永磁直流力矩电机参数

俯仰轴电机--J200LYX10永磁直流力矩电机技术指标

主要技术参数

峰值堵转扭矩:≥98Nm;

峰值堵转电压:60V;

峰值堵转电流:16.5A;

连续堵转扭矩:≥38Nm;

连续堵转电压:24V;

连续堵转电流:6.6A;

最大空载转速:130r/min;

转矩波动系数:≤3%;

电气时间常数:5ms;

电枢转动惯量:0.06kgm2

外径:224mm;

内径:96mm;

轴向长:122mm;

重量:约14kg。

俯仰轴电机—J320LYX14G永磁直流力矩电机技术指标

主要技术参数

峰值堵转扭矩:≥615Nm;

峰值堵转电压:60V;

峰值堵转电流:67A;

连续堵转扭矩:≥160Nm;

连续堵转电压:15.7V;

连续堵转电流:17.5A;

最大空载转速:55r/min;

转矩波动系数:≤4%;

电气时间常数:5.4ms;

电枢转动惯量:0.62kgm2

外径:320mm;

内径:200mm;

轴向长:187mm;

重量:约59kg。

直流力矩电动机

1.3 直流力矩电动机 1.3.1 概述 在某些自动控制系统中,被控对象的运动速度相对来说是比较低的。例如某一种防空雷达天线的最高旋转速度为90°/s,这相当于转速15 r/min。一般直流伺服电动机的额定转速为1500 r/min或3000 r/min,甚至6000 r/min,这时就需要用齿轮减速后再去拖动天线旋转。但是齿轮之间的间隙对提高自动控制系统的性能指标很有害,它会引起系统在小范围内的振荡和降低系统的刚度。因此,我们希望有一种低转速、大转矩的电动机来直接带动被控对象。 直流力矩电动机就是为满足类似上述这种低转速、大转矩负载的需要而设计制造的电动机。它能够在长期堵转或低速运行时产生足够大的转矩,而且不需经过齿轮减速而直接带动负载。它具有反应速度快、转矩和转速波动小、能在很低转速下稳定运行、机械特性和调节特性线性度好等优点。特别适用于位置伺服系统和低速伺服系统中作执行元件,也适用于需要转矩调节、转矩反馈和一定张力的场合(例如在纸带的传动中)。 1.3.2 结构特点 直流力矩电动机的工作原理和普通的直流伺服电动机相同,只是在结构和外形尺寸的比例上有所不同。一般直流伺服电动机为了减少其转动惯量,大部分做成细长圆柱形。而直流力矩电动机为了能在相同的体积和电枢电压下产生比较大的转矩和低的转速,一般做成圆盘状,电枢长度和直径之比一般为0.2 左右;从结构合理性来考虑,一般做成永磁多极的。为了减少转矩和转速的波动,选取较多的槽数、换向片数和串联导体数。 总体结构型式有分装式和内装式两种,分装式结构包括定子、转子和刷架三大部件,机壳和转轴由用户根据安装方式自行选配;内装式则与一般电机相同,机壳和轴已由制造厂装配好。 图1 - 28 直流力矩电动机的结构示意图 1.3.3 为什么直流力矩电动机转矩大、转速低 如上所述,力矩电动机之所以做成圆盘状,是为了能在相同的体积和控制电压下产

直流力矩电机的应用

永磁式直流力矩电动机是属于直流伺服电机的一类,被广泛应用于高速定位系统、低速大扭矩转速控制系统、最佳扭矩在高速度的定位,速度,或张紧系统。 1、直流力矩电机的特点: ?外形为扁平的盘型,直径达而长短; ?可以为理想的定位和速度控制系统提供超低转速和高扭矩,或高的响应速度和最佳转矩; ?无框安装模式和可选的大的转矩范围; ?高转矩惯量比,快速启动/停止和高加速度; ?高转矩功率比,低功率输入要求; ?低电气时间常数为优良的命令响应所有运行速度; ?线性转矩响应输入电流和速度,没有死角; ?长期运行可靠性; ?精度高,即使在极低转速也无需齿轮系统; ?运行安静、平稳 ?设计紧凑、适应性强; ?可按要求设计包括永磁材料,叠片槽数,铁芯厚度,供电电压等。 2、直流力矩电机的主要名词解释、及与一般直流电机的区别: 1. 主要名词解释: 1、峰值堵转转矩:直流力矩电动机受永磁材料去磁限制的最大电流时,所获得的有效转矩, 一般表示为Mf,单位为N.m; 2、峰值堵转电压:直流力矩电机产生峰值堵转转矩时施加在电机两端的电压,一般表示为Uf, 单位为V; 3、峰值堵转电流:直流力矩电机产生峰值堵转转矩时的电枢电流,一般表示为If,单位为A; 4、峰值堵转控制功率:直流力矩电动机产生峰值堵转转矩时的控制功率,一般表示为Pf,单 位为W; 5、连续堵转转矩:直流力矩电机在某一堵转状态下其稳定温升不超过允许值,并可以长期工 作,此状态下产生的转矩被称为连续堵转转矩,一般表示为Mn,单位为N.m; 6、连续堵转电压:直流力矩电机产生连续堵转转矩时施加在电机两端的电压,一般表示为Un, 单位为V; 7、连续堵转电流:直流力矩电机产生连续堵转转矩时的电枢电流,一般表示为In,单位为A; 8、连续堵转控制功率:直流力矩电动机产生连续堵转转矩时的控制功率,一般表示为Pn,单

