矩阵的秩及应用
2.7 矩阵的秩

注:若n阶方阵A可逆的充要条件为A为满秩.
1 2 3 0 0 1 0 1 r ( A) 3; A 0 0 1 0
1 2 0 1 r ( B ) 2; B 0 0
1 1 2 C 0 1 1 r (C ) 3 0 0 2
§2.7 矩阵的秩
一、矩阵的秩的概念 定义 在 m n 矩阵 A中,任取 k 行 k 列 k min{ m , n} , 位于这些行与列交叉处的 k 2 个元素,依照它们在 A 中的位置次序不变而得的 k 阶行列式,称为矩阵 A 的一个 k 阶子式.
k k m n 矩阵共有 CmCn 个 k 阶子式.
设A为一个mn矩阵, 当A=O时, 它的任何子式都 为零; 当AO时, 它至少有一个元素不为零, 即它 至少有一个一阶子式不为零. 这时再考察二阶子式 如果A中有二阶子式不为零, 则往下考察三阶子式, 依此类推, 最后必达到A中有r阶子式不为零, 而再 没有比r更高阶的不为零的子式. 这个不为零的子式 的最高阶数r, 反映了矩阵A内在的重要特性, 在矩阵 的理论与应用中都有重要意义.
A,B,C都是满秩矩阵
定理 矩阵经初等变换后, 其秩不变.
证: 仅考察经一次初等变换的情形. 设矩阵 Amn 经初等变换变为 Bmn , 且 r ( A) r , r ( A) r2 1
当对A施以互换两行或以某行非零数乘某一行的变换时, 矩阵B中任何r 1 阶子式等于某一非零数c与A的某个r 1 1 1 阶子式的乘积, 其中c=1或其它非零数. 因为A的任何 r1 1 阶子式皆为零, 因此B的任何 r1 1阶子式也都为零.
3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵 可逆的充分必要条件,理解伴随矩阵的概念,会用 伴随矩阵求逆矩阵.
有关矩阵的秩及其应用

r (AB)≤min {r (A), r (B)}
定理 3 设 A 是 m×n 矩阵,P 是 m 阶可逆矩阵,Q 是 n 阶可逆矩阵,则
r (A) = r (PA) = r (AQ) = r (PAQ) 推论 设 A 是是 m×n 矩阵,则 r (A) = r,当且仅当存在 m 阶可逆矩阵 P 和 n 阶可逆矩阵 Q,
r
A− O
C
AB B
− −
CD D
=
r(
A
−
C
)
+
r(B
−
D)
。
定理 6 (Frobenius 不等式)
设 A 是 m×n 矩阵,B 是 n×s 矩阵,C 是 s×t 矩阵。则
r (ABC)≥r (AB) + r (BC) – r (B)
证明:由分块矩阵的乘法得
AB B
ABC O
证明:由定理 1 得
r( A1 + A2 + " + Ak ) ≤ k
r( A1 + A2 + " + Ak ) ≤ r( A1 ) + r( A2 + A3 + " + Ak ) ≤ r( A1 ) + r( A2 ) + r( A3 + A4 + " + Ak ) "" ≤ r( A1 ) + r( A2 ) + " + r( Ak ) =k 定理 2 矩阵的乘积的秩不超过各因子的秩。即:设 A 是 m×n 矩阵,B 是 n×s 矩阵,则
a1
A2
=
a2
【方案】矩阵的秩及其应用.doc

山西师范大学本科毕业论文(设计) 矩阵的秩及其应用姓名杨敏娜院系数学与计算机科学学院专业数学与应用数学班级11510102学号1151010240指导教师王栋答辩日期成绩矩阵的秩及其应用内容摘要矩阵在高等代数的研究中占有极其重要的地位,矩阵的秩更是研究矩阵的一个重要纽带。
通过对矩阵的秩的分析,对判断向量组的线性相关性,求其次线性方程组的基础解系,求解非其次线性方程组等等都有一定的意义和作用。
论文第一部分介绍矩阵的概念,一般性质及秩的求法,这对之后介绍秩的应用有重要的铺垫作用。
第二部分再利用这些性质及定理解决向量组和线性方程组的有关问题。
第三部分研究矩阵的秩在解析几何应用中,着重用于判断空间两直线的位置关系。
在与特征值间的关系主要是计算一些复杂矩阵的值。
最后将矩阵的秩推广到特征值和其他与向量组有关的向量空间的应用。
本文主要对矩阵的秩相关定义定理进行总结和证明,并将其运用到一些具体事例中。
