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦3.34- 4. 1 5.略 6.010212131⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦,202000010-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦练习2.21.BE AB CA D ⎡⎤⎢⎥++⎣⎦ 2.(1) 12(,,,)s Ab Ab Ab ,(2)⎪⎪⎪⎪⎪⎭⎫⎝⎛T s TT b b b 21 练习2.31.D2.1n A -,A A3.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----202121602,274 4. 11A O O B --⎡⎤⎢⎥⎣⎦,11OB A O --⎡⎤⎢⎥⎣⎦5. 327212151500250037--⎛⎫ ⎪--⎪ ⎪ ⎪ ⎪⎝⎭6. ⎪⎪⎪⎭⎫ ⎝⎛---=--011111110)(1E A ,⎪⎪⎪⎭⎫⎝⎛-=221031X 练习2.41.初等变换2.(1)1513133312713A --⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦, (2)11000100010001a a A a --⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥⎣⎦ 3. 10221451332X ⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥--⎢⎥⎣⎦练习2.51.相等2.(1)× (2)√ (3)× (4)√3.94λ= 4.3R = 练习3.11.()(,)R A R A b <, ()(,)R A R A b =,()(,)R A R A b n =<2.(1)无解, (2)无穷多解,121234100010211000x x c c x x ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦(12,c c 为任意常数)3 .(1)110100110000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,(2)111001x c -⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(c 为任意常数)4. 12341704x x c x x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦(c 为任意常数) 5当2k =-时,无解;当1k ≠且2k ≠-时,有唯一解;当1k =时,有无穷多解。
大学课程《线性代数》综合练习题集及答案
03D(1)R、;2,用3,>4)=2;向量组的一个极大无关组为、辽,、;4;
:'1 =2(、七亠'::4),■?23如
(2)R( :-1^-2, :-3, :-4, :-5) =3;向量组的一个极大无关组为:■1, :3 >5;
「2=「1:'5,「4 = :^':^':'5 ;
,其中k为任意常数.
当•=1时,有解,解为
(1)当“且•时,方程组有唯一解;
5
<0A
-1
+k
1
丿
当’=1时,其通解为
,其中k为任意实数;
当,二-4时,原方程组无解;
5
广1、
—4
04F (1) C 3, (CER);
7
/ >
2
-22
1
0
+k2
0
15
5
I2」
,(k1,k^R);
(2) k1
J2、
0
十k!
a =b =0时,r (A) =0;当a = b才0时,r( A) =1;
a-'b,且
a-'b,且
a亠(n -1) b =0时,r (A) =n -1;
a • (n _1) b =0时,r(A) =n.
05G
05H
* *
r[(A )]
05K
05M
05O
06A
n ,如果r(A)=n,
0,如果r(A)cn.
011
排列的逆序数为
k2;
当k为偶数时,
排列为偶排列,当k为奇数时,排列为奇排列.
