2017年广东省中考数学模拟试卷(一)及答案

合集下载

广东省广州市白云区2017届中考第一次模拟考试数学试题附答案

广东省广州市白云区2017届中考第一次模拟考试数学试题附答案

2017年白云区初中毕业班综合测试数 学 试 题本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间为120分钟. 注意事项:1.答卷前,考生务必在答题卡第1页上用黑色字迹的钢笔或签字笔填写自己的学校、班级、姓名、试室号、座位号、准考证号,再用2B 铅笔把准考证号对应的号码标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.-12的相反数是(*) (A)12(B)2 (C)-0.5 (D)-2 2.下列各种图形中,可以比较大小的是(*)(A)两条射线 (B)两条直线 (C)直线与射线 (D)两条线段 3.下列代数式中,是4次单项式的为(*)(A)4abc (B)-22x y π (C)2xyz (D)444x y z ++4.已知一组数据:5,7,4,8,6,7,2,则它的众数及中位数分别为(*) (A)7,8 (B)7,6 (C)6,7 (D)7,45.用直接开平方法解下列一元二次方程,其中无解的方程为(*)(A)2x -1=0 (B)2x =0 (C)2x +4=0 (D)-2x +3=06.平面内三条直线a 、b 、c ,若a ⊥b ,b ⊥c ,则直线a 、c 的位置关系是(*) (A)垂直 (B)平行 (C)相交 (D)以上都不对7.某同学参加数学、物理、化学三科竞赛平均成绩是93分,其中数学97分,化学89分,那么物理成绩是(*)(A)91分 (B)92分 (C)93分 (D)94分8.如图1,直线AB⊥CD,垂足为点O,直线EF经过点O,若∠1=26°,则∠2的度数是(*)(A)26° (B)64°(C)54° (D)以上答案都不对 9.在反比例函数y =13mx-的图象上有两点A(1x ,1y ),B(2x ,2y ),当1x <0<2x A B C DE FO 12 图1时,有1y <2y ,则m 的取值范围是(*) (A)m >0 (B)m <0 (C)m >13 (D)m <1310.如图2,两条宽度都是1的纸条,交叉重叠放在一起,且夹角为α,则重叠部分的面积为(*) (A)1sin α (B)1cos α(C)tan α (D)1第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11.如图3,点D、E分别是△ABC的边AC、BC上的点,AD=DE,AB=BE,∠A=80°,则∠BED= * °. 12.△ABC中,∠A、∠B都是锐角,且sin A=cos B=12,则△ABC是* 三角形. 13.若3ma a ⋅=9a ,则m = * .14.已知,如图4,△ABC中,∠A+∠B=90°,AD=DB,CD=4,则AB= * .15.化简:22242x y xy x y ++-+-= * .16.如图5,点C、D在线段AB上,且CD是等腰直角△PCD的底边.当△PDB∽△ACP时(P与A、B与P分别为对应顶点),∠APB= * °.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解方程组:2547x y x y +=-⎧⎨-=⎩18.(本小题满分9分)如图6,AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且BE=DF. 求证:△ACE≌△ACF.α A BCD 图2↓ ↑1AB C D E 图3A B CD 图4 C B D PA 图5AD E F yABC419.(本小题满分10分)在一个纸盒里装有四张除数字以外完全相同卡片,四张卡片上的数字分别为1,2,3,4.先从纸盒里随机取出一张,记下数字为x ,再从剩下的三张中随机取出一张,记下数字为y ,这样确定了点P的坐标(x ,y ). (1)请你运用画树状图或列表的方法,写出点P所有可能的坐标; (2)求点P(x ,y )在函数y =-x +4图象上的概率.20.(本小题满分10分)如图7,一条直线分别交x 轴、y 轴于A、B两点,交反比例函数y =mx(m ≠0)位于第二象限的一支于C点,OA=OB=2. (1)m = * ;(2)求直线所对应的一次函数的解析式;(3)根据(1)所填m 的值,直接写出分解因式2a +ma +7的结果.21.(本小题满分12分)如图8,△ABC中,D为BC边上的点,∠CAD=∠CDA,E为AB边的中点. (1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法);(2)连结EF,EF与BC是什么位置关系?为什么? (3)若四边形BDFE的面积为9,求△ABD的面积.22.(本小题满分12分)我国实施的“一带一路”战略方针,惠及沿途各国.中欧班列也已融入其中.从我国重庆开往德国的杜伊斯堡班列,全程约11025千米.同样的货物,若用轮船运输,水路路程是铁路路程的1.6倍,水路所用天数是铁路所用天数的3倍,列车平均日速(平均每日行驶的千米数)是轮船平均日速的2倍少49千米.分别求出列车及轮船的平均日速.23.(本小题满分12分) 如图9,⊙O的半径OA⊥OC,点D在AC 上,且AD =2CD ,OA=4.(1)∠COD= * °; (2)求弦AD的长;(3)P是半径OC上一动点,连结AP、PD,请求出AP+PD的最小值,并说明理由. (解答上面各题时,请按题意,自行补足图形)AB C D图8· E24.(本小题满分14分)二次函数y =2x +px +q 的顶点M是直线y =-12x 和直线y =x +m 的交点. (1)若直线y =x +m 过点D(0,-3),求M点的坐标及二次函数y =2x +px +q 的解析式; (2)试证明无论m 取任何值,二次函数y =2x +px +q 的图象与直线y =x +m 总有两个不同的交点; (3)在(1)的条件下,若二次函数y =2x +px +q 的图象与y 轴交于点C,与x 的右交点为A,试在直线y =-12x 上求异于M的点P,使P在△CMA的外接圆上.25.(本小题满分14分)已知,如图10,△ABC的三条边BC=a ,CA=b ,AB=c ,D为△ABC内一点,且∠ADB=∠BDC=∠CDA=120°,DA=u ,DB=v ,DC=w . (1)若∠CBD=18°,则∠BCD= * °;(2)将△ACD绕点A顺时针方向旋转90°到△AC D '',画出△AC D '',若∠CAD=20°,求∠CAD '度数;(3)试画出符合下列条件的正三角形:M为正三角形内的一点,M到正三角形三个顶点的距离分别为a 、b 、c ,且正三角形的边长为u +v +w ,并给予证明.ABCDu vwabc 图10参考答案及评分建议(2017初三模拟考)一、选择题三、解答题17.(本小题满分9分)解法一(加减消元法):2 547 x yx y⎧+=-⎨-=⎩①②①-②,得(x+2y)-(x-4y)=-5-7,…………………………3分即6y=-12,…………………………………………………………………4分解得y=-2,……………………………………………………………………5分把y=-2代入②,………………………………………………………………6分x-4×(-2)=7,…………………………………………………………7分得x=-1,………………………………………………………………………8分∴原方程组的解为12xy=-⎧⎨=-⎩.……………………………………………………9分[若用②-①、①×2+②等,均参照给分]解法二(代入消元法):2 547 x yx y⎧+=-⎨-=⎩①②由①得,x=-2y-5③,……………………………………………3分把③式代入②式,…………………………………………………………………4分得(-2y-5)-4y=7,……………………………………………………5分解得y=-2,……………………………………………………………………6分把y=-2代入③式,……………………………………………………………7分x=-2×(-2)-5=-1,………………………………………………8分∴原方程组的解为12xy=-⎧⎨=-⎩.……………………………………………………9分[由②式变形代入,均参照给分]18.(本小题满分9分)证法一:∵四边形ABCD为菱形,∴AB=AD,∠BAC=∠DAC,………………2分 又∵BE=DF,∴AB-BE=AD-DF,……………………………………4分 即AE=AF.…………………………………………………………………………5分 在△ACE和△ACF中,∵AE AF EAC FAC AC AC =⎧⎪∠=∠⎨⎪=⎩,…………………………………………………………………8分 ∴△ACE≌△ACF(SAS).……………………………………………………9分 证法二:∵四边形ABCD为菱形,∴BC=DC,∠B=∠D,…………………………1分 在△BCE和△DCF中,∵BE DF B D BC DC =⎧⎪∠=∠⎨⎪=⎩,…………………………………………………………………………2分 ∴△BCE≌△DCF(SAS),……………………………………………………3分 ∴CE=CF.…………………………………………………………………………4分 ∵AB=AD,BE=DF,AB-BE=AD-DF,…………………………5分 即AE=AF.…………………………………………………………………………6分 在△ACE和△ACF中,∵AE AF CE CF AC AC =⎧⎪=⎨⎪=⎩,…………………………………………………………………………8分 ∴△ACE≌△ACF(SSS).……………………………………………………9分19.(本小题满分10分) 解:(1) 树状图如下:点P所有可能的坐标有:(1,2),(1,3),(1,4), (2,1),(2,3),(2,4),(3,1),(3,2), (3,4),(4,1),(4,2),(4,3)共12种;……………………7分1 2 3 4 2 1 3 4 3 1 2 4 x y 4 1 2 3……………………………5分 ……………………………7分(注:树形图或列表二者取其一)(2)∵共有12种等可能的结果,其中在函数y =-x +4图象上的点有2个(2种),………………………1分 即(1,3),(3,1),∴点P(x ,y )在函数y =-x +4图象上的概率为: P(点在图象上)=212=16.…………………………………………………3分20.(本小题满分10分) 解:(1)-8;…………………………………………………………………2分 (2)∵OA=OB=2,∴A、B点的坐标 分别为A(2,0)、B(0,2).……………………………………………2分 设直线所对应的一次函数的解析为y =kx +b ,……………………………3分 分别把A、B的坐标代入其中,得202k b b +=⎧⎨=⎩,……………………………………………………………………4分 解得12k b =-⎧⎨=⎩,…………………………………………………………………5分∴一次函数的解析为y =-x +2; (3)由(1)m =-8, 则2a +ma +7=2a -8m +7=(a -1)(a -7).……………………………………3分21.(本小题满分12分) 解:(1)尺规作图略;…………………………………………………………3分 (2)EF∥BC(即EF平行于BC).……………………………………1分 原因如下:如图1,∵∠CAD=∠CDA, ∴AC=DC(等角对等边),即△CAD为等腰三角形;…………………2分 又CF是顶角∠ACD的平分线,由“三线合一”定理,知CF是底边AD的中线,即F为AD的中点,……………………………3分 结合E是AB的中点,得EF为△ABD的中位线,………………………4分 ∴EF∥BD,从而EF∥BC;……………………………………………5分 (3)由(2)知EF∥BC,∴△AEF∽△ABD,…………………1分 ∴2()AEF ABDS AE SAB=,……………………………………………………………2分又∵AE=12AB,∴得14AEF AEF BDFE S S S =+, 把S四边形BDFE=9代入其中,解得S△AEF=3,………………………………………………………………………3分 ∴S△ABD=S△AEF+S四边形BDFE=3+9=12,……………………………4分 即△ABD的面积为12.22.(本小题满分12分)解:设轮船的日速为x 千米/日,…………………………………………………1分 由题意,得11025249x -×3=1.611025x⨯,…………………………………………7分解此分式方程,得x =392,……………………………………………………9分经检验,x =392是原分式方程的解,………………………………………10分 2x -49=735.……………………………………………………………11分 答:列车的速度为735千米/日;轮船的速度为392千米/日.………12分23.(本小题满分12分) 解:(1)30;……………………………………………………………………1分 (2)连结OD、AD(如图2). ∵OA⊥OC,∴∠AOC=90°.∵AD =2CD ,设CD 所对的圆心角∠COD=m ,………………………………………………1分 则∠AOD=2m ,…………………………………………………………………2分 由∠AOD+∠DOC=90°,得m +2m =90°,∴m =30°,2m =60°,…………………………3分 即∠AOD=60°,又∵OA=OD,∴△AOD为等边三角形,…………4分 ∴AD=OA=4;…………………………………………………………………5分 (3)过点D作DE⊥OC,交⊙O于点E,……………………………………1分 连结AE,交OC于点P(如图3),………………………………………………2分 则此时,AP+PD的值最小.∵根据圆的对称性,点E是点D关于OC的对称点,OC是DE的垂直平分线,即PD=PE.………………………………………3分 ∴AP+PD=AP+PE=AE,若在OC上另取一点F,连结AF、FD及EF, 在△AFE中,AF+FE>AE, 即AF+FE>AP+PD,∴可知AP+PD最小.…………………………………………………………4分A C D EF 图1∵∠AED=12∠AOD=30°, 又∵OA⊥OC,DE⊥OC,∴OA∥DE, ∴∠OAE=∠AED=30°.延长AO交⊙O于点B,连结BE,∵AB为直径, ∴△ABE为直角三角形.由AEAB=cos ∠BAE,……………………………5分 得AE=AB·c os 343 即AP+PD=43[也可利用勾股定理求得AE]24.(本小题满分14分) 解:(1)把D(0,-3)坐标代入直线y =x +m 中,得m =-3,从而得直线y =x -3.……………………………………………1分 由M为直线y =-12x 与直线y =x -3的交点, 得123y x y x ⎧=-⎪⎨⎪=-⎩,………………………………………………………………………2分 解得21x y =⎧⎨=-⎩,∴得M点坐标为M(2,-1).…………………………………3分∵M为二次函数y =2x +px +q 的顶点,∴其对称轴为x =2,由对称轴公式:x =-2b a ,得-2p=2,∴p =-4; 由244ac b a-=-1,得24(4)4q --=-1,得q =3.图2D A O 图3E B P D C A O∴二次函数y =2x +px +q 的解析式为:y =2x -4x +3;………………4分 [也可用顶点式求得解析式:由M(2,-1), 得y =2(2)x --1,展开得y =2x -4x +3](2)∵M是直线y =-12x 和y =x +m 的交点,得12y xy x m⎧=-⎪⎨⎪=+⎩,解得2313x m y m⎧=-⎪⎪⎨⎪=⎪⎩,∴得M点坐标为M(-23m ,13m ).…………………………1分从而有-2p =-23m 和244()34q m -=13m ,解得p =43m ;q =249m +13m .…………………………………………………3分由2y x m y x px q=+⎧⎨=++⎩,得2x +(p -1)x +q -m =0,……………………4分 该一元二次方程根的判别式⊿=(p -1)2-4(q -m ) =(43m -1)2-4(249m +13m -m )=1>0,…………………………5分 ∴二次函数y =2x +px +q 的图象与直线y =x +m 总有两个不同的交点;(3)解法①:由(1)知,二次函数的解析式为:y =2x -4x +3,当x =0时,y =3.∴点C的坐标为C(0,3).……………………………1分 令y =0,即2x -4x +3=0,解得1x =1,2x =3,∴点A的坐标为A(3,0).………………………………………………………2分 2, 过M点作x 轴的垂线,垂足的坐标应为(2,0),由勾股定理, 2y 轴的垂线,垂足的坐标应为(0,-1), 2242+205∵AC2+AM2=20=CM2,∴△CMA是直角三角形,……………………3分 CM为斜边,∠CAM=90°. 直线y =-12x 与△CMA的外接圆的一个交点为M,另一个交点为P,则∠CPM=90°.即△CPM为Rt △.………………………………………4分设P点的横坐标为x ,则P(x ,-12x ).过点P作x 轴垂线, 过点M作y 轴垂线,两条垂线交于点E(如图4),则E(x ,-1). 过P作PF⊥y 轴于点F,则F(0,-12x ). 在Rt △PEM中,PM2=PE2+EM2 =(-12x +1)2+(2-x )2=254x -5x +5. 在Rt △PCF中,PC2=PF2+CF2=2x +(3+12x )2 =254x +3x +9.在Rt △PCM中,PC2+PM2=CM2, 得254x +3x +9+254x -5x +5=20, 化简整理得52x -4x -12=0,解得1x =2,2x =-65. 当x =2时,y =-1,即为M点的横、纵坐标.∴P 点的横坐标为-65,纵坐标为35. ∴P(-65,35).……………………………………………………………………5分解法②[运用现行高中基本知识(解析几何):线段中点公式及两点间距离公式]:设线段CM的中点(即△CMA内接圆的圆心)为H,则由线段中点公式,可求出H的坐标为H(1,1).∵点P在⊙H上,∴点P到圆心H的距离等于半径.设点P的坐标为:P(n ,-12n ),由两点间的距离公式,得PH的长度为:221(1)(1)2n n -+--5 221(1)(1)2n n -+--=5,化简,整理,得化简整理得52n -4n -12=0,解得1n =2,2n =-65.当n =2时,y =-1,即为M点的横、纵坐标.∴P 点的横坐标为-65,纵坐标为35. x y F E M P CO AD 图4∴P(-65,35). [对该解法,可相应给分]25.(本小题满分14分)解:(1)42;……………………………………………………………………1分 (2)画图如下(如图5).………………………………………………………3分 ∵∠DAD '=90°,∠CAD=20°,∴∠CAD '=∠DAD '-∠CAD=90°-20°=70°;…………5分(3)画图如下:将△BDC绕点B按逆时针方向旋转60°…………………2分 到△BEF的位置(如图6).连结DE,CF,这样可知△BDE和△BCF均为等边三角形,从而DE=v ,CF=a .∵∠ADB=120°,∠BDE=60°,即∠ADE=180°,则A、D、E三点共线(即该三点在同一条直线上).……………………………3分 同理,∵∠BEF=∠BDC=120°,∠BED=60°,即∠DEF=180°,则D、E、F三点共线,∴A、D、E、F四点均在一条直线上.…………………………………………4分 ∵EF=DC=w ,∴线段AF=u +v +w .以线段AF为边在点B一侧作等边△AFG(图6),……………………………5分 则△AFG即为符合条件的等边三角形,其中的点B即为点M.…………………6分 正三角形的边长为u +v +w 已证,BA=c ,BF=BC=a ,下面再证BG=b .∵∠CFB=∠AFG=60°,即∠1+∠EFB=∠2+∠EFB=60°,∴∠1=∠2.在△AFC和△GFB中,∵FA=FG,∠1=∠2,FC=FB,∴△AFC≌△GFB(SAS),∴AC=GB,即BG=CA=b .从而点B(M)到等边△AFG三个顶点的距离分别为a 、b 、c ,且其边长为u +v +w .………………………………………………………………8分 [注:把△ADB绕点A按逆时针方向旋转60°,把△CDA绕点C按逆时针方向旋转60°,把△ADC绕点A按顺时针方向旋转60°,把△BCD绕点C按顺时针方向旋转60°等 A B C D u v w a b c 图5C 'D '均可证得,方法类似]A B C D u v w a b c E F G 图61 2。