分装式直流力矩电机安装说明

分装式直流力矩电机安装说明 定兴县宇捷直流力矩电机制造有限公司 2012-05-23

分装式直流力矩电机安装示例 分装式直流力矩电机因其具有有效融入系统设计,体积小重量轻和力矩电机的以下优点,被广泛应用于数控平台、测控台、云台、机器人高精度传动机构等场合,一些用户由于对力矩电机的使用比较生疏,不太了解分装式直流力矩电机的安装特点,根据我公司产品的特点简要的对力矩电机的安装进行说明,具体过程见下文。 直流力矩电机的特点: ?可以为理想的定位和速度控制系统提供超低转速和高扭矩,或高的响应速度和最佳转矩; ?无框安装模式和可选的大的转矩范围; ?高转矩惯量比,快速启动/停止和高加速度; ?高转矩功率比,低功率输入要求; ?低电气时间常数为优良的命令响应所有运行速度; ?线性转矩响应输入电流和速度,没有死角; ?长期运行可靠性; ?精度高,即使在极低转速也无需齿轮系统; ?运行安静、平稳 ?设计紧凑、适应性强; ?可按要求设计包括永磁材料,叠片槽数,铁芯厚度,供电电压等。

分装式直流力矩电机与连接设备的部件分解示意图: 如上图所示: 直流力矩电机的分装式结构由电机定子、电机转子、电刷架三部分组成,因本产品采用稀土高强磁性材料,转子装入定子时冲击力较大,安装前应先将电刷架从定子上卸下,以防止转子撞坏电刷组件。 分装式电机的安装一般采用一侧轴承支撑的结构,或由设备上的主轴直接连接,如上图所示,即为设备主轴支撑电机转子,设备外壳支撑电机定子的结构。 分装式直流力矩电机的装配 有两种方法:一种是顺序装配, 一种是整体装配。 顺序装配的方法及步骤如下: 安装电机定子: 将定子安装到设备外壳上,要求 此时设备上的支承轴和轴承已经 安装就位,定子的安装方向是有 电刷架安装孔的一侧朝外。方法 如图所示:

力矩电机技术水平分析及关键技术

力矩电机技术水平分析及关键技术 沈阳机床集团 技术中心 立式加工中心项目组 2006年10月

–Firstly—力矩电机简介及技术分析 力矩电动机(torque motor),也有人翻译为扭矩电机,力矩电动机与直线电动机相似,为基于同步传动技术的直接驱动电动机.与直线电动机的高速度不同的是,力矩电动机经常工作在较低的速度,并且在这种较低的额定转速下输出很高的扭矩. 它本质是低速大扭矩的伺服电动机,与我们熟悉的伺服电机分类相同,分为直流,无刷直流,正弦交流几种。 a.永磁直流力矩电动机技术 永磁式直流力矩电机属于低速直流伺服电动机,通常使用在堵转或低速情况下。 其特点是堵转力矩大,空载转速低,不需要任何减速装置可直接驱动负载,过载能力强。长期堵转时能产生足够大的转矩而不损坏。广泛应用于各种雷达天线的驱动、光电跟踪等高精度传动系统、以及一般仪器仪表驱动装置上。 2专利技术: 目前国内外关于直流永磁力矩电动机的专利文献主要针对电动机的结构,以及槽极数的设计,其发展趋势是使该类力矩发动机的结构更紧凑、力矩更大。其中美国专利US5990584(公开日:1999-11-23)涉及一种永磁直流力矩电动机,其定子安装在基座上悬臂中,并嵌套在一个杯形转子中。其永磁体贴在转子的内部,定子铁心外部由线圈直接包成网状,可加工成片状或薄板状。磁极片具有缩短的电极靴表面与转子磁体形成放射形的间隙。磁极片向轴向和横向扩展,轴向磁极片的扩展部分可提供给定电动机所有的磁通量,无需再增加电流的安培。 国内实用新型95218685.3(公开日:1996.12.18)也涉及一种大力矩直流电动机,转子采用双数正槽,单层绕组,换向片至少6片,使转子产生的磁场与定子磁场的磁轴交角小于直角(30-45°)。具有起动力矩大,机械加工容易,省工省料,制造维修方便,工作可靠,过负荷能力强,使用寿命长等特点。 2产品介绍: 国外永磁直流力矩电动机的主要生产厂商有美国Kollmorgen公司、Poly-Scientific公司、英国Muirhead Aerospace等公司,设计生产了各种型号的永磁直流力矩电动机,其中美国Kollmorgen公司的直流力矩电机由永磁场和绕线式电

《直流力矩电机》

永磁式直流力矩电动机 1.概述 永磁式直流力矩电动机是一种特殊的控制电机,是作为高精度伺服系统的执行元件,适应大扭矩、直接驱动系统,安装空间又很紧凑的场合而特殊设计的控制电机。 实际上,许多自动控制系统控制对象的运动速度相对是比较低的,比如:地面搜索雷达天线的控制系统;陀螺平台的稳定系统;单晶炉的旋转系统;精密拉丝系统等等,在这些控制系统中如果采用齿轮减速驱动,将会大大降低系统的精度,增加系统的惯量和反应时间,加大传动噪声。如果采用力矩电机组成的直接驱动系统,就能够在很宽的范围内达到低速平稳运行,大大提高系统的精度,降低系统的噪声。还有一些负载运行在很低的速度,接近堵转状态,或是负载轴端要加一定的制动反力矩,这些场合,都适合采用力矩电机。 2.性能特点 永磁式直流力矩电动机的性能有以下特点: 2.1高的转矩惯量比 一方面力矩电机设计成在一定体积下输出尽可能大的转矩,另一方面,实现无齿轮传动,从负载轴端看,折算到负载轴上转矩与惯量之比比齿轮传动大一个齿轮传动比的倍数,使系统加速能力大大增加。 2.2高的藕合刚度 力矩电机直接装置于负载轴或轮毂上,没有齿隙,没有弹性变形,传动链短,使系统伺服刚度得以提高。 2.3快的响应速度 力矩电机具有高转矩惯量比,使电机机械时间常数比较小,同时,电气时间常数也很小,保证了在宽广运行速度下都能快速响应,大大提高系统的硬度和品质。 2.4高的速度和位置分辩率 与齿轮或液压传动系统相比,没有齿隙引起的零点死区,减少了传动链 中传动部件的非线性因素,使系统的分辩率仅取决于误差检测元件的精度。 2.5高线性度