《线性代数》习题集(含答案)
《线性代数》习题集(含答案)第一章【1】填空题 (1) 二阶行列式2a ab bb=___________。
(2) 二阶行列式cos sin sin cos αααα-=___________。
(3) 二阶行列式2a bi b aa bi+-=___________。
(4) 三阶行列式xy zzx y yzx =___________。
(5) 三阶行列式a bc c a b c a bbc a+++=___________。
答案:1.ab(a-b);2.1;3.()2a b -;4.3333x y z xyz ++-;5.4abc 。
【2】选择题(1)若行列式12513225x-=0,则x=()。
A -3;B -2;C 2;D 3。
(2)若行列式1111011x x x=,则x=()。
A -1, B 0, C 1, D 2,(3)三阶行列式231503201298523-=()。
A -70;B -63;C 70;D 82。
(4)行列式00000000a ba b b a ba=()。
A 44a b -;B ()222a b-;C 44b a -;D 44a b 。
(5)n 阶行列式0100002000100n n -=()。
A 0;B n !;C (-1)·n !;D ()11!n n +-•。
答案:1.D ;2.C ;3.A ;4.B ;5.D 。
【3】证明33()by az bz ax bx ay x y z bx ay by az bz ax a b zx y bz ax bx ay by azyzx++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。
【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。
答案:(1)τ(134782695)=10,此排列为偶排列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学数学实验线性代数实验报告第1章 矩阵与行列式习题(要求写出实验过程和结果)1.已知下列矩阵:(1)⎪⎪⎪⎭⎫ ⎝⎛--=121011322A ,⎪⎪⎪⎭⎫ ⎝⎛-=112011111B ;(2)⎪⎪⎪⎭⎫ ⎝⎛=111a b c c b a A ,⎪⎪⎪⎭⎫ ⎝⎛=a c b b c a B 111.计算B A +,AB ,A 5,dA ,'A ,1-A ,3A .(1).>> a=[2 2 3;1 -1 0;-1 2 1];>> b=[1 1 -1;1 1 0;2 1 1]; >> c=a+bc =3 3 22 0 01 3 2>> ab=a*bab =10 7 10 0 -13 2 2>> c=5*ac =10 10 155 -5 0-5 10 5>> syms d>> da=d*ada =[ 2*d, 2*d, 3*d][ d, -d, 0][ -d, 2*d, d]>> c=inv(a)c =1.0000 -4.0000 -3.00001.0000 -5.0000 -3.0000-1.0000 6.0000 4.0000 >> f=a'f =2 1 -12 -1 23 0 1>> c=a^3c =5 16 182 5 6-2 -4 -5(2).>> a=sym('[a b c ;c b a ;1 1 1]');>> b=sym('[1 a c;1 b b;1 c a]');>> f=a+bf =[ a+1, b+a, 2*c][ c+1, 2*b, b+a][ 2, c+1, a+1]>> ab=a*bab =[ a+b+c, a^2+b^2+c^2, 2*a*c+b^2][ a+b+c, 2*a*c+b^2, a^2+b^2+c^2][ 3, a+b+c, a+b+c] >> c=5*ac =[ 5*a, 5*b, 5*c][ 5*c, 5*b, 5*a][ 5, 5, 5]>> syms d>> da=d*ada =[ d*a, d*b, d*c][ d*c, d*b, d*a][ d, d, d]>> f=a'f =[ conj(a), conj(c), 1][ conj(b), conj(b), 1][ conj(c), conj(a), 1]>> f=inv(a)f =[ (a-b)/(-2*b*a+a^2+2*c*b-c^2), (b-c)/(-2*b*a+a^2+2*c*b-c^2), -b/(a-2*b+c)][ -1/(a-2*b+c), -1/(a-2*b+c), (a+c)/(a-2*b+c)][ (b-c)/(-2*b*a+a^2+2*c*b-c^2), (a-b)/(-2*b*a+a^2+2*c*b-c^2), -b/(a-2*b+c)]>> d=a^3d =[ a*(a^2+c*b+c)+b*(a*c+c*b+a)+c*(a+c+1), a*(b*a+b^2+c)+b*(c*b+b^2+a)+c*(2*b+1), a*(a*c+b*a+c)+b*(c^2+b*a+a)+c*(a+c+1)][ c*(a^2+c*b+c)+b*(a*c+c*b+a)+a*(a+c+1), c*(b*a+b^2+c)+b*(c*b+b^2+a)+a*(2*b+1), c*(a*c+b*a+c)+b*(c^2+b*a+a)+a*(a+c+1)][ a^2+2*c*b+2*c+a*c+2*a+1, b*a+2*b^2+c+c*b+a+2*b+1, a*c+2*b*a+2*c+c^2+2*a+1]2.