(完整版)2017年广东省中考数学试题与参考答案

(完整版)2017年广东省中考数学试题与参考答案

2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。

2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。

用2B 铅笔把对应该号码的标号涂黑。

3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。

4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

5.考生务必保持答题卡的整洁。

考试结束时,将试卷和答题卡一并交回。

一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是( ) A. B.5 C.- D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。

2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×B.0.4×C.4×D.4× 3.已知,则的补角为( )A. B. C. D. 4.如果2是方程的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆 7.如题7图,在同一平面直角坐标系中,直线与双曲线 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( ) A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2)15159101010910101070A ∠=︒A ∠110︒70︒30︒20︒230x x k -+=11(0)y k x k =≠22(0)k y k x=≠题7图8.下列运算正确的是( )A. B. C. D.9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①;②;③; ④,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知,则整式的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .223a a a +=325·a a a =426()a a =424a a a +=ABF ADF S S =△△4CDF CBF S S =△△2ADF CEF S S =△△2ADF CDF S S =△△720︒ab ÷431a b ÷=863a b ÷-三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:.18.先化简,再求值,其中x =√5 .19.学校团委组织志愿者到图书馆整理一批新进的图书。

2017年广东省初中毕业生学业考试数学模拟试卷含答案

2017年广东省初中毕业生学业考试数学模拟试卷含答案

(1)
(2)
图 M1- 13
2016 年广东省初中毕业生学业考试数学模拟试卷
一、选择题 (本大题共 10 小题,每小题 3 分,共 30 分 )
1.在 12, 2,4,- 2 这四个数中,互为相反数的是 (
)
A. 12与 2
B .2 与- 2
C .-
2

1 2
D .- 2 与 4
2.下列四个几何体中,俯视图是圆的几何体共有
m2.
三、解答题 (一 )(本大题共 3 小题,每小题 6 分,共 18 分) 17.解方程: x2- 2x- 4=0.
18.先化简,再求值:
2x x+ 1

2x+ x2-
6 1
÷x2
x+ 3 -2x+
1.
其中
x=
3.
19.如图 M1- 9, BD 是矩形 ABCD 的一条对角线. (1) 作 BD 的垂直平分线 EF,分别交 AD ,BC 于点 E,F,垂足为点 O;(要求用尺规作图, 保留作图痕迹,不要求写作法 ) (2) 在 (1)中,连接 BE 和 DF ,求证:四边形 DEBF 是菱形.
8天
的日最高气温的中位数是 ( )
A . 22℃ B. 22.5℃ C. 23℃ D. 23.5℃
图 M2- 1
图 M2- 2
7.如图 M2- 2,a∥ b,∠ 3+∠ 4=110 °,则∠ 1+∠ 2 的度数为 ( ) A . 60° B . 70° C. 90° D. 110 ° 8.如图 M2- 3,下列四个图形中,既是轴对称图形又是中心对称图形的有
()
A.
B.
C.
D.
5.下列计算正确的是 ( ) A . 2a+ 3b= 5ab B .(a2)4= a8 C. a3·a2=a6 D .( a- b) 2= a2-b2

2017年广州中考数学一模应用题汇编——参考答案

2017年广州中考数学一模应用题汇编——参考答案

2017一模应用题汇编——参考答案【例题分析】例题1、(白云区一模)(本小题满分12分)解:设轮船的日速为x 千米/日,…………………………………………………1分由题意,得11025249x -×3=1.611025x⨯,…………………………………………7分 解此分式方程,得x =392,……………………………………………………9分 经检验,x =392是原分式方程的解,………………………………………10分 2x -49=735.……………………………………………………………11分 答:列车的速度为735千米/日;轮船的速度为392千米/日.………12分例题2、(从化区一模)(1)解:甲、乙两同学从家到学校的距离之比是 10:7,甲同学的家与学校的距离为 3000 米. ∴乙同学的家与学校的距离: 1073000⨯= 2100 (米);答:乙同学的家与学校的距离为 2100 米. ……………3分(2)设乙骑自行车的速度为 x 米/分钟,则公交车的速度为 2 x 米/分钟。

