河南省洛阳市下峪镇初级中学八年级数学下册【实践与探索(二)】教案 新人教版
河南省洛阳市下峪镇初级中学八年级数学下册《分式的概念》教案 新人教版

主持人: 时间参加人员 地点 主备人 课题 分式的概念教学目标知识与技能:经历实际问题的解决过程,从中认识分式,并能概括分式2、过程与方法:使学生能正确地判断一个代数式是否是分式3.情感态度与价值观:。
能通过回忆分数的意义,类比地探索分式的意义及分式的值如某一特定情况的条件,渗透数学中的类比,分类等数学思想。
重、难点即考点分析 重点:探索分式的意义及分式的值为某一特定情况的条件。
难点:能通过回忆分数的意义,探索分式的意义及分式的值为某一特定情况的条件。
分析:分式的混合运算的关键是掌握异分母分式的通分以及因式分解的熟练程度 课时安排 1课时 教具使用彩色粉笔 教 学 环 节 安 排备 注 (一)复习与情境导入:填空(1)面积为2平方米的长方形一边长为3米,则它的另一边长为 米。
(2)面积为S 平方米的长方形一边长为a 米,则它的另一边长为 米。
(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的住售价是 元。
(4)根据一组数据的规律填空:1,161,91,41…… (用n 表示) 观察你列出的式子,与以前学过的有什么不同?像这样的式子叫分式。
先根据题意列代数式,并观察出它们的共性:分母中含字母的式子。
(二)实践与探索例1、下列各式中,哪些是整式?哪些是分式?(1)x 1; (2)2x ; (3)y x xy +2; (4)33y x -. 例2、探究:练习 讨论探索当x 取什么数时,分式2||24x x -- (1)有意义 (2)值为零? 例3、已知分式bax a x +-2,当x=3时,分式值为0,当x=-3时,分式无意义,求a,b 的值。
可类比分数来解。
讨论探索(四)小结与作业 分式的概念和分式有意义的条件。
作业 布置 本章复习B 组题重难点及考点巩固性练习五,达标训练1.下列各式分别回答哪些是整式?哪些是分式?52+x,mn, 2a-3b,32-yy,)2)(1(92---xxx,53-2 :分式23yy+-,当y时,分式有意义;当y时,分式没有意义;当y时,分式的值为0。
【新教材】河南省洛阳市下峪镇初级中学八年级数学《平行四边形》教案(2) 新人教版

时间参加人员地点主备人课题教学目标1. 知识与技能:(1)在熟悉平行四边形概念的基础上,进一步掌握平行四边形的性质;(2)能熟练应用平行四边形的性质解决一些生活中的实际问题。
2. 过程与方法:在探究平行四边形的性质的过程中,让学生注重对比较分析的学习。
3. 情感态度与价值观:教育学生养成实事求是、严谨的科学态度重、难点及考点分析1、平行四边形性质的推导过程2、平行四边形的性质及其应用课时安排教具使用教学环节安排备注一、复习回忆,导入新课1、提问:平行四边形的概念及对称性2、探索做一做:先画平行四边形,再绕其顶点旋转180°,然后平移,看能否与原平行四边形重合?你能得到什么结论。
[学生活动] 动手操作,积极探究,得出平行四边形的性质:平行四边形的两组对边分别平行且相等;平行四边形的两组对角分别相等。
二、总结规律如图所示,在□ABCD中,有(1)平行四边形的两组对边分别平行且相等;如图所示,在□ABCD 中,有AB ∥CD 、AD ∥BC 且AB=CD 、AD=BC(2)平行四边形的两组对角分别相等。
如图所示,在□ABCD 中,有∠A=∠C 、∠B=∠D练习:在□ABCD 中,(1)若 AB=6cm,BC=4cm,则CD= _,AD=_;(2)若∠A=50°,则∠B=_,∠C=_,∠D=_三、知识应用,巩固提高例:如下图,在□ABCD 中,已知AB=8,周长等于24,求其余三条边的长。
思路点拨:有平行四边形的两组对边分别平行且相等知,平行四边形的邻边之和等于周长的一半。
练习:1、已知在□ABCD 中,∠A=120°,求其余各内角的度数。
2、已知在□ABCD 中,AB=5,BC=3,求它的周长。
四、课堂小结 A D CBA D C B平行四边形的性质:(1)平行四边形的两组对边分别平行且相等;(2)平行四边形的两组对角分别相等。
作业布置课本第100页:习题16.1第1,3题重难点及考点巩固性练习1、填空:在□ABCD中∠B=56°,AB=13,CB=25,则∠A=_、∠C=_、∠D=_;AC=_、A D=_2、在□ABCD中:①∠A∶∠B=5∶4,则∠A=__;②∠A+∠C =200°,则∠A=___,∠B=__;3、已知平行四边形周长为54,两邻边之比为4∶5,则这两边长度分别为__;4、已知□ABCD对角线交点为O,AC=24mm,BD=26mm,①若AD =22mm,则△OBC周长为__;②若AB⊥AC,则△OBC比△OAB的周长大___;5、在AB□CD中,AB=8cm,BC=10cm,∠B=30°,S ABCD=__。