【关键词】矩阵的秩向量组线性方程组特征值解析几何The Rank of Matrix and the Application of the Rank ofMatrixAbstractThe matrix plays a very important role in the research on advanced algebra. The rank of matrix is an important link of matrix. The analysis of the rank of matrix determines the linear relation of vector group. And there are certain significance and role to solve some linear equations and non linear equations.First, the article introduces the concept of matrix, general nature and method for the rank of matrix, it plays an important role for the application of the rank. Second, use the properties and theorems of vector group to solve the problem of linear equations. Third, analysis the rank of matrix in geometry application, it focuses on the judgment of space position relationship of two lines. In the characteristics of value, it mainly calculates some complex matrix. Finally, the application of the rank of matrix is extended to Eigen value and other related vectors in vector space.This paper mainly summarizes the matrix rank and its related theorem, and applies it to some specific examples.【Key Words】rank of matrix vector group linear equations characteristic value Analytic geometry目录一、引言 (01)二、矩阵的秩 (01)(一)矩阵的秩的定义 (01)(二)矩阵的秩的一般性质及求法 (01)(三)求抽象矩阵的秩 (02)三、矩阵的秩的应用 (03)(一)矩阵的秩在判定向量组的线性相关性方面的应用 (03)(二)矩阵的秩在线性方程组方面的应用 (04)(三)矩阵的秩在解析几何方面的应用 (07)(四)矩阵的秩在特征值方面的应用 (07)(五)矩阵的秩在其他方面的应用 (08)四、小结 (09)参考文献 (10)致谢 (11)矩阵的秩及其应用学生姓名:杨敏娜 指导老师:王栋一、引言矩阵概念在代数的学习中是一个关键的分支,是研究线性代数的基石,矩阵的秩作为矩阵的核心内容,更是研究它的一个纽带。
线性代数课件第三章矩阵的秩课件

VS
矩阵的秩可以用于判断两个矩阵是否相似。如果两个矩阵相似,则它们的秩相同。
特征值和特征向量
矩阵的秩还可以用于确定矩阵的特征值和特征向量的个数。对于给定的矩阵,其秩等于其非零特征值的个数。
矩阵相似
矩阵的秩可以用于矩阵分解,如奇异值分解(SVD)和QR分解等。这些分解方法将一个复杂的矩阵分解为几个简单的、易于处理的矩阵,有助于简化计算和解决问题。
1 2 3 | 0 0 -3
7 8 9 | 0 0 0`
```
由于非零行的行数为2,所以矩阵B的秩为2。
题目3
求矩阵C=[1 -2 3; -4 5 -6; 7 -8 9]的秩。
解答
首先,将矩阵C进行初等行变换,得到行阶梯矩阵
```
继续进行初等行变换,得到
1 -2 3 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0 -6 -9 | 0