转矩的增长正比于输入电流,不随速度和角位置而变化,转矩~电流 特性基本通过零点,非线性死区很小。 2.6结构紧凑 典型的力矩电机设计成分装式的薄环形状(由定子、转子、电刷架三大 件组成),安装时占用较小的空间,尤其在对轴向尺寸、体积、重量要求严格的场合,具有较大的结构适应性和灵活性。 3. 性能指标说明 3.1峰值堵转转矩 电机受磁钢祛磁条件限制及设计中考虑最佳性能时,施加峰值电流电机处于瞬间堵转状态,此时输出的转矩为峰值堵转转矩。 3.2峰值堵转电流 对应峰值堵转转矩时输入的最大电流。 3.3峰值堵转电压 对应于产生峰值堵转电流时的电枢电压。 3.4连续堵转转矩 电机受发热、散热条件及电机绝缘等级条件限制,允许的长期堵转输出的转矩。 3.5连续堵转电流 对应连续堵转转矩时施加的电流。 3.6连续堵转电压 对应于产生连续堵转电流时的电枢电压。 3.7最大空载转速 力矩电机在空载时加以峰值堵转电压所达到的稳定速度。 4.电动机的工作特性 永磁式直流力矩电动机的工作特性见下图:

永磁直流电机性能参数

ZYT直流永磁电机 概述 ZYT直流永磁电机采用铁氧体永磁磁铁作为激磁,系封闭自冷式。作为小功 率直流马达可以用在各种驱动装置中做驱动元件。 产品说明 (1)产品特点:直流电动机的调速范围宽广,调速特性平滑;直流电动机 过载能力较强,热动和制动转矩较大;由于存在换向器,其制造复杂,价格较高。 (2)使用条件:海拔w 4000m环境温度:-25 C —+40C ;相对湿度w 90%(+25C时);允许温升,不超过75K。 型号说明 90ZYT08/H1 1.90位置表示机座号。用55、70、90、110和130表示。其相应机座号外径为 55mm 70mm 90mm 110mn和130mm 2. ZYT表示直流永磁马达。 3.08位置表示铁芯长度。其中01-49为短铁芯,51-99为长铁芯和101-149为超长铁芯。 4.H1位置为派生结构。其代号用H1、H2 H3??…。 安装形式 1. A1表示单轴伸底脚安装,AA1表示双轴伸底脚安装。 2. A3表示单轴伸法兰安装,AA3表示双轴伸法兰安装。 3. A5表示单轴伸机壳外圆安装,AA5表示双轴伸机壳外圆安装。 使用条件 1. 海拔不超过4000米。 2. 环境温度:-25度到40度。 3. 相对温度:小于等于95度。 4. 在海拔不超过1000米时,不超过75K. 技术参数 以下数值为参考使用,在实际生产时可以根据客户要求调整。 1. 型号55ZYZT01-55ZYZ10转矩55.7-63.7(毫牛米),速度3000-6000(r/min), 功率20-35(W),电压24-110(V),电流1.5-3.2 (A)和允许逆转速度差

力矩电机与变频

一、摘要 本文介绍了欧瑞传动有速度传感器矢量变频器替代力矩电机在塑料机械和印刷机械收卷设备上的应用方案,由于它具有宽阔的转速/转矩设定范围、运行特性更加平滑,已经越来越多地被用于塑料包装和印刷企业。 (1) 力矩电机概述 力矩电机是一种具有软机械特性和宽调速范围的特种电机。力矩电机包括:直流力矩电机、交流力矩电机、和无刷直流力矩电机。 (2) 力矩电机的构造原理 当负载增加时,电动机的转速能自动的随之降低,而输出力矩增加,保持与负载平衡。力矩电机的堵转转矩高,堵转电流小,能承受一定时间的堵转运行。由于转子电阴高,损耗大,所产生的热量也大,特别在低速运行和堵转时更为严重,因此,电机在后端盖上装有独立的轴流或离心式风机(输出力矩较小100机座号及以下除外),作强迫通风冷却,力矩电机配以可控硅控制装置,可进行调压调速,调速范围可达1:4,转速变化率≤10%。本系列电机的特性使其适用于卷绕,开卷、堵转和调速等场合及其他用途,被广泛应用于纺织、电线电缆、金属加工、造纸、橡胶、塑料以及印刷机械等工业领域。 (3) 力矩电机主要特点 力矩电机的特点是具有软的机械特性,可以堵转.当负载转矩增大时能自动降低转速,同时加大输出转矩.当负载转矩为一定值时改变电机端电压便可调速.但转速的调整率不好!因而在电机轴上加一测速装置,配上控制器.利用测速装置输出的电压和控制器给定的电压相比,来自动调节电机的端电压.使电机稳定! 具有低转速、大扭矩、过载能力强、响应快、特性线性度好、力矩波动小等特点,可直接驱动负载省去减速传动齿轮,从而提高了系统的运行精度。为取得不同性能指标,该电机有小气隙、中气隙、大气隙三种不同结构形式,小气隙结构,可以满足一般使用精度要求,优点是成本较低;大气隙结构,由于气隙增大,消除了齿槽效应,减小了力矩波动,基本消除了磁阻的非线性变化,电机线性度更好,电磁气隙加大,电枢电感小,电气时间常数小,但是制造成本偏高;中气隙结构,其性能指标略低于大气隙结构电机,但远高于小气隙结构电机,而体积小于大气隙结构电机,制造成本低于大气隙结构电机。 (4) 力矩电机应用 在机械制造、纺织、造纸、橡胶、塑料、金属线材和电线电缆等工业中,需要将产品卷绕在卷筒(盘)上。卷绕的直径从开始至末了是越卷越大,为保持被卷物张力均匀(即线速度不变),就要求卷筒转速越卷越小,卷绕力越卷越大。应用特性卷绕、开卷(制动恒功率特性)、无级调速等。 1、卷绕 在电线电缆、纺织、金属加工、造纸等加工时,卷绕是一个十分重要的工序。产品卷绕时卷筒的直径逐渐增大,在整个过程中保持被卷产品的张力不变十分重要,因为张力过大会将线材的线径拉细甚至拉断,或造成产品的厚薄不均匀,而张力过小则可造成卷绕松弛。为使在卷绕过程中张力保持不变,必须在产品卷绕到卷盘上的盘径增大时驱动卷筒的电机的输出力矩也增大,同时为保持卷绕产品线速度不变,须使卷盘的转速随之降低,力矩电动机的机械特性恰好能满足这一要求。 2、开卷(制动恒功率特性) 开卷亦称松卷、放卷、放线等。在工业生产中,有时需要把卷绕在滚筒上的产品输送到下一个工序。在输送过程中,要求施于产品一个与传动方向相反的张力,同时要求随着筒径