……………4分依题意得:2230002100=-xx ……………………………………………7分 解得: x = 300 ……………………………………………10分经检验, x = 300 是方程的根 …………………………………………11分 答:乙骑自行车的速度为 300 米/分钟. ………………………………………12分例题3(海珠区一模)解:设购买1个温馨提示牌需要x 元,购买1个垃圾箱需要y 元,依题意得:3458040x y x y +=⎧⎨=-⎩,解得:60100x y =⎧⎨=⎩ 答:购买1个温馨提示牌需要60元,购买1个垃圾箱需要100元。

(2)6分解:设购买垃圾箱m 个,则购买温馨提示牌(100-m )个,依题意得:60(100)100800050m m m -+≤≤答:最多购买垃圾箱50个。

例题4、(天河区一模)解:延长PQ 交AB 的延长线于H ,则PH ⊥AB,由题意得,∠QBH=30°,∠PBH=60°,∴∠BQH=60°,∠PBQ=30°,∴∠BPQ=∠BQH -∠PBQ=30°,即∠BPQ=∠PBQ∴PQ=BQ,即△BPQ 是等腰三角形…………………4分设PQ=BQ=x ,∵∠QBH=30°∴QH=21BQ=21x ,BH=x 23………………6分 ∵∠A=45° ∴21236+=+x x ………………10分 解得:9632≈+=x答:该电线杆PQ 的高度约为9m………………12分【强化训练】1、(二中一模)解:(1)如图所示,过点C 作CE ⊥AB 于点E ,可得∠CBD=45°,∠CAD=60°,设CE=x ,在Rt △CBE 中,BE=CE=x ,在Rt △CAE 中,AE=x ,∵1)AB =海里,∴x+x=60(13+),解得:x=603,则AC=x=120, BC=x=606,答:A 与C 的距离为120海里,B 与C 的距离为606海里;(2)如图所示,过点D 作DF ⊥AC 于点F ,在△ADF 中,∵AD=100,∠CAD=60°,∴DF=ADsin60°=100×23≈86.6>80, 故海监船沿AC 前往C 处盘查,无触礁的危险.2、(南沙区一模)解:(1)设每张门票原定的票价x 元,由题意得: …………………1分 5036004000-=x x ……………………………4分 解得 500=x .经检验,500=x 是原方程的解. …………………………5分答:每张门票原定的票价600元. ……………………………6分(2)设平均每次降价的百分率为y ,由题意得: ……………………………7分500(1-y )2 =405 ……………………………10分解得y 1=0.1,y 2=1.9(不合题意,舍去) .……………………………11分答:平均每次降价10%. ……………………………12分3、(增城区一模)解:设原来每天改造管道 x 米, ......………………1分依题意得 27)%201(360900360=+-+x ……………………………6分解得: x = 30 ……………………………10分经检验: x = 30 是所列方程的解 ……………………………11分答:引进新设备前工程队每天改造管道 30 米. ……………………………12分4、(花都区一模)解:(1)设一根A 型跳绳的售价是x 元,一根B 型跳绳的售价是y 元,则: ……………………………1分………………………4分 解得: ………………………5分 答:一根A 型跳绳的售价是10元,一根B 型跳绳的售价是36元. ………6分(2)设购进A 型跳绳x 根,总费用为y 元,则: ………………7分 1036(50)261800y x x x =+-=-+ ………………………8分 ∵260-<∴y 随x 的增大而减小. ………………………9分 又∵x≤3(50-x ),解得:x≤37.5,且x 为正整数 ………………………10分 ∴当x=37时,y 最小 ………………………11分 {256282x y x y +=+={1036x y ==此时50-37=13.答:当购进A型跳绳37根,A型跳绳13根时,最省钱.………………12分【课后训练】1、(省实一模)解:(1)在Rt△ABD中,AD=24m,∠B=31°,∴tan31°=,即BD==40m,在Rt△ACD中,AD=24m,∠ACD=50°,∴tan50°=,即CD==20m,∴BC=BD﹣CD=40﹣20=20m,则B,C的距离为20m;(2)根据题意得:20÷2=10m/s<15m/s,则此轿车没有超速.2、(省实一模)解:(1)设该快递公司投递快递总件数的月平均增长率为x,根据题意得:10×(1+x)2=12.1,解得:x1=10%,x2=﹣210%.答:该快递公司投递快递总件数的月平均增长率为10%.(2)12.1×(1+10%)=13.31(万件),26×0.6=15.6(万件).∵15.6>13.31,∴该公司现有的26名快递投递业务员能完成今年6月份的快递投递任务.3、(广雅一模)解:(1)设甲单独完成需x 天,则乙队单独完成需要的时间是1.5x 天,由题意,得 16)5.111=⨯+xx ( 解得:x=10,经检验,x=10是原方程的根,∴乙队单独完成需要的时间是15天.答:甲单独完成需10天,则乙队单独完成需要的时间是15天;(2)设乙每天工程费为y 元,则甲队每天的工程费为(y+4000)元,由题意,得 6(y+y+4000)=385200,解得:y=30100.∴甲队每天的费用为:30100+4000=34100元.乙队的总费用为30100×15=451500(元),甲队的总费用为:(30100+4000)×10=341000(元).∵341000元<451500元,∴应选甲队.4、(广铁一模)解:(1)设A 型学习用品单价x 元,根据题意得:=,解得:x=20,经检验x=20是原方程的根,x+10=20+10=30.答:A 型学习用品20元,B 型学习用品30元;(2)设可以购买B 型学习用品a 件,则A 型学习用品(1000﹣a )件,由题意,得: 20(1000﹣a )+30a ≤28000,解得:a ≤800.答:最多购买B 型学习用品800件.5、(越秀一模)解:设小王骑自行车的速度为x千米/时,则小英的速度为1.2x千米/时,根据题意,得,即,两边同乘以6x去分母,得75+x=90,解得x=15.经检验,x=15是该分式方程的根.答:小王的速度为15千米/时.。