设向量⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=13221a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=21212a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=21123a ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=3210b ,问b 能否由321,,a a a 线性表示?>> a=[2 -1 2;2 2 1;3 1 -1;1 2 -2]; >> b=[0;1;2;3]; >> B=[a;b];>> r=[rank(a),rank(b)] r =3 13.已知矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=16151413121110987653321A ,求对矩阵实施如下的初等变换后所得矩阵。
(1)矩阵A 的第1列乘以c ;(2)矩阵A 的第3行的k 倍加到第1行上去; (3)矩阵A 的第1行与第4行交换。
>> syms c>> a=sym('[1 2 3 4;5 6 7 8;9 10 11 12;13 14 15 16]') a =[ 1, 2, 3, 4] [ 5, 6, 7, 8] [ 9, 10, 11, 12] [ 13, 14, 15, 16]>> a(:,2)=c*a(:,2) a =[ 1, 2*c, 3, 4] [ 5, 6*c, 7, 8][ 9, 10*c, 11, 12] [ 13, 14*c, 15, 16]>> syms k>> a(1,:)=a(1,:)+a(3,:)*k a =[ 1+9*k, 2*c+10*k*c, 3+11*k, 4+12*k] [ 5, 6*c, 7, 8] [ 9, 10*c, 11, 12] [ 13, 14*c, 15, 16]>> a([1,4],:)=a([4,1],:) a =[ 13, 14*c, 15, 16] [ 5, 6*c, 7, 8] [ 9, 10*c, 11, 12] [ 1+9*k, 2*c+10*k*c, 3+11*k, 4+12*k]4.已知矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=101016543254321a bc d e e d c b a A ,提取矩阵A 的第2、5行与第3、4列的元素构成矩阵B ,提取矩阵A 的第3、4、5行与第1、4列的元素构成矩阵C .>> a=sym('[a b c d e;1 2 3 4 5;e d c b a;2 3 4 5 6;1 0 1 0 1]')a =[ a, b, c, d, e] [ 1, 2, 3, 4, 5] [ e, d, c, b, a] [ 2, 3, 4, 5, 6] [ 1, 0, 1, 0, 1]>> b=a([2,5],3:4)b = [ 3, 4] [ 1, 0]>> c=a(3:5,[1,4]) c = [ e, b] [ 2, 5] [ 1, 0]5.用初等变换求矩阵⎪⎪⎪⎭⎫ ⎝⎛--=121011322A 的逆矩阵。
>> a=[2 2 3;1 -1 0;-1 2 1]a =2 23 1 -1 0 -1 2 1>> b=inv(a) b =1.0000 -4.0000 -3.0000 1.0000 -5.0000 -3.0000 -1.0000 6.0000 4.0000>> a=[2 2 3;1 -1 0;-1 2 1]; >> e=eye(3); >> b=[a,e] b =2 23 1 0 0 1 -1 0 0 1 0-1 2 1 0 0 1>> b([1,2],:)=b([2,1],:)b =1 -1 0 0 1 02 23 1 0 0-1 2 1 0 0 1>> b(2,:)=b(1,:)*2-b(2,:)b =1 -1 0 0 1 00 -4 -3 -1 2 0-1 2 1 0 0 1>> b(3,:)=b(1,:)+b(3,:)b =1 -1 0 0 1 00 -4 -3 -1 2 00 1 1 0 1 1>> b(2,:)=b(2,:)*(-1/4)b =1.0000 -1.0000 0 0 1.0000 00 1.0000 0.7500 0.2500 -0.5000 00 1.0000 1.0000 0 1.0000 1.0000 >> b(3,:)=b(2,:)-b(3,:)b =1.0000 -1.0000 0 0 1.0000 00 1.0000 0.7500 0.2500 -0.5000 00 0 -0.2500 0.2500 -1.5000 -1.0000 >> b(3,:)=b(3,:)*(-4)b =1.0000 -1.0000 0 0 1.0000 0 0 1.0000 0.7500 0.2500 -0.5000 0 0 0 1.0000 -1.0000 6.0000 4.0000>> b(2,:)=b(2,:)-0.75*b(3,:) b =1 -1 0 0 1 0 0 1 0 1 -5 -3 0 0 1 -1 6 4>> b(1,:)=b(1,:)+b(2,:) b =1 0 0 1 -4 -3 0 1 0 1 -5 -3 0 0 1 -1 6 46.