新人教版初中八年级数学下册《实践与探索》教案

实践与探索第一课时教学目标1.使学生理解二元一次方程组的解是两条直线的交点坐标,并能通过图象法来求二元一次方程组的解;2.让学生了解到函数是刻画和研究现实世界数量关系的重要数学模型,也是一种重要的数学思想,培养和提高学生在数学学习中的创造和应用函数的能力.3.使学生体会到实际问题中数量之间的相互关系,学会用函数的思想去进行描述、研究其内在联系和变化规律;4.通过图象获取函数相关信息,运用图象来解释实际问题中相关量的涵义;5.使学生体会到二元一次方程组的解是两条直线的交点坐标,能通过图象法来求二元一次方程组的解.教学过程一、创设情境问题学校有一批复印任务,原来由甲复印社承接,按每100页40元计费.现乙复印社表示:若学校先按月付给一定数额的承包费,则可按每100页15元收费.两复印社每月收费情况如下图所示.根据图象回答:(1)乙复印社的每月承包费是多少?(2)当每月复印多少页时,两复印社实际收费相同?(3)如果每月复印页数在1200页左右,那么应选择哪个复印社?二、探究归纳问“乙复印社的每月承包费”在图象上怎样反映出来?答“乙复印社的每月承包费”指当x=0时,y的值,从图中可以看出乙复印社的每月承包费是200元.问“收费相同”在图象上怎样反映出来?答“收费相同”是指当x取相同的值时,y相等,即两条射线的交点.我们看到,两个一次函数图象的交点处,自变量和对应的函数值同时满足两个函数的关系式.而两个一次函数的关系式就是方程组中的两个方程,所以交点的坐标就是方程组的解.据此,我们可以利用图象来求某些方程组的解.问如何在图象上看出函数值的大小?答作一条x轴的垂线,如下图,此时x的值相同,它与哪一条射线的交点较高,就表示对应函数值较大,收费就较高;反之,它与另一条射线的交点较低,就表示对应函数值较小,收费就较低.从图中可以看出,如果每月复印页数在1200页左右,那么应选择乙复印社收费较低.三、实践应用例1小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.小张的同学小王以前没有存过零用钱,听到小张在存零用钱,表示从小张存款当月起每个月存18元,争取超过小张.请你写出小张和小王存款和月份之间的函数关系,并计算半年以后小王的存款是多少,能否超过小张?至少几个月后小王的存款能超过小张?解设小张存x个月的存款是y1元,小王的存x个月的存款是y2元,则y1=50+12x,y2=18x,当x=6时,y1=50+12×6=122(元),y2=18×6=108(元).所以半年后小王的存款不能超过小张.由y 2>y 1,即18x > 50+12x ,得x >318,所以9个月后,小王的存款能超过小张.思考:①求⎩⎨⎧=+=.18,1250x y x y 的解.②观察两直线交点坐标与这个方程组的解有什么关系.结论 我们看到,两个一次函数图象的交点处,自变量和对应的函数值同时满足两个函数的关系式.而两个一次函数的关系式就是方程组中的两个方程,所以交点的坐标就是方程组的解.据此,我们可以利用图象来求某些方程组的解.例2 利用图象解方程组⎩⎨⎧+-=-=.1,52x y x y 解 在直角坐标系中画出两条直线,如下图所示.两条直线的交点坐标是(2,-1),所以方程组的解为⎩⎨⎧-==.1,2y x例3 下图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象).根据图象解答下列问题:(1)请分别求出表示轮船和快艇行驶过程的函数解析式(不要求写出自变量的取值范围);(2)轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少?(3)问快艇出发多长时间赶上轮船?解 (1)设表示轮船行驶过程的函数解析式为y =kx (k ≠0), 由图象知:当x =8时,y =160.代入上式,得8k =160,可解得k =20.所以轮船行驶过程的函数解析式为y =20x .设表示快艇行驶过程的函数解析式为y =ax +b (a ≠0),由图象知:当x =2时,y =0;当x =6时,y =160.代入上式,得⎩⎨⎧=+=+.1606,02b a b a 可解得⎩⎨⎧-==.,8040b a 所以快艇行驶过程的函数解析式为y =40x -80.