2017年广东省佛山市数学中考模拟试卷答案及详细解析

2017年广东省佛山市数学中考模拟试卷答案及详细解析

【答案】1.C2.C3.B4.C5.C6.C7.B 8.B 9.A 10.C11..12..13.,.14..15..16..17..18.(1)(2)19.(1)(2)20.(1)(2)(3)21.(1)(2)22.(1)(2)23.(1)(2)24.(1)(2)(3)2017年广东省佛山市数学中考模拟试卷参考答案..详见解答过程.;;.持组观点有万人.严格控制工厂污染排放,市民出行多乘公交车.是等腰三角形,理由详见解答过程.当四边形为菱形时,与全等,理由详见解答过程.第一批玩具进价为万.每套售价至少元.;或.平行四边形;四边形.详见解答过程...25.(1)(2)(3)【解析】1.原式 ,故选.2.选项:与不是同类项,故不能直接运算, 错误.选项:, 错误.选项:, 正确.选项:, 错误.故选.3.如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.选项:不是轴对称图形,不符合题意.选项:是轴对称图形,符合题意.选项:不是轴对称图形,不符合题意.选项:不是轴对称图形,不符合题意.故选.4.科学记数法表现形式为(,为整数).速度米秒,时间秒.由路程速度时间得米, 科学记数法表示为米米,故选.直角三角形,等腰三角形...5.俯视图是从几何体上方看到的平面图形,从零件上方看,它是一个矩形中间有一个小正方形,故选.6.,(两直线平行,内错角相等),是外角,, ,故选.7.是圆周角,是圆心角, ,故选.8.方法一:树状图,共有,,,,,,共种情况,其中正数有,,共种情况,.方法二:列表法,共有,,,,,,共种情况,其中正数有,,共种情况,.故选.9.如下图,过点作交延长线于,,,是直角三角形,由图可知,,,在中由三角函数可知, ,故选.10.如下图,由旋转可知,,,,是等腰直角三角形,,, ,是直角三角形,,,在中由三角函数得,,,, , ,故选.11.只有符号不同的两个数互为相反数,的相反数为.12.原式 .13.方法一:因式分解法,,或,解得,.方法二:配方法:配方得,利用完全平方公式,直接开方得或,解得,.14.多边形内角和公式,多边形外角和,依据题意得,解得.15.方法一:,,是直角三角形,菱形边长,,为中点,,在中,由勾股定理得 ,菱形 .方法二:,,是直角三角形,菱形边长,,为中点,,,在中,由三角函数得,,,,,,,菱形 .16.如下图,连接,在矩形对角线上,,,在同一直线上,由折叠可知,,,,四边形是矩形,,,和是直角三角形,在中,由勾股定理得,, ,,, ,是直角三角形,设,,, ,,, ,在中由勾股定理得,即,解得,.17.原式 .18.(1)(2)19.(6分)如图,已知E是平行四边形ABCD的边AB上的点,连接DE.(1)在∠ABC的内部,作射线BM交线段CD于点F,使∠CBF=∠ADE;(要求:用尺规作图,保留作图痕迹,不写作法和证明)(2)在(1)的条件下,求证:△ADE≌△CBF.【考点】N3:作图—复杂作图;KB:全等三角形的判定;L5:平行四边形的性质.菁优网版权所有【分析】(1)作∠CBM=∠ADE,其中BM交CD于F;(2)根据平行四边形的性质可得∠A=∠C,AD=BC,由ASA可证△ADE≌△CBF.【解答】(1)解:如图所示.(2)证明:∵四边形ABCD是平行四边形∴∠A=∠C,AD=BC,∵∠ADE=∠CBF,∴△ADE≌△CBF(ASA).【点评】综合考查了角的作图,平行四边形的性质和全等三角形的判定的知识,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.四、解答题(二)(本大题共有3小题,每小题7分,共21分)设所捂多项式为,.当,时, 原式 .(1)(2)20.(7分)近年来,我国很多地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表请根据图表中提供的信息解答下列问题:(1)填空:m= 80 ,n= 100 ,扇形统计图中E组所占的百分比为 15 %(2)若该市人口约有400万人,请你计算其中持D组“观点”的市民人数.(3)对于“雾霾”这个环境问题,请用简短的语言发出倡议.【考点】VB:扇形统计图;V5:用样本估计总体;V7:频数(率)分布表.菁优网版权所有【分析】(1)根据B组频数及其所占百分比求得样本容量,再根据频数=总数×频率及各组频数之和等于总数,解答即可;(2)用总人数乘以样本中D观点所占百分比即可得;(3)根据各种观点所占百分比,有针对的提出合理的改善意见即可.【解答】解:(1)根据题意,本次调查的总人数为40÷10%=400(人),∴m=400×20%=80,n=400﹣(80+40+120+60)=100,则扇形统计图中E组所占的百分比为×100%=15%,故答案为:80,100,15;(2)400×=120(万),答:其中持D组“观点”的市民人数约为120万人;(3)根据所抽取样本中持C、D两种观点的人数占总人数的比例较大,如图所示,①以点为圆心,任意长度的半径画弧交于点,交于点,②以点为圆心,长为半径画弧交于点, ③以为圆心,长度为半径画弧,交前弧于点, ④画射线,交于点,则为所求,四边形是平行四边形,, ,由⑴知,在和中,,≌.所以倡议今后的环境改善中严格控制工厂的污染排放,同时市民多乘坐公共汽车,减少私家车出行的次数.【点评】本题考查的是条形统计图和扇形统计图的知识,正确获取图中信息并准确进行计算是解题的关键. (1)(2)由图表可知组有人占总人数的,则总人数(人),组占总人数,则(人),组有(人),组占总人数.组有人,占总人数,则万人持组观点有:(3)21.(7分)如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF.(1)试探究△A′DE的形状,请说明理由;(2)当四边形EDD′F为菱形时,判断△A′DE与△EFC′是否全等?请说明理由.【考点】L8:菱形的性质;KB:全等三角形的判定;KP:直角三角形斜边上的中线;Q2:平移的性质.菁优网版权所有【分析】(1)先证明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.(2)根据四边形EDD′F为菱形得到EF=DE=DA′,EF∥DD′,即可推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.【解答】解:(1)△A′DE是等腰三角形.理由:∵△ACB是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C′∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形;(2)∵四边形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠C′EF=∠DA′E,∠EFC′=∠C′D′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C′=∠EFC′,在△A′DE和△EFC′中,,∴△A′DE≌△EFC′.【点评】本题考查平移、菱形的性质、全等三角形的判定和性质、直角三角形斜边中线定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.(1)(万人),答:持组观点有万人.由图可知,两观点人数占总人数比例较大,提倡今后的环境改善中,严格控制工厂污染排放,市民出行多乘公交车.是等腰三角形,理由如下: 是直角三角形, ,(2)22.(7分)“六•一”儿童节前,某玩具商店根据市场调查,用2500元购进一批儿童玩具,上市后很快脱销,接着又用4500元购进第二批这种玩具,所购数量是第一批数量的1.5倍,但每套进价多了10元.(1)求第一批玩具每套的进价是多少元?(2)如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是多少元?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.菁优网版权所有【分析】(1)设第一批玩具每套的进价是x元,则第一批进的件数是:,第二批进的件数是:,再根据等量关系:第二批进的件数=第一批进的件数×1.5可得方程;(2)设每套售价是y元,利润=售价﹣进价,根据这两批玩具每套售价相同,且全部售完后总利润不低于25%,可列不等式求解.【解答】解:(1)设第一批玩具每套的进价是x元,×1.5=,x=50,经检验x=50是分式方程的解,符合题意.答:第一批玩具每套的进价是50元;是边上中线,, , 由平移可知,,,, , 是等腰三角形.和全等,理由如下: 四边形是菱形, , ,, , , ,, 由⑴知,由平移知,,, 即,在和中,,≌.(2)设每套售价是y元,×1.5=75(套).50y+75y﹣2500﹣4500≥(2500+4500)×25%,y≥70,答:如果这两批玩具每套售价相同,且全部售完后总利润不低于25%,那么每套售价至少是70元.【点评】本题考查理解题意的能力,关键是根据价格做为等量关系列出方程,根据利润做为不等辆关系列出不等式求解.五、解答题(三)(本大题共有3小题,每小题9分,共27分)(1)(2) 23.(1)设第一批玩具每套进价元,第二批元,第一批数量件,由单价数量总价得,解得,经检验是原方程的解,答:第一批玩具进价为万.设每套售价元,第一批进价元,进货量(件),第二批进价元,进货量件,由总利润(售价进价)数量得,解得,每套至少卖元,答:每套售价至少元.把代入与得,,,解得,,反比例函数,正比例函数,与交于、两点,,解得,当时,将代入得,,解得,,,即,即直线在图象上方与交点即可,(2)与交于,,或.①双曲线图象关于原点对称, ,,四边形是平行四边形,②由⑴知,把代入得,,解得,,如下图,过点作轴于,过点作,交延长线,、关于原点对称,,,设直线解析式,直线解析式,将,代入得,,解得,,将,代入得,,解得,,和与轴交于,,,,,轴,,,,,,,, ,24.(9分) 已知:如图,在半径我4的⊙O中,AB、CD是两条直径,M我OB的中点,CM的延长线交⊙O于点E,且EM >MC,连接DE,DE=.(1)求证:△AMC∽△EMB;(2)求EM的长;(3)求sin∠EOB的值.【考点】S9:相似三角形的判定与性质;M4:圆心角、弧、弦的关系;T7:解直角三角形.菁优网版权所有【分析】(1)连接A、C,E、B点,那么只需要求出△AMC和△EMB相似,即可求出结论,根据圆周角定理可推出它们的对应角相等,即可得△AMC∽△EMB; ,,,,,,梯形 ,,,, ,,四边形梯形,四边形是平行四边形,为对角线交点,四边形四边形,平行四边形四边形四边形四边形 .(2)根据圆周角定理,结合勾股定理,可以推出EC的长度,根据已知条件推出AM、BM的长度,然后结合(1)的结论,很容易就可求出EM的长度;(3)过点E作EF⊥AB,垂足为点F,通过作辅助线,解直角三角形,结合已知条件和(1)(2)所求的值,可推出Rt△EOF各边的长度,根据锐角三角函数的定义,便可求得sin∠EOB的值.【解答】解:(1)证明:连接AC、EB,如图1,∵∠A=∠BEC,∠B=∠ACM,∴△AMC∽△EMB;(2)解:∵DC是⊙O的直径,∴∠DEC=90°,∴DE2+EC2=DC2,∵DE=,CD=8,且EC为正数,∴EC=7,∵M为OB的中点,∴BM=2,AM=6,∵AM•BM=EM•CM=EM(EC﹣EM)=EM(7﹣EM)=12,且EM>MC,∴EM=4;(3)解:过点E作EF⊥AB,垂足为点F,如图2,∵OE=4,EM=4,∴OE=EM,∴OF=FM=1,∴EF==,∴sin∠EOB==.【点评】本题主要考查了相似三角形的判定和性质、圆周角定理,锐角三角函数定义、勾股定理的知识点,本题关键根据已知条件和图形作好辅助线,结论就很容易求证了.(1)如下图,连接,,(2)(3)和是所对圆周角,和是所对圆周角,,,.半径为,,,为直径,,是直角三角形,在中,由勾股定理得,, ,为中点,,, ,设,则,,,即,解得或,,, ,,.如下图,过点作于,,,,是等腰三角形,又,是边上中线,25.(9分)如图,已知Rt△ABC中,∠A=30°,AC=6,边长为4的等边△DEF沿射线AC运动(A、D、E、C四点共线),当等边△DEF的边DF、EF与Rt△ABC的边AB分别相交于点M、N(M、N不与A、B重合)时.设AD=x(1)则△FMN的形状是 直角三角形 ,△ADM的形状是 等腰三角形 ;(2)用x的代数式来表示△FMN的面积;(3)若△ABC与△DEF重叠部分的面积为y,求y关于x的函数解析式,并写出x的取值范围.【考点】KY:三角形综合题.菁优网版权所有【分析】(1)①根据已知得出∠AMD=∠FDE﹣∠A=30°,进而得出∠MNF=90°,∠AMD=∠A=30°;(2)用x表示出MF,根据正弦的定义求出MN、FN,根据三角形面积公式计算;(3)分别根据①当0<x≤2时,S 四边形DENM =S △FDE ﹣S △FMN ,②当2<x<4时,y 五边形DCPNM =S △DEF ﹣S △FMN ﹣S △PCE ,③如图3,当4≤x<6时,CD=6﹣x,y=S △PCD ,④当x≥6时,y=0,得出即可.【解答】解:(1)∵△DEF是等边三角形,∴∠FDE=∠F=60°.∵∠A=30°,∴∠AMD=∠FDE﹣∠A=30°,∴∠FMN=∠AMD=30°,∴∠MNF=90°,∠AMD=∠A=30°,即△FMN是直角三角形,△ADM是等腰三角形,故答案为:直角三角形;等腰三角形;(2)∵∠AMD=∠A=30°,∴DM=AD,为中点,,,, ,, 是直角三角形,在中,由勾股定理得,,, 在中,由三角函数得 .∴DM=AD=x,FM=4﹣x.又∵△FMN是直角三角形,∠MFN=60°∴MN=MF•sinF=(4﹣x)×=(4﹣x),FN=MF=(4﹣x),S△FMN=MN•FN=×(4﹣x)×(4﹣x)=(4﹣x)2.(3)①当0<x≤2时,S四边形DENM=S△FDE﹣S△FMN=4﹣(4﹣x)2=﹣x2+x+2,②当2<x<4时,CE=AE﹣AC=4+x﹣6=x﹣2∵∠BCE=90°,∠PEA=60°,∴PC=(x﹣2),∴S△PCE=×(x﹣2)(x﹣2)=(x﹣2)2.∴y五边形DCPNM=S△DEF﹣S△FMN﹣S△PCE=﹣x2+3x;③如图3,当4≤x<6时,CD=6﹣x,∵∠BCE=90°,∠PDC=60°,∴PC=(6﹣x),∴y=S△PCD=×(6﹣x)(6﹣x)=(6﹣x)2,④当x≥6时 y=0【点评】本题考查的是等边三角形的性质、函数解析式是确定,涉及到直角三角形的性质、锐角三角函数的定义、三角形的面积等知识,难度适中,注意自变量x的取值范围的分析与讨论.(1)是等边三角形,,是外角,, ,,,是等腰三角形,,,, ,(2)(3)是直角三角形.是等边三角形,, 是等腰三角形, , ,在中,由三角函数得,,,,, ,,,,, ,.①在点左侧,,当与重合时,,即,如图,过点作于,是等边三角形,,, , , 是直角三角形, 在中由三角函数得,,, , ,四边形 ,②在点右侧时,时, ,是直角三角形,,, ,是直角三角形,在中,由三角函数得,,,, , , ,③在右侧,在左侧,即时,,,,,是直角三角形,在中由三角函数得,,, , ,,④时,和无重叠,,综上所述,.。