已知⎪⎪⎪⎭⎫ ⎝⎛--=011220111A ,⎪⎪⎪⎭⎫ ⎝⎛-=112011111B ,⎪⎪⎪⎭⎫⎝⎛=333222111z y x z y x z y x X ,且B XA =,求X .>> a=[1 1 -1;0 2 2;1 -1 0];>> b=[1 -1 1;1 1 0;2 1 1]; >> c=inv(a); >> x=c*b x =1.8333 0.5000 1.0000 -0.1667 -0.5000 0 0.6667 1.0000 07.用Gauss 消元法解线性方程组:(1)⎪⎪⎩⎪⎪⎨⎧-=++-=++-=+-=-+-33713344324324214324321x x x x x x x x x x x x x ; (2)⎪⎩⎪⎨⎧=+++=-++=+-+322212432143214321x x x x x x x x x x x x .(1.)>> a=[1 -2 3 -4;0 1 -1 1;1 3 0 1;0 -7 3 1]; >> a(3,:)=a(3,:)-a(1,:) a =1 -23 -4 0 1 -1 1 05 -3 5 0 -7 3 1>> a(3,:)=a(3,:)-a(2,:)*5; >> a(4,:)=a(4,:)+7*a(2,:) a =1 -23 -4 0 1 -1 1 0 0 2 0 0 0 -4 8>> a(3,:)=a(3,:)*(1/2); >> a(4,:)=a(4,:)+a(3,:)*4 a =1 -23 -4 0 1 -1 1 0 0 1 0 0 0 0 8 a(2,:)=a(2,:)+a(3,:) a =1 -23 -4 0 1 0 1 0 0 1 0 0 0 0 8>> a(1,:)=a(1,:)+2*a(2,:);a(1,:)=a(1,:)-3*a(3,:)a =1 0 0 -20 1 0 10 0 1 00 0 0 8(2.)>> a=[2 1 -1 1;1 2 1 -1;1 1 2 1];>> a=rref(a)a =1.0000 0 0 1.50000 1.0000 0 -1.50000 0 1.0000 0.50008.计算下列行列式的值:(1)1228523111025306975416931250231------ ; (2)3210100100100a x a x a x a x+---;(3)333322221111d c b a d c b a dc b a .(1.)>> a=[1 3 2 0 5;2 -1 3 9 -16;4 5 7 9 -6;-30 25 0 11 1;23 5 -8 2 -12];>> det(a)ans =(2.)>> syms x a0 a1 a2 a3>> a=[x 0 0 a0;-1 x 0 a1;0 -1 x a2;0 0 -1 x+a3];>> det(a)ans =x^4+x^3*a3+x^2*a2+x*a1+a0(3.)>> syms a b c d>> a=[1 1 1 1;a b c d;a*2 b*2 c*2 d*2;a*3 b*3 c*3 d*3];>> det(a)ans =9.用Gramer 法则解线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+030230220231335454343232121x x x x x x x x x x x x x .A=[3 3 0 0 0;1 3 2 0 0;0 1 2 2 0;0 0 1 3 2;0 0 0 1 3];>> A1=[1 3 0 0 0;0 3 2 0 0;0 1 2 2 0;0 0 1 3 2;0 0 0 1 3];>> A2=[3 1 0 0 0;1 0 2 0 0;0 0 2 2 0;0 0 1 3 2;0 0 0 1 3];>> A3=[3 3 1 0 0;1 3 0 0 0;0 1 0 2 0;0 0 0 3 2;0 0 0 1 3];>> A4=[3 3 0 1 0;1 3 2 0 0;0 1 2 0 0;0 0 1 0 2;0 0 0 0 3];>> A5=[3 3 0 0 1;1 3 2 0 0;0 1 2 2 0;0 0 1 3 0;0 0 0 1 0];>> a=det(A);>> a1=det(A1);a2=det(A2);a3=det(A3);a4=det(A4);a5=det(A5);>> X=[a1/a,a2/a,a3/a,a4/a,a5/a]X =1.6667 -1.3333 1.1667 -0.5000 0.166710.c 为何值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321cx x x x cx x x x cx 只有零解?syms c;>> A=[c 1 1;1 c 1;1 1 c];>> a=det(A);>> [c]=solve(a,'c')c =11当C 不等于-2或者1时,齐次线性方程组只有零解。