直流永磁电机基本知识

直流永磁电机基本知识 一.直流电机的工作原理 1.直流电机的工作原理 这是分析直流电机的物理模型图。 其中,固定部分有磁铁,这里称作主磁极;固定部分还有电刷。转动部分有环形铁心和绕在环形铁心上的绕组。(其中2个小圆圈是为了方便表示该位置上的导体电势或电流的方向而设置的) 上图表示一台最简单的两极直流电机模型,它的固定部分(定子)上,装设了一对直流励磁的静止的主磁极N和S,在旋转部分(转子)上装设电枢铁心。定子与转子之间有一气隙。在电枢铁心上放置了由A和X两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。换向片之间互相绝缘,由换向片构成的整体称为换向器。换向器固定在转轴上,换向片与转轴之间亦互相绝缘。在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接通。

直流电机的原理图 对上上图所示的直流电机,如果去掉原动机,并给两个电刷加上直流电源,如上图(a)所示,则有直流电流从电刷A 流入,经过线圈,从电刷B 流出,根据电磁力定律,载流导体和收到电磁力的作用,其方向可由左手定则判定,两段导体受到的力形成了一个转矩,使得转子逆时针转动。如果转子转到如上图(b)所示的位置,电刷A 和换向片2接触,电刷B 和换向片1接触,直流电流从电刷A 流入,在线圈中的流动方向是,从电刷B 流出。 此时载流导体和受到电磁力的作用方向同样可由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。这就是直流电机的工作原理。外加的电源是直流的,但由于电刷和换向片的作用,在线圈中流过的电流是交流的,其产生的转矩的方向却是不变的。 实用中的直流电机转子上的绕组也不是由一个线圈构成,同样是由多个线圈连接而成,以减少电动机电磁转矩的波动,绕组形式同发电机。 将直流电机的工作原理归结如下

直流力矩电机选型专用资料

直流力矩电机选型及应用 2012版 定兴县宇捷直流力矩电机制造有限公司 王东立 2012-02-29

永磁式直流力矩电动机是属于直流伺服电机的一类,被广泛应用于高速定位系统、低速大扭矩转速控制系统、最佳扭矩在高速度的定位,速度,或张紧系统。 1、直流力矩电机的特点: ?外形为扁平的盘型,直径达而长短; ?可以为理想的定位和速度控制系统提供超低转速和高扭矩,或高的响应速度和最佳转矩;?无框安装模式和可选的大的转矩范围; ?高转矩惯量比,快速启动/停止和高加速度;?高转矩功率比,低功率输入要求; ?低电气时间常数为优良的命令响应所有运行速度;?线性转矩响应输入电流和速度,没有死角;?长期运行可靠性; ?精度高,即使在极低转速也无需齿轮系统;?运行安静、平稳 ?设计紧凑、适应性强; ?可按要求设计包括永磁材料,叠片槽数,铁芯厚度,供电电压等。 2、直流力矩电机的主要名词解释、及与一般直流电机的区别: 1.主要名词解释: 1、峰值堵转转矩:直流力矩电动机受永磁材料去磁限制的最大电流时,所获得的有效转矩,一般表示为Mf ,单位为N.m ; 2、峰值堵转电压:直流力矩电机产生峰值堵转转矩时施加在电机两端的电压,一般表示为Uf ,单位为V ; 3、峰值堵转电流:直流力矩电机产生峰值堵转转矩时的电枢电流,一般表示为If ,单位为A ; 4、峰值堵转控制功率:直流力矩电动机产生峰值堵转转矩时的控制功率,一般表示为Pf ,单位为W ; 5、连续堵转转矩:直流力矩电机在某一堵转状态下其稳定温升不超过允许值,并可以长期工作,此状态下产生的转矩被称为连续堵转转矩,一般表示为Mn ,单位为N.m ; 6、连续堵转电压:直流力矩电机产生连续堵转转矩时施加在电机两端的电压,一般表示为Un ,单位为V ; 7、连续堵转电流:直流力矩电机产生连续堵转转矩时的电枢电流,一般表示为In ,单位为A ;8、连续堵转控制功率:直流力矩电动机产生连续堵转转矩时的控制功率,一般表示为Pn ,单位为W ; 9、最大空在转速:直流力矩电机被施加峰值堵转电压,并不连接负载时的空载转速;一般表示为max o n ,单位为r/min 或rpm ;

永磁直流力矩电动机励磁静摩擦力矩研究

永磁直流力矩电动机励磁静摩擦力矩研究 张文海,谭宏松 (成都精密电机厂,四川成都610500) 永磁直流力矩电动机因电枢齿槽磁阻不同而产生很大的磁阻力矩,这个磁阻力矩通常占电动机总静摩擦力矩的95%以上,所以永磁直流力矩电动机的静摩擦力矩又称励磁静摩擦力矩。励磁静摩擦力矩对永磁直流力矩电动机的动态性能和静态性能影响很大。本文则是对这一问题的实验分析与研究。 1励磁静摩擦力矩与连续堵转转矩之比同电动机机座号的关系 选择21种永磁商流力矩电动机,机座号由45#~850#,励磁静摩擦力矩由5. 5mN·m~55.4N·m,连续堵转转矩由49 mN·m~3555 N·m。各种电机实测励磁静摩擦力矩与连续堵转转矩比同机座号的关系,如表1所示。 观察表中数据可以看出,永磁直流力矩电动机励磁静摩擦力矩与连续堵转转矩之比同机座号的关系是随机座号的增大则减小。一般小于45#机座的电机,二者之比为10%左右;60#~90#机座电机,二者之比为百分之5.5;100#~160#电机,二者之比为百分之4.5左右;200#~320#电机,二者之比为3%左右;370#~600#机座电机,二者之比为百分之2左右;850#机座电机,二者之比为百分之1.3左右。 永磁直流力矩电动机为何有这种关系?这和大机座号电机常数大,小机座号电机常数小确关。大机座号电机常熟大,损耗则小,所以励磁静摩擦力矩与连续堵转转矩之比减小;小机座号电机常数小,损耗则人,所以励磁静摩擦力矩与连续堵转转矩之比增大。永磁直流力矩电动机这种励磁静摩擦力矩与连续堵转转矩之