2017年广东省中考数学模拟试题(一)(yin)答案

2017年广东省中考数学模拟试题(一)(yin)答案

2017年广东省高中阶段学校招生考试数学模拟试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1.D 2.C 3.D 4.B 5.B 6.B 7.B 8.B 9.B 10.C二、填空题(本大题共6小题,每小题4分,共24分)11.312.30 13.20 14.-3 15.9 16.π313-三、解答题(一)(本大题共3小题,每小题6分,共18分)17.解:原式3213=-+…………………………………………………(5分) 4=.……………………………………………………………………………………(6分)18.解:设小宏能买x 瓶甲饮料,则买乙饮料(10-x )瓶.…………………………(1分)根据题意,得7x +4(10-x )≤50,………………………………………………(3分) 解得133x ≤.………………………………………………………………………(5分) 因为x 取正整数,所以小宏最多能买3瓶甲饮料.……………………………(6分)19.(1)(图略)…………………………………………………………………………(3分)(2)解:∵在Rt △ACD 中,∠CAD =30°,∴CD =21AD . ∴BC =CD +BD =CD +AD =3CD .………………………………………………(4分)∴S △DAC =2CD AC ⋅,S △ABC =232CD AC BC AC ⋅=⋅.…………………………(5分) ∴S △DAC ∶S △ABC =2CD AC ⋅∶23CD AC ⋅=1∶3.………………………………(6分) 四、解答题(二)(本大题共3小题,每小题7分,共21分)20.(1)证明:∵AD ∥BC ,∴∠ADE =∠BFE .∵E 是AB 的中点,∴AE =BE .又∵∠AED =∠BEF ,∴△ADE ≌△BFE (AAS ).………(3分)(2)解: EG 与DF 的位置关系是EG ⊥DF .………………(4分)理由如下:∵∠ADE =∠BFE ,∠GDF =∠ADF ,‘∴∠GDF =∠BFE . ……………………………………(5分)∴GD =GF .又∵△ADE ≌△BFE ,∴DE =EF .…………………………………………………(6分) ∴EG ⊥DF .……………………………………………………(7分)21.解:(1)列表如下:点A (x ,y )共9种情况.……………………………………………………(4分)(2)∵点A 落在第三象限共有(-7,-2),(-1,-2)两种情况,……………(6分)∴点A 落在第三象限的概率是29.………………………………………………(7分) 22.解:(1)利用图象设y 关于x 的函数解析式为y =k x +b ,将(10,10),(50,6)代入解析式,得⎩⎨⎧=+=+,650,1010b k b k 解得⎪⎩⎪⎨⎧=-=.11,101b k …(3分) ∴y 关于x 的函数解析式为y =110-x +11(10≤x ≤50).……………(4分) (2)当生产这种产品的总成本为280万元时,)(11101+-x x =280,解得x 1=40,x 2=70(不合题意,舍去).……(6分) ∴当生产这种产品的总成本为280万元时,该产品的生产数量为40 t .…(7分)五、解答题(三)(本大题共3小题,每小题9分,共27分)23.解:(1)把A (1,0),B (0,3),C (2,-1)代入,2c bx ax y ++=得 ⎪⎩⎪⎨⎧-=++==++,,,12430c b a c c b a ……………………………………………………………(1分)解得⎪⎩⎪⎨⎧=-==.341c b a ,,…………………………………………………………………(2分)所以抛物线的解析式为.342+-=x x y ……………………………………(3分)(2)令2430x x -+=,解得3121==x x ,.∵点A 的坐标为(1,0),∴点D 的坐标为(3,0).(5分)(3)存在.……………………………………………………………………………(6分) 由(1)知该抛物线的对称轴为,-21242=⨯-=-=a b x ……………………(7分) 点A 关于对称轴x =2的对称点为点D ,连接BD ,则直线BD 与对称轴x =2的交点即为点P .令直线BD 的解析式为y kx b =+,代入点B (0,3)和点D (3,0),得⎩⎨⎧=+=,,033b k b 解得⎩⎨⎧-==.13k b ,∴直线BD 的解析式为3y x =-+.……………(8分) 当x =2时,y =-2+3=1,∴点P (2,1).…………………………………(9分)24.(1)证明:∵△ABC ,△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°.∴∠BAM =∠CAN .∵在△BAM 和△CAN 中,⎪⎩⎪⎨⎧=∠=∠=,AN AM CAN BAM AC AB ,,∴△BAM ≌△CAN (SAS ).∴∠ABC =∠ACN .………………………………(3分)(2)解:结论∠ABC =∠ACN 仍成立.理由如下:∵△ABC ,△AMN 是等边三角形,① ② ③∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°.∴∠BAM =∠CAN .∵在△BAM 和△CAN 中,⎪⎩⎪⎨⎧=∠=∠=,AN AM CAN BAM AC AB ,,∴△BAM ≌△CAN (SAS ).∴∠ABC =∠ACN .………………………………(6分)(3)解:∠ABC =∠ACN .理由如下:∵BA =BC ,MA =MN ,顶角∠ABC =∠AMN ,∴底角∠BAC =∠MAN .∴△ABC ∽△AMN .∴.ANAC AM AB = 又∵∠BAM =∠BAC -∠MAC ,∠CAN =∠MAN ―∠MAC ,∴∠BAM =∠CAN .∴△BAM ∽△CAN .∴∠ABC =∠ACN .………………(9分)25.解:(1)∵CG ∥AP ,∴△GCD ∽△APG .∴.AGPG GD CD = ∵GF =4,CD =DA =1,AF =x ,∴GD =3-x ,AG =4-x . ∴,x y x -=-431即.34x x y --=∴y 关于x 的函数关系式为.34xx y --= 当y =3时,x x y --=34=3,解得x =2.5. 经检验,x =2.5是分式方程的根.故x 的值为2.5.…………………………(3分)(2)∵S 1=GP •GD =•x x --34•(3-x )=24x -,………………………(4分) S 2=GD ·CD =·(3-x )·1=23x -,……………………………………(5分) ∴S 1-S 2=24x --23x -= ,即为常数.……………………………………(6分) (3)延长PD 交AC 于点Q .∵正方形ABCD 中,AC 为对角线,∴∠CAD =45°.∵PQ ⊥AC ,∴∠ADQ =45°.∴∠GDP =∠ADQ =45°.∴△DGP 是等腰直角三角形,则GD =GP .∴3-x =x x --34.…………………(8分)化简,得x 2-5x +5=0,解得x =.∵0≤x ≤2.5, ∴x =.在Rt △DGP 中,PD =︒45cos GD=·(3﹣x )=.………………(9分)。

【新文案】2017年广东省广州市中考数学试题与答案

【新文案】2017年广东省广州市中考数学试题与答案


A. -6 B
. 6 C . 0 D .无法确定
2. 如图 2,将正方形 ABCD 中的阴影三角形绕点 A 顺时针旋转 90°后,得到图形为 ( )
A.
B.
C.
D.
3. 某 6 人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁)
12 ,13,14,
15, 15, 15. 这组数据中的众数,平均数分别为(

A. 12, 14 B . 12 , 15 C .15, 14 D . 15 , 13
4. 下列运算正确的是(

A. 3a b a b
a b 2a b B .2
C.
6
2
3
3
a2 a D . a a a 0
5. 关于 x 的一元二次方程 x2 8 x q 0 有两个不相等的实数根,则 q 的取值范围是(
ab 5
D
. a 5b 6
8. 如图 4, E, F 分别是 Y ABCD 的边 AD , BC 上的点, EF 6, DEF 600 ,将四边形 EFCD 沿 EF 翻
折,得到 EFC D , ED 交 BC 于点 G ,则 GEF 的周长为 ( )
A. 6 B . 12 C. 18 D
. 24
9. 如图 5,在 e O 中,在 e O 中,AB 是直径,CD 是弦, AB CD ,垂足为 E ,连接 CO , AD , BAD 200 ,
ab 5
D
. a 5b 6
8. 如图 4, E, F 分别是 Y ABCD 的边 AD , BC 上的点, EF 6, DEF 600 ,将四边形 EFCD 沿 EF 翻
折,得到 EFC D , ED 交 BC 于点 G ,则 GEF 的周长为 ( )