矩阵秩的应用
03
线性方程组的解
矩阵的秩可以用来判断线性方程组是否有解,以及解的个数。如果系数矩阵的秩等于增广矩阵的秩,则方程组有唯一解;否则,方程组无解或有无数多个解。
最小二乘法
矩阵的秩还可以用于最小二乘法,通过最小化误差平方和来求解线性方程组。最小二乘法的解就是使残差矩阵的秩等于其行数或列数的最小二乘解。
满秩矩阵及满秩矩阵的应用

满秩矩阵及满秩矩阵的应用专业:通信与信息系统姓名:李娜学号:6120140151目录一、满秩矩阵及满秩矩阵在矩阵分解方面的应用 (2)1.1矩阵的秩 (2)1.2满秩矩阵 (2)1.3满秩矩阵的性质 (3)1.3.1行(列)矩阵的一些性质 (4)1.4 行(列) 满秩矩阵在矩阵分解方面的应用 (6)二、满秩矩阵在保密通信中的应用 (8)2.1 基于满秩矩阵的保密通信模型 (8)2.1.1加密保密通信模型 (8)2.2.2满秩矩阵的应用 (8)2.2密钥的生成 (10)2.2.1加密密钥的生成 (10)2.2.2解密密钥的生成 (10)2.3其它问题 (10)2.3.1明文矩阵的选择 (10)2.3.2加密矩阵的选择 (11)2.3.3算法优化 (11)一、满秩矩阵及满秩矩阵在矩阵分解方面的应用引言矩阵是数学中的一个重要的基本概念,是现代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。
“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数学的矩形阵列区别于行列式而发明了这个述语,而实际上,矩阵这个课题在诞生之前就已经发展的很好了。
1.1矩阵的秩设A是一组向量,定义A的最大无关组中向量的个数为A的秩。
定义1 在m n矩阵A中,任意决定k行和k列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。
例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式就是矩阵A的一个2阶子式。
定义2 A=(a ij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作r(A),或rank(A)或R(A)。
特别规定零矩阵的秩为零。
显R(A)≤min(m,n)易得:若A中至少有一个r阶子式不等于零,且在R(A)<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。
由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵,不满秩矩阵就是奇异矩阵,det(A)=0。
矩阵的秩的应用

矩阵的秩的应用
矩阵的秩是矩阵理论中一个非常重要的概念。
秩是指一个矩阵中的列向量或行向量线性无关的最大数量。
秩越高,矩阵越“大”,在许多领域中都有着广泛的应用。
在线性代数中,秩是一个关键的概念。
它用于判断矩阵的可逆性以及线性方程组的解的存在性和唯一性。
许多线性代数中的问题可以通过求解矩阵的秩来解决,比如线性变换的维数判断、向量空间的维数判断、矩阵的特征值与特征向量的求解等等。
在工程学中,矩阵的秩也有着重要的应用。
比如在控制系统中使用的观测器,其设计基于矩阵理论中的秩原理。
此外,秩还可以用于电路分析、机械结构分析等领域。
在图像处理中,矩阵的秩可以用于图像压缩和图像去噪。
在计算机科学中,矩阵的秩也被广泛应用。
在图像处理、数据压缩和计算机图形学等领域,矩阵的秩可以用于对图像的模式识别和降维分析,同时也可以用于对大数据处理中的矩阵压缩。
在统计学中,矩阵的秩也有着重要的意义。
矩阵中的秩可以用于解决高维数据的困难问题,比如在数据挖掘、分类、回归和聚类等领域。
此外,矩阵的秩还可以用于矩阵分解和线性规划等领域。
在量子力学研究中,矩阵的秩也有着应用。
量子力学的矩阵表示方式是一个非常重要的数学工具。
矩阵的秩可以用于求解量子费米子的对称性,进而对物质的内部结构和化学反应等方面进行研究。
总之,矩阵的秩是一个非常重要的数学概念,在许多领域中都有着广泛的应用。
无论是在线性代数、工程学、计算机科学、统计学还是量子力学研究中,矩阵的秩都发挥着至关重要的作用。
矩阵秩的不等式及其应用