比随机座号增大而减小的规律,这为我们估算水磁直流力矩电动劝机的励磁静摩擦力矩提供了方便。实践中,一台力矩电动机,只要我们知道它的设计参数如机座号、连续堵转转矩值,便可由表l中的规律,确知它的励磁静摩擦力矩在连续堵转转矩中所应占的百分数,由此估算出它的励磁静摩擦力矩的近似值。下面我们选择一台电机进行实际估算:永磁直流力矩电动机J170LYX03,电压Dc27 v,实测R a=1 34Ω,n0=214 r/min,I0=0 33A;起动电流I00=O .26A,J k1=6 3A,T k1=7. 5N·m。估算程序为: (1)根据该电机机座号为170#,表1中i00#~160#二者之比为百分之4 .5,200#~300#二者之比为百分之3,由于170#介于二两者之间,确定170#电机励磁静摩擦力矩,连续堵转转矩之比为百分之4。 (2)该电机的连续堵转转矩设计值为≥6 5N·m,实测值为7.5N·m,由设计值估算出它的励磁静摩擦力矩M e=6.5×0.04=O. 26N·m;由实测值估算出它的励磁静摩擦力矩为M e=7.5×O. 04-0.3N·m。估算是否正确?可用国家军用标准G_lB971A一99《永磁直流力矩电动机通用规范》励磁静摩擦力矩测试方法求得,即励磁静摩擦力矩M e,等于起动电流I00。乘以电机转矩灵敏度m j,M j=T k1/I k1。 计算值与估算值近似相等,说明估算正确。当然,表1的规律是一种总体趋势,对于具体电机还是有一定变化。例如序号11、12、20、21各为两种同机座号电机,但它的各自的比值并不完全相等。不过差异一般不会很大。而序号12电机则出现反常,按规律它的比值应为百分之3左右,实际却为百分之4. 3,这应是该电机设计小合理造成;当磁路设计太饱和或极数少端接太长时,端损耗增大,电机常数降低,所以励磁静摩擦力矩连续堵转转矩比值增大反常。 2励磁静摩擦力矩是永磁直流力矩电机转转矩波动大小的观察指标 前面谈到,永磁直流力矩电机的励磁静摩擦力矩,实质上是电机永磁体励磁后,因电枢齿槽磁阻不同而产生的磁阻力矩。很显然,直槽电枢齿槽磁阻差异很大,齿部磁拉力远大于槽部磁拉力,由此产生很大的磁阻力矩,所以直槽电机励磁静摩擦力矩一般较大。然而同时,直槽电枢因齿槽磁阻变化很大,磁场波形畸变则会随磁阻变大而增大,所以电机转矩波动会变大。斜槽电枢因齿槽磁阻变化减小,电机的励磁静摩擦力矩则会减小。与此同时,电机的磁场波形的畸变很小,所以转矩波动很小。永磁直流力矩电机这种励磁静摩力矩与转矩波动同源关系,为我们观察水磁直流力矩电机转矩波动大小提供了方便。也就是说,因永磁直流力矩电机的励磁静摩擦力矩和转矩波动同由齿槽磁阻变化引起,我们则可用励磁静摩擦力矩作为永

小型直流电机输出扭矩的控制

小型直流电机输出扭矩的控制 摘要:本文介绍了小型直流电动机输出力矩的方法。 关键词:直流电动机力矩输出 一、概述 我们知道直流电动机电枢中的电流与其轴上的机械负载成正比,即负载加大,电动机电枢中的电流随之加大,当电枢中的电流增大到一定值时,若不加以限制,电枢就有被烧毁的危险。 下图是笔者设计的针对小型直流电动机(20W左右)的一种输出扭矩控制(过载保护)电路。电路有如下功能: 1、电机的最大输出扭矩可调。 2、当电机的最大输出扭矩超过设定值时,自动停机,并有红色发光二极管闪烁报警。 二、工作原理

AC220V电经过开关电源得到稳定的24V直流电压,给整个电路提供电源。 当按下启动按钮SB2时,继电器KM1吸合,按钮SB2自带的指示灯点亮指示装置开始工作。KM1一个常 开触点闭合,电机开始运转。同时U5得电,时基电路U4开始工作,继电器KA3延时(时间由EC3、R12决定,计算公式为T=1.1×EC3×R12)1秒吸合(以闭开电机启动时的大电流),比较器2、3脚的电压开始进行比较。设电机功率为20W,输出额定扭矩时的电流为0.8A。这样可调整电位器R6使比较器2脚的电位为0.8V,在电机小于额定力矩运转时,比较器3脚电位低于2脚电位,1脚输出为低电位,不影响电机继续运转。当电机因某种原因被卡住,其电枢电流大于0.8A时,在电阻R2上产生的分压即比较器3脚的电位大于0.8V时,比较器1脚输出高电位,三极管T饱和导通,继电器KA1、KA2吸合,电机停止运转。同时蜂鸣器得电发出鸣叫,时基电路U3开始工作,D3红色发光二极管闪烁报警。由于R3、R4的存在,这种状态将维持,直到按下复位按钮SB1时为止。 三、元件选择 开关电源可选所罗门(SOLOMON)S-100-24 其输出为24VDC 4.5A。LD1为绿色发光二极管用于电源指示。0~3A三位半数显电流表用于观察电机的工作状态。比较器U2为DIP8脚封装的LM393。时基电路U3、U4,也为DIP8脚封装。KA1、KA2、KA3可选5脚微型继电器SRU-S-124L,其中KA1、KA2线圈电压为24V,KA3线圈