2017年广东省初中毕业生学业考试数学模拟试卷(一)含答案

2017年广东省初中毕业生学业考试数学模拟试卷(一)含答案

2017年广东省初中毕业生学业考试数学模拟试卷(一)一、选择题(本大题共10小题,每小题3分,共30分)1.12的相反数是( ) A .2 B .-2 C .-12 D.122.a ,b 在数轴上的位置如图M1-1,则下列式子正确的是( )A .a +b >0B .a +b >a -bC .|a |>|b |D .ab <0图M1-1 图M1-2 图M1-3×1010元,将此数据用亿元表示为( )4.下列式子正确的是( ) A.8=±2 2 38- 2 C. 38-=-2 2 D.-8=-2 25.下列四种正多边形:①正三角形;②正方形;③正五边形;④正六边形,其中既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个 6.如图M1-2,矩形ABCD ,AB =a ,BC =b ,a >b ;以AB 边为轴将矩形绕其旋转一周形成圆柱体甲,再以BC 边为轴将矩形绕其旋转一周形成圆柱体乙;记两个圆柱体的体积分别为V 甲,V 乙,侧面积分别为S 甲,S 乙,则下列式子正确的是( )A .V 甲>V 乙 S 甲=S 乙B .V 甲<V 乙 S 甲=S 乙C .V 甲=V 乙 S 甲=S 乙D .V 甲>V 乙 S 甲<S 乙7.化简x 2x -1+11-x的结果是( )A .x +1 B.1x +1 C .x -1 D.xx -18.下列命题:①等腰三角形的角平分线平分对边; ②对角线垂直且相等的四边形是正方形; ③正六边形的边心距等于它的边长;④过圆外一点作圆的两条切线,其切线长相等. 其中真命题有( )A .1个B .2个C .3个D .4个 9.下列说法正确的是( )①了解某市学生的视力情况需要采用普查的方式;②甲、乙两个样本中,s 2甲=0.5,s 2乙=0.3,则甲的波动比乙大; ③50个人中可能有两个人生日相同,但可能性较小;④连续抛掷两枚质地均匀的硬币,会出现“两枚正面朝上”“两枚反面朝上”“一枚正面朝上,一枚反面朝上”三个事件.A .①②B .②③C .②④D .③④ 10.如图M1-3,已知在Rt △ABC 中,∠C =90°,AC =6,BC =8,点E 是边AC 上一动点,过点E 作EF ∥BC ,交AB 边于点F ,点D 为BC 上任一点,连接DE ,DF .设EC 的长为x ,则△DEF 的面积y 关于x 的函数关系大致为( )A. B. C. D. 二、填空题(本大题共6小题,每小题4分,共24分)11.函数y =1x -1中,自变量x 的取值范围是__________.12.不等式组⎩⎪⎨⎪⎧2x +1>-3,-x +3≥0的解集为__________.13.因式分解:(x +1)(x +2)+14=__________.14.由几个小正方体搭成的几何体,其主视图、左视图相同,均如图M1-4,则搭成这个几何体最少需要__________个小正方体.图M1-4 图M1-515.如图M1-5,△ABC 是边长为4的等边三角形,D 为AB 边的中点,以CD 为直径画圆,则图M1-5中阴影部分的面积为__________.(结果保留π)16.若关于x 的一元二次方程(a +1)x 2-x +1=0有实数根,则a 的取值范围是__________. 三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:(-1)2017-cos 45°-⎝⎛⎭⎫-13-2+0.5.18.先化简,再求值:2x x +1-2x +6x 2-1÷x +3x 2-2x +1.其中x = 3.19.如图M1-6,已知BD 是矩形ABCD 的对角线.(1)用直尺和圆规作线段BD 的垂直平分线,分别交AD ,BC 于E ,F (保留作图痕迹,不写作法和证明); (2)连接BE ,DF ,问四边形BEDF 是什么四边形?请说明理由.图M1-6四、解答题(二)(本大题共3小题,每小题7分,共21分)20.如图M1-7,在ABCD中,E,F分别是边AB,CD的中点,BG∥AC交DA的延长线于点G.(1)求证:△ADF≌△CBE;(2)若四边形AGBC是矩形,判断四边形AECF是什么特殊的四边形?并证明你的结论.图M1-721.人口老龄化是全世界热点问题.为了让学生感受到人口老龄化所带来的一系列社会问题,从而渗透尊老、敬老教育,某中学组织该校七年级学生开展了一项综合实践活动.该校七年级的全体学生分别深入府明社区的两个小区调查每户家庭老年人的数量(60岁以上的老人).根据调查结果,该校学生将数据整理后绘制成的统计图如图M1-8,其中A组为1位老人/户,B组为2位老人/户,C组为3位老人/户,D组为4位老人/户,E组为5位老人/户,F组为6位老人/户.图M1-8请根据上述统计图完成下列问题:(1)这次共调查了____________户家庭;(2)每户有6位老人所占的百分比为____________;(3)请把条形统计图补充完整;(4)本次调查的中位数落在____________组内,众数落在____________组;(5)若该区约有10万户家庭,请你估计其中每户4位老人的家庭有多少户?22.东风商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3000件;若按每件6元的价格销售,每月能卖出2000件,假定每月销售件数y(单位:件)与价格x(单位:元/件)之间满足一次函数关系.(1)试求y 与x 之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图M1-9,反比例函数y =2x的图象与一次函数y =kx +b 的图象交于点A (m,2),点B (-2,n ),一次函数图象与y 轴的交点为C .(1)求一次函数解析式; (2)求C 点的坐标; (3)求△AOC 的面积.图M1-924.如图M1-10,A ,B 两个单位分别位于一条封闭式街道的两旁,A ,B 两个单位到街道的距离AC =48 m ,BD =24 m ,A ,B 两个单位的水平距离CE =96 m ,现准备修建一座与街道垂直的过街天桥.(1)天桥建在何处才能使由A 到B 的路线最短?(2)天桥建在何处才能使A ,B 到天桥的距离相等?分别在图(1)、图(2)中作图说明(不必说明理由)并通过计算确定天桥的具体位置.图M1-1025.如图M1-11,直径为10的半圆O ,tan ∠DBC =34,∠BCD 的平分线交⊙O 于点F ,点E 为CF 延长线上一点,且∠EBF =∠GBF .(1)求证:BE 为⊙O 切线; (2)求证:BG 2=FG •CE ; (3)求OG 的值.图M1-112017年广东省初中毕业生学业考试数学模拟试卷(一)6.B 解析:V 甲=π·b 2×a =πab 2,V 乙=π·a 2×b =πba 2,∵πab 2<πba 2,∴V 甲<V 乙.∵S 甲=2πb ·a =2πab ,S 乙=2πa ·b =2πab ,∴S 甲=S 乙.故选B.9.C 解析:①了解某市学生的视力情况需要采用抽查的方式,错误;②甲、乙两个样本中,s 2甲=0.5,s 2乙=0.3,则甲的波动比乙大,正确;③50个人中可能有两个人生日相同,可能性较大,错误;④连续抛掷两枚质地均匀的硬币,会出现“两枚正面朝上”“两枚反面朝上”“一枚正面朝上,一枚反面朝上”三个事件,正确.故选C.10.D11.x >1 12.-2<x ≤3 13.⎝⎛⎭⎫x +322 14.3 解析:仔细观察物体的主视图和左视图可知:该几何体的下面最少要有2个小正方体,上面最少要有1个小正方体,故该几何体最少有3个小正方体组成.故答案为3.15.5 32-π 解析:如图D151,过点O 作OE ⊥AC 于点E ,连接FO ,MO ,∵△ABC 是边长为4的等边三角形,D 为AB 边的中点,CD 为直径,图D151∴CD ⊥AB ,∠ACD =∠BCD =30°,AC =BC =AB =4. ∴∠FOD =∠DOM =60°,AD =BD =2. ∴CD =2 3,则CO =DO = 3.∴EO =32,EC =EF =32,则FC =3.∴S △COF =S △COM =12×32×3=3 34,S 扇形OFM =120π×(3)2360=π,S △ABC =12×CD ×4=4 3.∴图中阴影部分的面积为4 3-2×3 34-π=5 32-π.16.a ≤-3417.解:原式=-1-22-9+22=-10.18.解:原式=2x x +1-2()x +3()x +1()x -1·()x -12x +3=2x x +1-2()x -1x +1=2x +1.当x =3时,原式=23+1=3-1.19.解:(1)如图D152,EF 为所求直线.图D152(2)四边形BEDF 为菱形,理由如下: ∵EF 垂直平分BD ,∴BE =DE ,∠DEF =∠BEF . ∵AD ∥BC ,∴∠DEF =∠BFE . ∴∠BEF =∠BFE . ∴BE =BF . ∵BF =DF ,∴BE =ED =DF =BF . ∴四边形BEDF 为菱形.20.(1)证明:∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC ,∠D =∠ABC ,AB =CD . 又∵E ,F 分别是边AB ,CD 的中点, ∴DF =BE .在△ADF 和△CBE 中,⎩⎪⎨⎪⎧AD =CB ,∠D =∠B ,DF =BE ,∴△ADF ∽≌△CBE (SAS).(2)解:四边形AECF 为菱形.理由如下: ∵四边形AGBC 是矩形, ∴∠ACB =90°.又∵E 为AB 中点,∴CE =12AB =AE .同理AF =FC .∴AF =FC =CE =EA . ∴四边形AECF 为菱形.21.解:(1)调查的总户数是80÷20%=400.(2)每户有6位老人所占的百分比是40400=10%.(3)如图D153,D 组的家庭数是400-60-120-80-20-40=80,图D153(4)本次调查的中位数落在C 组内,众数落在D 组. 故答案是C ,D .(5)估计其中每户4位老人的家庭有10×80400=2(万户).22.解:(1)由题意,可设y =kx +b , 把(5,3000),(6,2000)代入,得 ⎩⎪⎨⎪⎧5k +b =3000,6k +b =2000. 解得k =-1000,b =8000.∴y 与x 之间的关系式为y =-1000x +8000. (2)设每月的利润为W 元, 则W =(x -4)(-1000x +8000) =-1000(x -4)(x -8) =-1000(x -6)2+4000∴当x =6时,W 取得最大值,最大值为4000元.答:当销售价格定为6元时,每月的利润最大,每月的最大利润为4000元.23.解:(1)由题意,把A (m,2),B (-2,n )代入y =2x 中,得⎩⎪⎨⎪⎧m =1,n =-1.∴A (1,2),B (-2,-1).将A ,B 代入y =kx +b 中,得 ⎩⎪⎨⎪⎧ k +b =2,-2k +b =-1.∴⎩⎪⎨⎪⎧k =1,b =1. ∴一次函数解析式为y =x +1.(2)由(1)可知:当x =0时,y =1,∴C (0,1).(3)S △AOC =12×1×1=12.24.解:(1)如图D154(1),平移B 点至B ′,使BB ′=DE ,连接AB ′交CE 于F ,在此处建桥可使由A 到B 的路线最短.此时易知AB ′∥BG .∴△ACF ∽△BDG .∴AC CF =BDDG.设CF =x ,则GD =96-x . ∴48x =2496-x. 解得xCF =64 m.∴将天桥建在距离C 点64 m 处,可使由A 到B 的路线最短.(1) (2)图D154(2)如图D154(2),平移B 点至B ′使BB ′=DE ,连接AB ′交CE 于F ,作线段AB ′的中垂线交CE 于点P ,在此处建桥可使A ,B 到天桥的距离相等.此时易知AC ⊥CE ,另OP 为AB ′中垂线, ∴△ACF ∽△POF . ∴PF AF =OF CF. 设CP =x ,则PF =CF -x . 由(1),得CF =64 m.∴PF =64-x .在Rt △ACF 中,由勾股定理,得AF =80 m. ∵AC ∥BE , ∴CF FE =AF FB ′=6496-64=21. ∴FB ′=40 m.又O 为AB ′中点, ∴FO =20. ∴64-x 80=2064.解得x =39,即CP =39 m.∴将天桥建在距离C 点39 m 处,可使由A 到B 的路线最短. 25.(1)证明:由同弧所对的圆周角相等,得∠FBD =∠DCF . 又∵CF 平分∠BCD , ∴∠BCF =∠DCF . 已知∠EBF =∠GBF , ∴∠EBF =∠BCF . ∵BC 为⊙O 直径, ∴∠BFC =90°.∴∠FBC +∠FCB =90°. ∴∠FBC +∠EBF =90°. ∴BE ⊥BC .∴BE 为⊙O 切线.(2)证明:由(1)知,∠BFC =∠EBC =90°,∠EBF =∠ECB , ∴△BEF ∽△CEB . ∴BE 2=EF ·CE .又∠EBF =∠GBF ,BF ⊥EG , ∴∠BFE =∠BFG =90°. 在△BEF 与△BGF 中,⎩⎪⎨⎪⎧∠EBF =∠GBF ,BF =BF ,∠EFB =∠GFB ,∴△BEF ≌△BGF (ASA).∴BE =BG ,EF =FG . ∴BG 2=FG ·CE .(3)如图D155,过点G 作GH ⊥BC 于点H ,图D155∵CF 平分∠BCD , ∴GH =GD .∵tan ∠DBC =34,∴sin ∠DBC =35.∵BC =10,∴BD =8,BG =BD -GD =8-GD . ∴GH BG =GD 8-GD =35.∴GD=GH=3,BG=5,BH=4.∵BC=10,∴OH=OB-BH=1.在Rt△OGH中,由勾股定理,得OG=10.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年广东省中考数学模拟试卷(一)及答案1.﹣3的相反数是()A.13B.-13C.3D.﹣32.如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是()A.