矩阵秩的不等式及其应用矩阵秩的不等式及其应用矩阵是数学中的重要概念,广泛应用于物理、经济等领域。
矩阵秩是矩阵理论中很重要的一个概念。
矩阵秩不仅仅是一个数值,还具有深刻的物理意义。
下面我们将探讨矩阵秩的不等式及其应用。
一、矩阵秩的定义矩阵是一个M行N列的矩形数组,其中包含M×N个实数元素。
矩阵秩是由它的行和列所组成的线性空间的维数。
一个矩阵的秩指矩阵的行、列向量组的维数中的最小值。
二、矩阵秩的不等式对于任何一个矩阵A,其行秩等于其列秩。
即rank(A)=rank(AT)。
我们可以利用这个性质得到以下的矩阵秩不等式:对于任何两个矩阵A和B,有rank(A+B) ≤ rank(A) + rank(B)rank(A-B) ≤ rank(A) + rank(B)rank(AB) ≤ min(rank(A), rank(B))rank(AB) ≤ rank(A)这些不等式给我们提供了方便快捷的工具来计算矩阵秩。
三、矩阵秩的应用矩阵秩在各个领域都有广泛的应用。
在工程中,它可以用于建立模型和解法,广泛应用于控制工程、数字信号处理、材料科学等。
例如,在控制工程中,我们可以利用矩阵秩的不等式来确定控制系统的稳定性。
一个控制系统是稳定的,当且仅当系统矩阵的秩等于系统状态的维数。
如果系统的任何一个状态可以被表示为系统矩阵中的一个线性组合,那么系统就是不稳定的。
此外,在统计学中,我们也可以利用矩阵秩来确定数据的维度。
数据的维数等于其协方差矩阵的秩。
一个协方差矩阵有多少个非零特征值就代表数据有多少维。
总之,矩阵秩是一个非常重要的概念,可以帮助我们解决很多实际问题。
矩阵秩的不等式为我们提供了更便捷的计算方式。
我们应该在学习中深入理解矩阵秩,并灵活运用其相关知识。
矩阵秩的求解方法及应用探索

矩阵秩的求解方法及应用探索
矩阵秩是描述矩阵中线性无关行(列)的数量,它是矩阵变换空间的
维数。
矩阵秩的求解方法:
1. 初等变换法:将矩阵按照行(列)块排列,用初等变换(换行,
换列,倍乘列,加减乘列)把矩阵变为 diagonal matrix ,然后统计主
对角线中非零元素的个数。
2. 分解法:将一个矩阵A分解为前向和后向的乘积,分别用Q和R
表示,即A=QR,其中Q为m×n的正交矩阵,R为上三角矩阵,则 r=min (m,n),因此A的秩也就是R的秩,即r.。
矩阵秩的应用:
1.线性方程组的解法:矩阵秩可以用来判断一个线性方程组是否有解,如果群中方程数大于未知数,而该矩阵的秩小于未知数数目,则该线性方
程组无解。
2.图像重建:矩阵秩可以用来重建图像,可以通过将图像表示成一个
矩阵的形式,然后求出矩阵的秩,并运用一定的程序将矩阵重建为原图像。
3.数据挖掘:矩阵秩可以用来分析一组数据中最具代表性的变量,可
以将一组变量分解成一个矩阵,然后求出矩阵的秩,进而挖掘出最具代表
性的几个变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c,C为 s×m矩阵,则 r(A)+r(B)一n<r ain(r(A),r(B)),
6)矩阵 A的所有特征值均不为零 。
特另0的若 I A I≠0,贝0 r(c)=r(B);若 AB=0,贝0
有 了这些等价条件,在解决一些具体 问题的时
r(A)+r(B)≤n。
候是十分)一r(B)。 2.2 一般 矩 阵的 情形
定理 2(线性方程组有解 判别定理 ):线性方
7)若 AX=O与 BX=O同解 ,则 r(A)=r(B)。
程组 AX=B有解的充分必要条件是它的系数矩 阵 A
8)r(A)=r(AA )=r(ATA)-r(A ),其 中 A为 n×n 与增广矩阵 有相同的秩 。
矩阵,A 为 A的转置。 9)r(A“)=r(A ),m≥n,A是 n阶方阵。 10)r(AB)≤min(r(A),r(B)),r(AB)≥r(A)+
r(B)一n,这里 A、B分别是 m×n和 n×s矩阵
11)r(ABC)≥r(AB)+r(BC)一r(B)。
l2)若 G为列满秩矩阵 (r(G)等于 G的列数 ), H为行满秩矩阵,则 r(GH)=r(AH)=r(A)。 2 矩 阵 的秩 与行 列式
定义 1:齐次线性方程组 AX=O( ) 的一组解 T1 ,T1 ..T1 称为 ( )的一个基础解系,如果
3)设 A为 m×n矩阵,r(A)=r,则 A的任意 S