电动自行车用200W永磁无刷直流电机选型及结构参数设计2011.10.31

电动自行车用永磁无刷直流电机选型及结构参数设计 1.油泥模型电机参数分析 油泥模型的电机设计为38齿牙盘,其转子内径为111mm,电机铁心长度为14mm。其参数见表1。 表1 方案1电机参数表 当给电机加上48V电压时,其输出特性如图1所示,此时电机最高效率的工作点较高,为650 r/min,而电动自行车额定工作转速仅为180 r/min。所以理论上应增加匝数或降低电压,直接增加匝数受到了槽满率的限制,降低线径再增加匝数又受到了定子电流密度的限制。所以实际工作时只能通过降低电压来。降低定子电流。当电压降低到18V使得定子电流为9.5A时,其输出功率仅为120W,效率为70%,不能满足要求。 图1 油泥模型电机输出特性 2.电机初始方案选择 电机槽数和极数有多种匹配参数可以选用,设计组利用计算机软件对槽数和极数分别为

36/24、36/40、42/46的电机进行了参数仿真,并对结果进行了分析。结论表明,极数为24的电机极数太少,导致磁钢较宽(17mm),加工困难。另外,由于24极数的电机额定工作速度太高,其低速时效率较低,因此不适合采用。 2.1推荐方案定子、转子参数的确定 推荐方案的定子槽、转子极数分别为36/40,定子绕组为0.69漆包线3股33匝,如表2所示。 表2推荐方案电机参数表 本方案最高效率转速440r/min,最高效率87%,电机输出特性如图3所示。图为铁心长20mm的输出特性。由图中可以看出,相比较铁芯25mm电机结构,最高效率时的转速370 r/min提升到到450 r/min,电机从30 r/min~460 r/min都可以输出200W以上的功率。 图3推荐方案电机输出特性 电机定子采用双层绕组,电机齿槽匹配和部分嵌线图如图4和图5所示。

直流力矩电机的工作原理

无刷直流力矩电机(Brushless Direct current moment motor ,BLDCMM)是近年来随着电子技术的迅速发展而发展起来的一种新型直流电动机。它是现代工业设备、现代科学技术和军事装备中的重要的机电元件之一。无刷直流电动机是在有刷电动机的基础上发展起来的。1813年法拉第发现了电磁感应现象,奠定了现代电机的基本理论。十九世纪四十年代研制成功了第一台直流电动机。经过七十多年的发展,直流电动机才趋于成熟阶段。但是,随着用途的扩大,对直流电动机的要求也越来越高。显然,有接触装置的机械换向装置限制了直流电动机在很多场合的应用,为了取代有刷直流电动机的那个电刷——换向器结构的机械接触装置,人们对此做了长期的探索。早在1915年,美国人兰格米尔发明了带控制栅极的水银整流器,制成了由直流变交流的逆变装置。上个世纪三十年代,有人提出了用离子装置实现电机的定子绕组按转子位置换接的所谓整流子电机。此种电机由于可*性差,效率低,整个装置笨重而又复杂,所以没有太大的意义。 科学技术的迅速发展带来了半导体技术的飞跃,开关型晶体管的研制成功,为创造新型直流电动机带来了生机。1955年,美国人D.哈里森等人首次申请用晶体管换向线路代替电动机电刷接触的专利。这就是无刷直流电动机的雏形。其后,经过反复的实验和不断的实践,人们终于找到了用位置传感器和电子换向线路来代替有刷直流电动机的机械接触装置,从而为直流电动机的发展开辟了新的途径。上个世纪六十年代初期,以接近某物而动作的接近开关式位置传感器,电磁谐振位置传感器和高频耦合式位置传感器相继问世。之后,又出现了磁电耦合式和光电式位置传感器。 半导体技术的飞速发展使用使人们对1879年美国人霍尔发现的霍尔效应再次发生兴趣,经过多年的努力,终于在1962年试制成功了借助霍尔元件来实现换流的无刷直流电动机,随着比霍尔元件灵敏度更高的磁敏二极管的出现,在上世纪七十年代初期,又研制成功了借助磁敏二极管实现换流的无刷直流电动机。 由于无刷直流力矩电机是利用电子换相技术代替传统直流时机的电刷换向的一种新型直流电动机,所以无刷直流电动机的最大特点就是没有换向器和电刷组成的机械接触结构。加之,客观存在通常采用永磁体为转子,没有励磁损耗;发热的电枢绕组通常装在外面的定子上,这样热阻较小,散热容易。因此,无刷电动机没有换向火花,没有无线电干扰,寿命长,运行可*,维修方便。此外,它还具备直流电动机的运行效率高、调速性能好等诸多优点,随着高性能的电力电子器件和高性能磁性材料的问世,大大提高了直流无刷时机的性能,故直流无刷时机在当今国民经济各个领域,如医疗器械、仪器仪表、化工、轻纺以及家用电器等方面的应用日益普及。 1.2 课题的设计目的和要求 本课题要求设计一个控制电路,用来控制一台无刷直流力矩电机的正常运行,启停和正反转。本课题要求用单片机作为控制器,以根据无刷直流力矩电机转动时读入到单片机内部的霍尔信号状态输出相应控制字,来控制电子开关主回路的电流换相以驱动无刷直流力矩电机运行。在这个课题设计中,所做的主要工作为:根据控制对象和控制目的选择元器件,绘制控制电路原理图,制作和焊制控制电路的PCB图,根据控制要求编写控制程序最后实现与电动机联调等工作。 1.3 总体设计思路 根据电路设计目的和要求同时经过查阅相关的资料,总的设计思路如下: 首先,确定控制电路的总体构成。控制电路主要有三大部分组成。一、无刷直流力矩电机的开关主回路设计。这一部分主要是根据电动机的参数,选择能满足一定功率要求的功率管,使其能根据控制电路的输出信号正确地导通、断开。该部分已有现成电路。二、信号变换电路设计,这一部分主要包括将从电动机出来的六路霍尔传感器的信号变换成与单片机兼容的三路位置信号和将从单片机出来的六路开关控制信号变换成与并关电路匹配的信号。三,控