美B.丽C.广D.州3.2016年3月,中国中车集团中标美国地铁史上最大一笔采购订单:芝加哥地铁车辆采购项目.该项目标的金额为13.09亿美元.13.09亿用科学记数法表示为()A.13.09×108B.[1.309\times {{10}^{10}}\).C.1.309×109D.1309×1064.如图所示,几何体的主视图是()A.B.C.D.图象的每条曲线上y都随x增大而增大,则k的取值范围是5.反比例函数y=1−kx()图象的每条曲线上y都随x增大而增大,则k的取值范围是(1)反比例函数y=1−kx()A.k>1B.k>0C.k<1D.k<06.丽华根据演讲比赛中九位评委所给的分数作了如下表格:如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()A.平均数B.众数C.方差D.中位数7.如图,⊙O是△ABC的外接圆,∠OBC=42°,则∠A的度数是()A.42°B.48°C.52°D.58°8.如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=3,则CD的长为()A.4B.7C.3D.129.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A.72048+x −72048=5B.72048+5=72048+xC.72048−720x=5D.72048−72048+x=510.如图,正方形ABCD的边长为2,其面积标记为S1,以CD为斜边作等腰直角三角形,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S2016的值为()A.(√22)2013B.(√22)2014C.(12)2013D.(12)201411.分解因式:x y2−x=_ _.12.一副三角板,如图所示叠放在一起,则图中∠α的度数是_ _.13.某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是_ _元.14.一个不透明的盒子中装有2个白球,5个红球和3个黄球,这些球除颜色外,没有任何其它区别,现从这个盒子中随机摸出一个球,摸到红球的概率为_ _.15.若关于x 的方程x 2+2x +m −5=0有两个相等的实数根,则m =_ _.16.如图,菱形OABC 中,∠A =120°,OA =1,将菱形OABC 绕点O 按顺时针方向旋转90°,则图中阴影部分的面积是_ _.17.计算:2cos45∘+(√2−1)0−(12)−1.18.化简,再求值:(a −2ab−b 2a )÷a−b a,其中a =2,b =﹣3. 19.如图,点C 、E 、B 、F 在同一直线上,AB ∥DE ,AC ∥DF ,AC =DF ,判断CE 与FB 的数量关系,证明你的结论.20.垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共_ _吨;,每回收1吨塑料类垃圾可获得0.7吨二(3)调查发现,在可回收物中塑料类垃圾占15级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?21.高考英语听力测试期间,需要杜绝考点周围的噪音.如图,点A是某市一高考考点,在位于A考点南偏西15°方向距离125米的C处有一消防队.在听力考试期间,消防队突然接到报警电话,告知在位于C点北偏东75°方向的F点处突发火灾,消防队必须立即赶往救火.已知消防车的警报声传播半径为100米,若消防车的警报声对听力测试造成影响,则消防车必须改进行驶,试问:消防车是否需要改道行驶?请说明理由.√3(取1.732)22.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC 于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.23.如图,一次函数y=k1x+b与反比例函数y=k2的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;的解集;(2)根据所给条件,请直接写出不等式k1x+b>k2x图象上的两点,且y1≥y2,求实数p的取值范围.(3)若P(p,y1),Q(−2,y2)是函数y=k2x24.如图,已知等边△ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求tan∠FGD的值.25.如图,等边△ABO放置在平面直角坐标系中,OA=4,动点P、Q同时从O、B两点出发,分别沿OA、BO方向匀速运动,它们的速度均为每秒1个单位长度,当点P到达点A时,P、Q两点停止运动,设点P的运动时间为x(s)(0<x<4),解答下列问题:(1)求点Q的坐标(用含x的代数式表示)(2)设△OPQ的面积为S,求S与x之间的函数关系式;当x为何值时,S有最大值?最大值是多少?个平方单位?若存在,求出相应的x (3)是否存在某个时刻x,使△OPQ的面积为3√34值;若不存在,请说明理由.1.【能力值】无【知识点】(1)相反数【详解】(1)【考点】相反数【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【解答】解:(﹣3)+3=0.故选:C.【点评】本题主要考查了相反数的定义,根据相反数的定义做出判断,属于基础题,比较简单.【答案】(1)C2.【能力值】无【知识点】(1)正方体相对两个面上的文字【详解】(1)【考点】专题:正方体相对两个面上的文字【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“设”与“丽”是相对面,“建”与“州”是相对面,“美”与“广”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.【答案】(1)D3.【能力值】无【知识点】(1)正指数科学记数法【详解】(1)【考点】科学记数法—表示较大的数【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:13.09亿=13 0900 0000=1.309×109,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【答案】(1)C4.【能力值】无【知识点】(1)由立体图形到视图【详解】(1)【考点】简单组合体的三视图【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.【答案】(1)B5.【能力值】无【知识点】(1)反比例函数的应用【详解】(1)【考点】反比例函数的性质来说,当k<0时,每一条曲线上,y随x的增大而增大;当k 【分析】对于函数y=kx>0时,每一条曲线上,y随x的增大而减小.的图象上的每一条曲线上,y随x的增大而增大,【解答】解:∵反比例函数y=1−kx∴1﹣k<0,∴k>1.故选:A.【点评】本题考查反比例函数的增减性的判定.在解题时,要注意整体思想的运中k的意义不理解,直接认为k<0,造成错误.用.易错易混点:学生对解析式y=kx【答案】(1)A6.【能力值】无【知识点】(1)众数、中位数【详解】(1)【考点】统计量的选择【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【解答】解:去掉一个最高分和一个最低分对中位数没有影响,故选:D.【点评】本题考查了统计量的选择,解题的关键是了解中位数的定义,难度不大.【答案】(1)D7.【能力值】无【知识点】(1)圆周角定理及其推理【详解】(1)【考点】圆周角定理【分析】首先连接OC,由等腰三角形的性质,可求得∠OCB的度数,继而求得∠BOC 的度数,然后利用圆周角定理求解,即可求得答案.【解答】解:连接OC,∵OB=OC,∠OBC=42°,∴∠OCB=∠OBC=42°,∴∠BOC=180°﹣∠OBC﹣∠OCB=96°,∠BOC=48°.∴∠A=12故选:B.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.【答案】(1)B8.【能力值】无【知识点】(1)平行四边形及其性质、相似三角形的性质【详解】(1)【考点】平行四边形的性质;相似三角形的判定与性质【分析】由EF∥AB,根据平行线分线段成比例定理,即可求得DEDA =EFAB,则可求得AB的长,又由四边形ABCD是平行四边形,根据平行四边形对边相等,即可求得CD的长.【解答】解:∵DE:EA=3:4,∴DE:DA=3:7∵EF∥AB,∴DEDA =EFAB,∵EF=3,∴37=3AB,解得:AB=7,∵四边形ABCD是平行四边形,∴CD=AB=7.故选:B.【点评】此题考查了平行线分线段成比例定理与平行四边形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.【答案】(1)B9.【能力值】无【知识点】(1)分式方程的应用【详解】(1)【考点】由实际问题抽象出分式方程【分析】本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.【解答】解:因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:72048+x,根据“因客户要求提前5天交货”,用原有完成时间72048减去提前完成时间72048+x , 可以列出方程:72048−72048+x =5.故选:D .【点评】这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,再利用等量关系列出方程.【答案】(1)D10.【能力值】无【知识点】(1)等腰直角三角形【详解】(1)【考点】等腰直角三角形【分析】根据等腰直角三角形的性质结合三角形的面积公式可得出部分Sn 的值,根据面积的变化即可找出变化规律“S n =4×(12)n−1”,依此规律即可解决问题.【解答】解:观察,发现:S 1=22=4,S 2=(2×√22)2=2,S 3=(√2×√22)2=1,S 4=(1×√22)2=12,…,∴S n =[2×(√22)n−1]2=4×(12)n−1,∴S 2016=4×(12)2016−1=(12)2013.故选:C .【点评】本题考查了等腰直角三角形的性质、三角形的面积、正方形的面积以及规律型中数字的变化类,根据面积的变化找出变化规律“S n =4×(12)n−1”是解题的关键.【答案】(1)C11.【能力值】无【知识点】(1)因式分解法【详解】(1)【考点】55:提公因式法与公式法的综合运用.菁优网版权所有【分析】先提取公因式x ,再对余下的多项式利用平方差公式继续分解.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.【答案】(1)解:x y2−x,=x(y2−1),=x(y﹣1)(y+1).故答案为:x(y﹣1)(y+1).12.【能力值】无【知识点】(1)三角形的内角和【详解】(1)【考点】三角形内角和定理【分析】根据三角板的常数以及三角形的一个外角等于与它不相邻的两个内角的和求出∠1的度数,再根据直角等于90°计算即可得解.【点评】本题考查了三角形的外角性质以及三角形内角和定理,熟知三角板的度数是解题的关键.【答案】(1)解:如图,∠1=45°﹣30°=15°,∠α=90°﹣∠1=90°﹣15°=75°.故答案为:75°13.【能力值】无【知识点】(1)解常规一元一次方程【详解】(1)【考点】一元一次方程的应用【分析】设每件的进价为x元,根据八折出售可获利25%,根据:进价=标价×8折﹣获利,可得出方程:200×80%﹣25%x=x,解出即可.【点评】此题考查了一元一次方程的应用,属于基础题,关键是仔细审题,根据等量关系:进价=标价×8折﹣获利,利用方程思想解答.【答案】(1)解:设每件的进价为x元,由题意得:200×80%=x(1+25%),解得:x=128,故答案为:128.14.【能力值】无【知识点】(1)公式求概率【详解】(1)【考点】概率公式【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【点评】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.【答案】(1)解:根据题意可得:一个不透明的盒子中装有2个白球,5个红球和3个黄球,共10个,摸到红球的概率为:510=12.故答案为:12.15.【能力值】无【知识点】(1)一元二次方程的根【详解】(1)【考点】根的判别式【分析】根据已知条件“关于x的方程x2+2x+m−5=0有两个相等的实数根”知,根的判别△=b2−4ac=0式,然后列出关于m的方程,解方程即可.【点评】本题主要考查了一元二次方程的根的判别式.一元二次方程ax2+bx+c=0(a ≠0)的根的判别式△=b2﹣4ac:①△>0⇒方程有两个不等实数根;②△=0⇒方程有两个相等实数根;③△<0⇒方程没有实数根.【答案】(1)解:∵关于x 的方程x 2+2x +m −5=0有两个相等的实数根, ∴△=4﹣4(m ﹣5)=0,解得,m =6;故答案为:6.16.【能力值】无【知识点】(1)扇形面积的计算、旋转变换、菱形的性质【详解】(1)【考点】菱形的性质;扇形面积的计算;旋转的性质【分析】连接OB 、OB ′,阴影部分的面积等于扇形BOB ′的面积减去两个△OCB 的面积和扇形OCA ′的面积.根据旋转角的度数可知:∠BOB ′=90°,已知了∠A =120°,那么∠BOC =∠A ′OB ′=30°,可求得扇形A ′OC 的圆心角为30°,进而可根据各图形的面积计算公式求出阴影部分的面积.【解答】解:连接OB 、OB ′,过点A 作AN ⊥BO 于点N ,菱形OABC 中,∠A =120°,OA =1,∴∠AOC =60°,∠COA ′=30°,∴AN =12,∴NO =√12−(12)2=√32, ∴BO =√3,∴S △CBO =S △C ′B ′O =12×12AO.2CO.sin60∘=√34, S 扇形OCA ′=30π×1360=π12, S 扇形OBB =90π×(√3)2360=3π4; ∴阴影部分的面积=3π4﹣(2×√34+π12)=2π3−√32. 