(2)由图象可知,轮船在8小时内行驶了160千米,快艇在4小时内行驶了160千米,所以轮船的速度是208160=(千米/时),快艇的速度是404160=(千米/时). (3)设轮船出发x 小时快艇赶上轮船,20x =40x -80得x =4,x -2=2.答 快艇出发了2小时赶上轮船.第二课时教学目标1.使学生理解并掌握一次函数与一元一次方程、一元一次不等式的相互联系;2.使学生能初步运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.3.使学生体会到一次函数与一元一次方程、一元一次不等式的相互联系;4.使学生感受到“数形结合”在数学研究和探究现实生活数量关系及其变化规律中的作用.5.能运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集. 教学过程一、创设情境问题 画出函数y =323+x 的图象,根据图象,指出:(1) x 取什么值时,函数值 y 等于零?(2) x 取什么值时,函数值 y 始终大于零?二、探究归纳问 一元一次方程323+x =0的解与函数y =323+x 的图象有什么关系?答 一元一次方程323+x =0的解就是函数y =323+x 的图象上当y =0时的x 的值.问 一元一次方程323+x =0的解,不等式323+x >0的解集与函数y =323+x 的图象有什么关系?答 不等式323+x >0的解集就是直线y =323+x 在x 轴上方部分的x 的取值范围.三、实践应用例1 画出函数y =-x -2的图象,根据图象,指出:(1) x 取什么值时,函数值 y 等于零?(2) x 取什么值时,函数值 y 始终大于零?解 过(-2,0),(0,-2)作直线,如图.(1)当x=-2时,y=0;(2)当x<-2时,y>0.例2 利用图象解不等式(1)2x-5>-x+1,(2) 2x-5<-x+1.解设y1=2x-5,y2=-x+1,在直角坐标系中画出这两条直线,如下图所示.两条直线的交点坐标是(2, -1) ,由图可知:(1)2x-5>-x+1的解集是y1>y2时x的取值范围,为x>-2;(2)2x-5<-x+1的解集是y1<y2时x的取值范围,为x<-2.四、交流反思运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.五、检测反馈1.已知函数y =4x -3.当x 取何值时,函数的图象在第四象限?2.画出函数y =3x -6的图象,根据图象,指出:(1) x 取什么值时,函数值 y 等于零?(2) x 取什么值时,函数值 y 大于零?(3) x 取什么值时,函数值 y 小于零?3.画出函数y =-0.5x -1的图象,根据图象,求:(1)函数图象与x 轴的交点坐标;(2)函数图象在x 轴上方时,x 的取值范围;(3)函数图象在x 轴下方时,x 的取值范围.4.如图,一次函数y =kx +b 的图象与反比例函数xm y的图象交于A 、B 两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出一次函数的值大于反比例函数的值的x的取值范围.第三课时教学目标1.通过对一次函数性质、一次函数与一次方程、一次不等式联系的探索,提高自主学习和对知识综合应用的能力.2.让学生用简单的已知函数来拟合实际问题中变量的函数关系.3.让学生在探索过程中,体会“问题情境—建立模型—解释应用—回顾拓展”这一数学建模的基本思想,感受函数知识的应用价值;4.让学生结合自身的生活经历,模仿尝试解决一些身边的函数应用问题.教学过程一、创设情境问题为了研究某合金材料的体积V(cm3)随温度t(℃)变化的规律,对一个用这种合金制成的圆球测得相关数据如下:能否据此求出V和t的函数关系?将这些数值所对应的点在坐标系中作出.我们发现,这些点大致位于一条直线上,可知V和t近似地符合一次函数关系.我们可以用一条直线去尽可能地与这些点相符合,求出近似的函数关系式.如下图所示的就是一条这样的直线,较近似的点应该是(10,1000.3)和(60,1002.3).设V=kt+b(k≠0),把(10,1000.3)和(60,1002.3)代入,可得k=0.04,b=999.7.V=0.04t+999.7.你也可以将直线稍稍挪动一下,不取这两点,换上更适当的两点.二、探究归纳我们曾采用待定系数法求得一次函数和反比例函数的关系式.但是现实生活中的数量关系是错综复杂的,在实践中得到一些变量的对应值,有时很难精确地判断它们是什么函数,需要我们根据经验分析,也需要进行近似计算和修正,建立比较接近的函数关系式进行研究.