定理 2:矩阵 A的秩是 r的充分必要条件是矩
行组成 的矩 阵 B,有 r(B)≥r+s-n。
阵 A中有一个 r级子式不为零, 同时所有的 r+l
4)设 M=l L A O l,则 r(M)=r(A)+r(B); O B_J
第 26卷 第 2期 2011年 6月
邢 台学 院学 报
J0U RNA L 0F X IN GTAI U N IV ER SITY
Vo1.26.N O.2 Jun.2Ol1
矩 阵的秩 及 应 用
国 慧
(河北师 范大 学数 信学院,河北石家庄 500016) 摘 要 :利用矩阵的秩 的相 关定理及重要结论,阐述矩 阵的秩在数学知 识的学习研究 中所起 的作 用,总结 了一些矩阵的 秩 的重要 性质 ,将代数 内容的学 习融入具体 问题的证 明中,将知识 紧密的联 系在一起 ,为以后相 关知识的学习奠定基础 。 关键词 :矩 阵的秩 ;基础 解 系;增广矩 阵; 维数 中图分 类号 :015l 文献标识码 :A 文章编号 : 1672.4658f2O11)02.0161.03
由此可以看 出,秩 ( , , 3)=3,dimW =秩 ( ,
162
邢 台学院学报
2011年第 2期
示系数矩阵的秩,n-r就是 自由未知量的个数。
例题 2:已知 cc】= (1,2,1,一1),仅2=
3.2 矩阵的秩在解方程组中的应用
(2,3,1,O), O【 = (1,2,2,一3)
利用矩阵的秩判断方程个数等于未知量个数的 求 W =L( , , O【 )的基和维数。
级子 式全 为零 。 以上给 出了 n×n矩 阵的秩与行列式的关系,
N=l L A C l,贝4 r(N)≥r(A)+r(B)。 O B-J
一 般矩阵的秩与行列式的关系。 3 矩 阵 的秩在 解方 程组 中的应 用
5)设矩阵 A和 B分别是 S×n,s×m矩阵,则 3.1 相 关理论知 识
1 矩 阵的秩 的 基础理 论
2.1 n×n矩 阵的 情形
1.1 矩 阵秩 的相 关定 义
定理 1:12×n矩阵 A的行列式为零 的充分必要
定义 1:向量组 的极大无关组所含 向量 的个数 条件 A的秩小于 n。
称为这个 向量组的秩。
通过定理 1的陈述可 以得到否命题 ,即 n×n
线性方程组解的情况十分简单易行的,方法是首先
解 r 1 2 1] 厂1 2 1]
判断线性方程组的系数矩阵 A的行列式 I A I是否 为零,如果 l A l ≠ 0,则利用克拉默法则进行求
:l 2 。 3三 三2 J Jl 0—。 01 0 Jl
解;如果 I A I=0,利用定理 1的结论 ,即看 r(A)
定 义 2:矩 阵列 向量组 的秩称为矩阵的列秩 , 矩阵 A的秩等于 n的充分必要条件是 A的行列式
矩 阵行 向量组的秩称为矩阵的行秩。
不为零。从而有 以下一些等价条件:
矩 阵的秩的两个等价定义:
1)n×n矩 阵 A的行列式的秩等于 n。
1)矩阵行秩等于矩阵列秩,统称为矩阵的秩。
2)A的行 列 式不为 零 。
1)( )的任意一个解都能够表示成 T1 ,T1:,… T1 的线性 组合 的形 式 。
2)T1 1,T1 2,… T1 线性 无关 。 定理 3:在齐次线性方程组有非零解的情况下,
它有基础解系,并且基础解系所含解的个数等于 n— r,这里 n是齐次线性方程组中未知量的个数,r表
[收稿 日期]201卜0卜03 [作 者简 介]国 慧 (1987一),女 ,河 北 邢 台市人 ,研 究 生,主 要从 事基 础数 学 的研究 .E-mail:xtycgiq@163.corn
2)矩 阵中最大阶非零子式的阶数称为矩阵的秩。
3)矩阵 A是可逆矩阵。
矩 阵的秩记为秩 (A)或 rank(A)。
4)齐次线性方程组 AX=0只有零解。
1.2 矩 阵秩 的相 关性质
5)矩 阵 A能表示成 一些初等矩阵的乘积 的形
1)设矩阵A和 B分别是 S×n和 n×Il矩阵,AB= 式,即 A=OlQz…Q 。
max(r(A),r(B))≤r(A:B)≤r(A)+r(B)。
定理 1:齐次线性方程组 AX=O有非零解的充
6)r(A )=n,当 r(A)=n时 ;r(A。)=1,r(A)=n-1 分必要条件是它的系数矩阵 A的秩小于 n。
时;r(A )-0,r(A)<n-1时。其中A’是 A的伴随矩阵。