故答案为:2π3−√32.【点评】此题考查了菱形的性质、扇形的面积公式、等边三角形的性质等知识点.【答案】(1)2π3−√3217.【能力值】无【知识点】(1)实数、锐角三角函数的性质、负指数幂运算、零指数幂运算【详解】(1)【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值【分析】根据45°角的余弦等于√22,任何非0数的0次幂等于1,有理数的负整数指数次幂等于正整数指数次幂的倒数,进行计算即可得解.【点评】本题考查了实数的运算,主要利用了零指数幂,负整数指数幂,以及特殊角的三角函数值,是基础题,熟记性质以及特殊角的三角函数值是解题的关键.【答案】(1)解:2cos45∘+(√2−1)0−(1)−1=2×√22+1﹣2=√2﹣1.18.【能力值】无【知识点】(1)分式的混合运算【详解】(1)【考点】分式的化简求值【分析】首先化简(a−2ab−b2a )÷a−ba,然后把a=2,b=﹣3代入化简后的算式,求出算式的值是多少即可.【点评】此题主要考查了分式的化简求值问题,要熟练掌握,化简求值,一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤.【答案】(1)解:(a−2ab−b2a )÷a−ba=(a−b)2a ÷a−ba=a﹣b当a=2,b=﹣3时,原式=2﹣(﹣3)=5.19.【能力值】无【知识点】(1)全等形的概念及性质【详解】(1)【考点】全等三角形的判定与性质【分析】根据两直线平行,内错角相等可得∠ABC=∠DEF,∠C=∠F,然后利用“角角边”证明△ABC和△DEF全等,根据全等三角形对应边相等可得BC=EF,然后都减去BE 即可得证.【点评】本题考查了全等三角形的判定与性质,平行线的性质,熟练掌握三角形全等的判断方法是解题的关键,难点在于利用平行线的性质求出三角形全等的条件.【答案】(1)答:CE=FB.证明如下:∵AB∥DE,∴∠ABC=∠DEF,∵AC∥DF,∴∠C=∠F,在△ABC和△DEF中,{∠ABC=∠DEF∠C=∠FAC=DF,∴△ABC≌△DEF(AAS),∴BC=EF,∴BC﹣BE=EF﹣BE,即CE=FB.20.【能力值】无【知识点】(1)扇形统计图、条形统计图(2)扇形统计图、条形统计图(3)扇形统计图、条形统计图【详解】(1)【考点】扇形统计图;条形统计图【分析】根据D类垃圾量和所占的百分比即可求得垃圾总数,然后乘以其所占的百分比即可求得每个小组的频数从而补全统计图;【点评】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.(2)【考点】扇形统计图;条形统计图【分析】求得C组所占的百分比,即可求得C组的垃圾总量;【点评】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.(3)【考点】扇形统计图;条形统计图【分析】首先求得可回收垃圾量,然后求得塑料颗粒料即可;【点评】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.【答案】(1)观察统计图知:D类垃圾有5吨,占10%,∴垃圾总量为5÷10%=50吨,故B类垃圾共有50×30%=15吨,故统计表为:(2)∵C组所占的百分比为:1﹣10%﹣30%﹣54%=6%,∴有害垃圾为:50×6%=3吨;(3)5000×54(吨),答:每月回收的塑料类垃圾可以获得378吨二级原料.21.【能力值】无【知识点】(1)解直角三角形的实际应用【详解】(1)【考点】解直角三角形的应用﹣方向角问题【分析】首先过点A作AH⊥CF于点H,易得∠ACH=60°,然后利用三角函数的知识,求得AH的长,继而可得消防车是否需要改进行驶.【点评】此题考查了方向角问题.此题难度适中,注意能借助于方向角构造直角三角形,并利用解直角三角形的知识求解是解此题的关键.【答案】(1)解:如图:过点A作AH⊥CF于点H,由题意得:∠MCF=75°,∠CAN=15°,AC=125米,∵CM∥AN,∴∠ACM=∠CAN=15°,∴∠ACH=∠MCF﹣∠ACM=75°﹣15°=60°,∴在Rt△ACH中,AH=AC•sin∠ACH=125×√3≈108.25(米)>100米.2答:消防车不需要改道行驶.22.【能力值】无【知识点】(1)全等三角形的性质(D )(2)全等三角形的性质(D )【详解】(1)【考点】全等三角形的判定与性质;翻折变换(折叠问题)【分析】由AD ∥BC ,知∠ADB =∠DBC ,根据折叠的性质∠ADB =∠BDF ,所以∠DBC =∠BDF ,得BE =DE ,即可用AAS 证△DCE ≌△BFE ;【点评】本题考查了折叠的性质、全等三角形的判定和性质、等角对等边、平行线的性质以及勾股定理的综合运用,熟练的运用折叠的性质是解决本题的关键.(2)【考点】全等三角形的判定与性质;翻折变换(折叠问题)【分析】在Rt △BCD 中,CD =2,∠ADB =∠DBC =30°,知BC =2√,在Rt △BCD 中,CD =2,∠EDC =30°,知CE =2√33,所以BE =BC ﹣EC =4√33. 【点评】本题考查了折叠的性质、全等三角形的判定和性质、等角对等边、平行线的性质以及勾股定理的综合运用,熟练的运用折叠的性质是解决本题的关键.【答案】(1)∵AD ∥BC ,∴∠ADB =∠DBC ,根据折叠的性质∠ADB =∠BDF ,∠F =∠A =∠C =90°,∴∠DBC =∠BDF ,∴BE =DE ,在△DCE和△BFE中,{∠BEF=∠DEC∠C=∠FBE=DE,∴△DCE≌△BFE;(2)在Rt△BCD中,∵CD=2,∠ADB=∠DBC=30°,∴BC=2√3,在Rt△ECD中,∵CD=2,∠EDC=30°,∴DE=2EC,∴(2EC)2−EC2=CD2,∴CE=2√33,∴BE=BC﹣EC=4√33.23.【能力值】无【知识点】(1)一次函数的应用(2)一次函数的应用(3)一次函数的应用【详解】(1)【考点】反比例函数与一次函数的交点问题【分析】把A、B的坐标代入反比例函数解析式求出m=﹣n,过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE、BF交于D,求出梯形BCAD的面积和△BDA的面积,即可得出关于n的方程,求出n的值,得出A、B的坐标,代入反比例函数和一次函数的解析式,即可求出答案;【点评】本题考查了一次函数的反比例函数的交点问题,用待定系数法求出一次函数和反比例函数的解析式,一次函数和反比例函数的图象和性质,三角形的面积等知识点,主要考查学生运用性质进行计算的能力,题目比较好,有一定的难度,用了数形结合和思想.(2)【考点】反比例函数与一次函数的交点问题【分析】根据A、B的横坐标,结合图象即可得出答案;【点评】本题考查了一次函数的反比例函数的交点问题,用待定系数法求出一次函数和反比例函数的解析式,一次函数和反比例函数的图象和性质,三角形的面积等知识点,主要考查学生运用性质进行计算的能力,题目比较好,有一定的难度,用了数形结合和思想.(3)【考点】反比例函数与一次函数的交点问题【分析】分为两种情况:当点P在第三象限时和当点P在第一象限时,根据坐标和图象即可得出答案.【点评】本题考查了一次函数的反比例函数的交点问题,用待定系数法求出一次函数和反比例函数的解析式,一次函数和反比例函数的图象和性质,三角形的面积等知识点,主要考查学生运用性质进行计算的能力,题目比较好,有一定的难度,用了数形结合和思想.【答案】(1)得:k2=2m=﹣2n,把A(2,m),B(n,﹣2)代入y=k2x即m=﹣n,则A(2,﹣n),过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE、BF交于D,∵A(2,﹣n),B(n,﹣2),∴BD=2﹣n,AD=﹣n+2,BC=|﹣2|=2,∵S△ABC =12.BC.BD∴12×2×(2﹣n)=5,解得:n=﹣3,即A(2,3),B(﹣3,﹣2),把A(2,3)代入y=k2x得:k2=6,即反比例函数的解析式是y=6x;把A(2,3),B(﹣3,﹣2)代入y=k1x+b得:{3=2k1+b−2=−3k1+b,解得:k1=1,b=1,即一次函数的解析式是y=x+1;(2)∵A(2,3),B(﹣3,﹣2),∴不等式k1x+b>k2x的解集是﹣3<x<0或x>2;(3)分为两种情况:当点P在第三象限时,要使y1≥y2,实数p的取值范围是P≤﹣2,当点P在第一象限时,要使y1≥y2,实数p的取值范围是P>0,即P的取值范围是p≤﹣2或p>0.24.【能力值】无【知识点】(1)等边三角形的性质、切线的判定、解直角三角形(2)等边三角形的性质、切线的判定、解直角三角形(3)等边三角形的性质、切线的判定、解直角三角形【详解】(1)【考点】等边三角形的性质;切线的判定;解直角三角形【分析】连结OD,根据等边三角形的性质得∠C=∠A=∠B=60°,而OD=OB,所以∠ODB=60°=∠C,于是可判断OD∥AC,又DF⊥AC,则OD⊥DF,根据切线的判定定理可得DF是⊙O的切线;【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的性质以及解直角三角形等知识.(2)【考点】等边三角形的性质;切线的判定;解直角三角形【分析】先证明OD为△ABC的中位线,得到BD=CD=6.在Rt△CDF中,由∠C=60°,得∠CDF=30°,根据含30度的直角三角形三边的关系得CF=12CD=3,所以AF=AC﹣CF=9,然后在Rt△AFG中,根据正弦的定义计算FG的长;【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的性质以及解直角三角形等知识.(3)【考点】等边三角形的性质;切线的判定;解直角三角形【分析】过D作DH⊥AB于H,由垂直于同一直线的两条直线互相平行得出FG∥DH,根据平行线的性质可得∠FGD=∠GDH.解Rt△BDH,得BH=12BD=3,DH=√3BH=√33.解Rt△AFG,得AG=12AF=92,则GH=AB﹣AG﹣BH=92,于是根据正切函数的定义得到tan∠GDH=GHDH =√32,则tan∠FGD可求.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了等边三角形的性质以及解直角三角形等知识.【答案】(1)证明:连结OD,如图,∵△ABC为等边三角形,∴∠C=∠A=∠B=60°,而OD=OB,∴△ODB是等边三角形,∠ODB=60°,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)解:∵OD ∥AC ,点O 为AB 的中点,∴OD 为△ABC 的中位线,∴BD =CD =6.在Rt △CDF 中,∠C =60°,∴∠CDF =30°,∴CF =12CD =3,∴AF =AC ﹣CF =12﹣3=9,在Rt △AFG 中,∵∠A =60°,∴FG =AF ×sinA =9×√32=9√32; (3)解:过D 作DH ⊥AB 于H .∵FG ⊥AB ,DH ⊥AB ,∴FG ∥DH ,∴∠FGD =∠GDH .在Rt △BDH 中,∠B =60°,∴∠BDH =30°,∴BH =12BD =3,DH =√3BH =3√3.在Rt △AFG 中,∵∠AFG =30°,∴AG=12AF=92,∵GH=AB﹣AG﹣BH=12﹣92﹣3=92,∴tan∠GDH=GHDH =923√3=√32,∴tan∠FGD=tan∠GDH=√32.25.【能力值】无【知识点】(1)解直角三角形(2)解直角三角形(3)解直角三角形【详解】(1)【考点】三角形综合题【分析】过点Q作QD⊥OA于点D,解直角三角形QOD,分别求出OD,QD和x的关系式,即可得到点Q的坐标;.【点评】本题主要考查了和三角形有关的知识,其中用到了二次函数的最值、等边三角形的性质、特殊角的锐角的锐角三角函数值、解一元二次方程、图形面积的求法,题目的综合性较强,对学生的计算能力要求很高,是一道不错的中考压轴题目.(2)【考点】三角形综合题【分析】由三角形面积公式可得s与x之间的二次函数关系式,然后利用配方法求得其最大值即可;【点评】本题主要考查了和三角形有关的知识,其中用到了二次函数的最值、等边三角形的性质、特殊角的锐角的锐角三角函数值、解一元二次方程、图形面积的求法,题目的综合性较强,对学生的计算能力要求很高,是一道不错的中考压轴题目.(3)【考点】三角形综合题【分析】存在某个时刻x的值,使△OPQ的面积为3√34个平方单位,由(2)可知把y=3√34代入求出对应的x值即可.【点评】本题主要考查了和三角形有关的知识,其中用到了二次函数的最值、等边三角形的性质、特殊角的锐角的锐角三角函数值、解一元二次方程、图形面积的求法,题目的综合性较强,对学生的计算能力要求很高,是一道不错的中考压轴题目.【答案】(1)过点Q 作QD ⊥OA 于点D ,如图所示:∵△ABO 是等边三角形,∴∠AOB =60°,∵动点Q 从B 点出发,速度为每秒1个单位长度,∴BQ =x ,∴OQ =4﹣x ,在Rt △QOD 中,OD =OQ •cos60°=(4﹣x )×12=2﹣12x ,QD =OQ •sin60°=(4﹣x )×√32=2√3﹣√32x ,∴点Q 的坐标为(2﹣12x ,2√﹣√32x );(2)∵动点P 从O 点出发,速度为每秒1个单位长度,∴OP =x ,∴S =12OP •QD =12x (2√﹣√32x )=-√34x 2+x ,=−√34(x −2)2+√3(0<x <4),∵a =﹣√34<0,∴当x =2时,S 有最大值,最大值为√3;(3)存在某个时刻x 的值,使△OPQ 的面积为3√34个平方单位,理由如下:,假设存在某个时刻,使△OPQ 的面积为3√34个平方单位,由(2)可知)=−√34x 2+√3x =3√34,解得x =1或x =3,∵0<x<4,∴x=1或x=3都成了,个平方单位.即当x=1s或3s时,能使△OPQ的面积为3√34。

相关文档
最新文档