三、实践应用例1 为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身长调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1)小明经过对数据探究,发现:桌高y 是凳高x 的一次函数,请你求出这个一次函数的关系式(不要求写出x 的取值范围);(2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77cm ,凳子的高度为43.5cm ,请你判断它们是否配套?说明理由.解 (1)设一次函数为y =kx +b (k ≠0),将表中数据任取两组,不妨取(37.0,70.0)和(42.0,78.0)代入,得⎩⎨⎧+=+=.4278,3770b k b k 解得⎩⎨⎧==.8.10,6.1b k 一次函数关系式是y =1.6x +10.8.(2)当x =43.5时,y =1.6×43.5+10.8=80.4≠77.答 一次函数关系式是y =1.6x +10.8,小明家里的写字台和凳子不配套.例2 某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回.已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y (元)与所买的水果量x (千克)之间的函数关系式,并写出自变量x 的取值范围.(2)当购买量在什么范围时,选择哪种购买方案付款最少?并说明理由.解 (1))3000(9≥x x y =甲;)3000(50008≥+=x x y 乙.(2)当乙甲=y y ,即9x =8x +5000时,解得x =5000.所以当x =5000时,两种付款一样;⎩⎨⎧+<≥<.500089,3000x x x y y 时,有当乙甲 解得3000≤x <5000.所以当3000≤x <5000时,选择甲方案付款最少;500089+>>x x y y 时,有当乙甲.解得x >5000.所以当x >5000时,选择乙方案付款最少.。
八年级数学下册第十九章一次函数实践与探讨2教案新版

实践与探讨(2)知识技术目标1.使学生明白得并掌握一次函数与一元一次方程、一元一次不等式的彼此联系;2.使学生能初步运用函数的图象来讲明一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.过程性目标1.使学生体会到一次函数与一元一次方程、一元一次不等式的彼此联系;2.使学生感受到“数形结合”在数学研究和探讨现实生活数量关系及其转变规律中的作用.3.能运用函数的图象来讲明一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.教学进程一、创设情境问题画出函数y=的图象,依照图象,指出:(1) x取什么值时,函数值y等于零?(2) x取什么值时,函数值y始终大于零?二、探讨归纳问一元一次方程=0的解与函数y=的图象有什么关系?答一元一次方程=0的解确实是函数y=的图象被骗y=0时的x的值.问一元一次方程=0的解,不等式>0的解集与函数y=的图象有什么关系?答不等式>0的解集确实是直线y=在x轴上方部份的x的取值范围.三、实践应用例1 画出函数y=-x-2的图象,依照图象,指出:(1) x取什么值时,函数值y等于零?(2) x取什么值时,函数值y始终大于零?解过(-2,0),(0,-2)作直线,如图.(1)当x=-2时,y=0;(2)当x<-2时,y>0.例2 利用图象解不等式(1)2x-5>-x+1,(2) 2x-5<-x+1.解设y1=2x-5,y2=-x+1,在直角坐标系中画出这两条直线,如以下图所示.两条直线的交点坐标是(2, -1) ,由图可知:(1)2x-5>-x+1的解集是y1>y2时x的取值范围,为x>-2;(2)2x-5<-x+1的解集是y1<y2时x的取值范围,为x<-2.四、交流反思运用函数的图象来讲明一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.五、检测反馈1.已知函数y=4x-3.当x取何值时,函数的图象在第四象限?2.画出函数y=3x-6的图象,依照图象,指出:(1) x取什么值时,函数值y等于零?(2) x取什么值时,函数值y大于零?(3) x取什么值时,函数值y小于零?3.画出函数y=-0.5x-1的图象,依照图象,求:(1)函数图象与x轴的交点坐标;(2)函数图象在x轴上方时,x的取值范围;(3)函数图象在x轴下方时,x的取值范围.4.如图,一次函数y=kx+b的图象与反比例函数的图象交于A、B两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)依照图象写出一次函数的值大于反比例函数的值的x的取值范围.。