力矩电机控制器工作原理

一、力矩电机控制器工作原理: 力矩电机控制器Y LJ-K-3-F系列是在原YKT-3,LTS系列力矩电机控制器的基础上 改制的一种新型的电子调压(开、闭环)控制装置,主要特点是在线速度变化后,张力仍能保持在所允许的范围内,适用于卷绕产品时的张力基本保持不变,电机性能与卷绕性能协调匹配,因此能代替传统复杂的设备系统,可大大节省投资。是机电一体化力矩电机的理想配套装置。控制器采用可控硅对电机无级调速、电压调节平稳,起动性能好、体积小、重量轻、效率高、解决传统设备维护困难的缺点,延长使用寿命。本控制器有开环、闭环控制两种模式。开环控制有系统简单、调整方便等优点,闭环控制是指系统中由检测传感器,如张力传感器、速度传感器、电流传感器、位移传感器、温度传感器、流量传感器等,将所需控制的物理量转换成电压讯号反馈到控制器中,控制器通过调压方式对这些物理量实现闭环控制。控制器采用GB3797-89及Q/JBHZ2-99标准。 主要技术数据 1、额定电压:三相380V±10%;频率:50Hz或60Hz。 2、输出电压范围:电压从70V到365V。 3、输出最大电流:6、8A、12、22、32、50、80A。 4、输出电压三相偏差:±3%。 5、转矩调节比:10﹕1。 使用条件 1、环境温度:-5℃~+40℃,温度变化率应不大于5℃/h。 2、相对湿度:在40℃时,不超过50%;在20℃以下时,不超过90%,相对湿度的变化率不超过5%/h,且无凝露现象。 3、安装使用地点的海拔高度不超过1000m。 4、控制器在使用环境中,不得有过量的尘埃和足以使电气元器件金属腐蚀的气体。 5、控制器工作时,外部振动频率≦150Hz,振动加速度不得超过5m/s2。 6、交流输入电源 a、电压持续波动范围±10%;短暂波动不超过-10%~+15%; b、频率波动不超过±2%,频率的变化速度不超过±1%/S ; c、三相电源的不平衡度不大于2%; d、波形畸变不超过5%。 工作原理与电路特性: 控制器主要电路采用三相全波Y联接,可任意选择所需要的负载形式,即为三角形或星形(星形负载中线不必联接);与其他类型电路相比这样的电路优点是输出谐波分量低,使电机内部损耗小于任何一种其他类型的电路,则电路效率高,并对邻近通讯电路干扰小,是控制器各种形式主电路中最为理想的一种。 控制器采用进口的双向晶闸管,改变流过电机交流电流的导通角,从而使电机的工作电压从70V~365V连续可调,以适应不同的工作情况;控制电路中采用宽脉冲及光电耦合管来触发主晶闸管,采用自动跟踪控制方法,用三相网路相位同步控制,保证三相输出自动平衡,并通过输出反馈控制,能有效地防止电机在运行过程调压失控;其次对电机起动、关机均采取了控制措施。因此产品性能优良,具有抗干扰能力强,起动性能好,平稳,无电流冲击,运行稳定,可靠等优点。

一种直流力矩电机伺服驱动器的设计与研究

一种直流力矩电机伺服驱动器的设计与研究 基于一种车载光电跟踪伺服系统的工程应用,文章介绍了基于直流力矩电机伺服驱动器的组成与设计实现,针对直流伺服电机驱动器小型化、模块化的需求,重点阐述了驱动器的工作原理与设计,系统论述了电流和速度环路的设计与调节,试验结果表明:该系统转速电流可调且具有过流保护功能,有着较强的快速响应性和抗扰性,有一定的工程应用价值。 标签:伺服系统;直流力矩电机;电机驱动器;转速调节;电流调节 Abstract:Based on the engineering application of a vehicle photoelectric tracking servo system,this paper introduces the composition and design of servo driver based on DC (direct current)torque motor,aiming at the demand of miniaturization and modularization of DC servo motor driver. The working principle and design of the driver are described in detail. The design and regulation of the current and speed loop are discussed systematically. The experimental results show that the speed and current of the system can be adjusted and have the function of over-current protection. It has strong fast response and immunity,and has certain engineering application value. Keywords:servo system;DC (direct current)torque motor;motor driver;speed regulation;current regulation 引言 伺服系统广泛应用于工业和军事领域,一般多以电动机作为执行机构。伺服电机包括直流电机和交流电机。交流电机伺服输出功率大,但结构较为复杂、成本较高,适用于输出力矩大、负载惯性大的运动场合。相比而言直流电机伺服输出功率相对较小且具有良好的调速性能,特别适用于负载转动惯量小且对转速范围要求较高的运动场合[1]。本文基于一种光电跟踪设备的伺服系统,设计了一种直流力矩电机伺服驱动器。 1 伺服驱动器工作原理及组成 电动机作为伺服系统的执行机构,其输出力矩和转速应满足工程应用的要求。通过电机原理可以得出,想要有效的调节转速和获得高性能的动态响应,最有效的办法是做好电枢电流控制即构造电流闭环。但单闭环调速系统达不到伺服系统要求的精确转速和跟随特性。因此伺服电机调速系统采用电流和速度双闭环控制系统来满足系统对速度的要求。为满足不同的控制目标,系统中设置了转速和电流两个调节器,二者串联连接。 该伺服驱动器由电源及保护电路、速度调节器、电流调节器、功率驱动器组成,系统组成框图如图1所示。速度给定信号与测速发电机输出的速度反馈信号

永磁无刷力矩电动机峰值转矩能力的研究

本文1996年4月22日收到 设计分析 永磁无刷力矩电动机峰值转矩能力的研究 孙立志 王 强 陆永平 (哈尔滨工业大学 哈尔滨150001) Study on Peak Torque Capability of Permanent Magnet Brushless Torque Motor Sun Lizhi Wang Qiang Lu Yongping (Harbin Institute o f Technolog y,Ha rbin 150001) 【 摘 要】 在考虑了永磁无刷力矩电动机峰值极限转矩主要制约因素的基础上,分别讨论了正弦波及方波驱动方式下的力矩电动机峰值极限电流及转矩,并针对正弦波驱动方式下的该类电机分析了影响峰值转矩能力的主要因素,文中还进行了数值计算并加以实验验证。 【关键词】 永磁无刷力矩电动机 峰值转矩能力【Abstract 】 This paper considers th e majo r con-straints to thc peak to rque capa bility o f permanent mag ne t brushless to rque mo to r (PM BL T M ),discusses pea k cur-re nt limit and pea k to rque limit o f sine wav e PM BL TM and squa re wav e o ne respec tiv ely ,and ana ly zes the influ- ence o f som e factor s on the peak to rque capa bility of PM -BL T M.N umc rical calculation a nd ex periments a re made accor ding to a sa mple mo tor. 【Keywords 】 pe rmanent mag net br ushless to rque mo tor pea k tor que ca pability 1前 言 在一些控制系统中,常常需要所使用的力矩电动机产生瞬时峰值转矩,从而以较大的加速度来驱动负载,由于使用NdFeB 表面磁钢的无刷力矩电动机具有高转矩惯量比、高过载能力[1],所以非常适合此种运行状态。 一般来讲,当不考虑驱动器容量限制,仅就电动机本体而言时,限制永磁电机电流增长的主要因素为绕组和磁钢的温升极限,以及由于电枢反应磁场过强引起的磁钢不可逆去磁效应。只有在电机的负载因数较大时,温升约束才成为最终极限电枢电流的制约因素,而且对内转子永磁电机而言主要是绕组温升的限制,对外转子永磁电机磁钢温升也要考虑。由温升极限确定的极限电流接近于稳定温升达到温升极限时的连续堵转电流,电磁转矩极限也 为相应的连续堵转转矩,而永磁无刷力矩电动机在提供瞬时峰值转矩时,过载时间极短,电机中的温升不会过高,而由电枢磁场过强所造成的磁钢不可 逆去磁效应则成为限制峰值转矩进一步增大的主要因素。 本文在首先考虑磁钢去磁约束的基础上,推导了线性及饱和情况下永磁无刷力矩电动机瞬时极限电流及转矩表达式,并讨论了气隙高度、磁钢厚度等因素对峰值极限转矩的影响,并且利用有限允方法进行了数值计算并对其加以实验验证。 2电枢反应磁场极限场强 NdFeB 磁钢去磁曲线如图1 所示。当反向去磁磁势增大到一定程度,使得磁钢中磁密反向超过B D 时,永久磁钢就会产生不可逆失磁现象 。 图1 Nd FeB 磁钢去磁曲线 考虑表面磁钢结构,磁钢跨距如2T 电角度的 情况,如图2所示。 图2 永磁电机截面示意图 对于正弦波驱动的永磁无刷力矩电动机,由于采用了磁场定向控制技术,电机中只存在交轴电枢反应,因而磁钢前半极下的磁场将有所增强,而在后半极下,电枢反应磁场恰与永磁磁场方向相反, 20 微特电机 1997年第1期

永磁电机的电参数特性(精)

关于稀土永磁电机 一般所说的稀土永磁电机都是指第三代稀土永磁电机,出于这种永磁材料优异的使用功效,价格对比同等材料较廉价,因而比第一代或第二代稀土永磁材料更有市场需求前景。例如钦铁硼永磁电机,作为新生代的永磁电机具有很大的展开潜力, 在电机界的权威专家看来, 钱铁硼的展开方向一方面是逐步代替其他永磁材料的永磁电机,另一方面是代替一部分电励磁电机。近年来由于电机界研讨者的作业,现已取得了很大的效果。 稀土永磁无刷电动机跟着电力电子技术的迅猛展开和元器件价格下降,人们现已和正在研制各种不同变频供电电源的永磁同步电动机, 加上转子方位闭环控制体系而构成自同步的永磁电动机,这种电动机一般称为无刷直流电动机。这种电动机既具备电励磁直流电动机的优异调速特性,又实现了无刷结构,这在处于要求高控制精度和高可靠性场合使用中,如航空航天、数控机床、加工中心、机器人、计算机外部设备、家用电器等方面取得广泛的运用。这其间反电动势波形和供电波形都是矩形波的电动机称为无刷直流电动机;反电动势波形及供电波形都是正弦波的电动机称同步电动机,在这里我们统称为永磁无刷直流电动机。在日常家用电器中,如空调、电冰箱、洗衣机、吸尘器、电扇等既是耗电大件,又是噪声来历。如果用无刷电动机逐步代替有刷电动机, 不光为人们节约能源, 而且又使生活条件得到改进。由于稀土永磁材料具备高富余磁感应强度、高矫顽力和高磁能积的特色,它可以研制成具有较大气隙长度和较高气隙磁感应强度的电机, 根据市场份额的需要,可以制成无齿槽的盘式电动机、无槽电机、无铁心电机等无刷直流电机,这些电机因所具备的无齿槽结构的原因, 既可以减少电机的重量和转动惯量,前进电机呼应即时灵敏度,能有效减少电机中电磁谐波成分, 减少电机脉动转矩, 增加工作的平稳性, 一起简化制造工艺,因而在高准确控制场合使用流程,如计算机外部设备、办公设备等中得到了广泛的运用。汇总而言,因高功用的稀土永磁材料的呈现给予永磁电机功用更优化、结构更简化及大型化供给了必要条件设施,使电机向更高层次展开。

相关文档
最新文档