八年级数学下册《实践与探索》教案、教学设计

在学生小组讨论环节,教师应关注以下几点:
1.分组:根据学生的学习能力和特点,合理分组,确保每个学生都能在小组中发挥作用。
2.话题设置:针对本节课所学内容,设置具有讨论价值的问题,引导学生展开讨论。
3.过程指导:在学生讨论过程中,教师应巡回指导,关注学生的讨论进度,适时给予提示和鼓励。
2.生活实例:举例说明在实际生活中,如装修房屋、制作家具等,都需要计算面积和体积。通过实例,让学生认识到学习几何图形面积和体积计算的重要性。
3.多媒体展示:利用多媒体课件,展示各种几何图形及其在实际生活中的应用,如三角形、四边形、圆等。激发学生的学习兴趣,为新课的学习营造氛围。
(二)讲授新知,500字
-运用任务驱动法,设计具有挑战性的实践任务,激发学生的探究欲望。
-实施分层教学,关注学生个体差异,提高全体学生的数学素养。
2.教学方法:
-采用启发式教学,引导学生通过自主探究、合作交流,发现问题、解决问题。
-利用信息技术手段,如数学软件、网络资源等,辅助教学,提高学生的学习兴趣。
-定期进行教学评价,了解学生学习情况,及时调整教学策略。
八年级数学下册《实践与探索》教案、教学设计
一、教学目标
(一)知识与技能
在本章节《实践与探索》的教学中,学生将通过具体的实践活动,进一步巩固八年级下册数学所学的知识。具体包括:
1.理解并掌握几何图形的面积和体积计算方法,如三角形、四边形、圆等,以及简单立体图形如长方体、圆柱体等。
2.学会运用数学。
(五)总结归纳,500字
在总结归纳环节,教师应从以下方面进行:
1.知识梳理:引导学生回顾本节课所学的内容,总结几何图形的面积和体积计算方法。
河南省洛阳市下峪镇初级中学八年级数学《图形的全等》教案(2) 新人教版

【2012年秋新教材】河南省洛阳市下峪镇初级中学八年级数学《图形的全等》教案(2)新人教版时间 参加人员 地点主备人课题教学 目标1.知识与技能:了解全等图形全等的概念与特征,掌握判断全等图形的方法。
2.过程与方法:通过画图、分割和设计,积累对全等图形的体验,感受图形变换的思想。
3.情感态度与价值观:通过欣赏观察,动手操作,使学生体验到数学的思想方法及数学的应用价值。
重、难点即考点分析 重点、难点:了解全等图形的概念与特征,掌握判断全等图形的方法;课时安排 第二课时 教具使用小黑板,三角板教 学 环 节 安 排备 注一、复习回顾1、全等多边形的特征、识别。
全等多边形特征呢?全等多边形的对应边、对应角分别相等。
如五边形ABCDE ≌五边形A ′B ′C ′D ′E ′⇒对应角相等:'A A ∠=∠,'B B ∠=∠ ,'C C ∠=∠, 'D D ∠=∠ 'E E ∠=∠对应边相等:''AB A B =,''BC B C =,''CD C D =,''DE D E =,''EA E A =2、全等三角形的特征、识别。
(1)△ABC ≌△DEF ,你得到全等三角形的对应边、对应角分别相等; (2) 如果两个三角形的边、角分别对应相等,可以得到△ABC ≌△DEF 。
二、随堂练习①在教师的引导下,复习回顾全等图形的特征、识别方法。
②老师提问,学生回答。
1、图形的三种基本变换是。
叫做全等图形,全等图形的_ ___和___ __都相同.2、全等多边形的性质是。
全等三角形的性质是________ ____________.3、下列说法正确的是()①用一张像纸冲洗出来的10张1寸像片是全等形;②我国国旗上的4颗小五角星是全等形;③所有的正方形是全等形;④全等形的面积一定相等.A.1个B.2个C.3个D.4个4、对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,面积也相同.其中能获得这两个图形全等的结论共有()A.1个B.2个C.3个D.4个5、下列说法正确的是………………………………()A.所有正方形都是全等图形.B.面积相等的两个三角形是全等图形.C.所有半径相等的圆都是全等图形.D.所有长方形都是全等图形.6、下列图形中,哪些是全等形?用线把它们连接起来.7、△ABC与△A′B′C′是一对全等的三角形,其中△ABC中,AB=5,AB 边上的高CD=4,求△A′B′C′的面积.8、已知ΔABC≌ΔDEF,点A与点D.点B与点E分别是对应顶点,(1)若ΔABC的周长为32,AB=10,B C=14,则①在教师的组织引导下,学生通过自主探索、合作交流的研讨式学习②学生先练习,老师讲评。
八年级数学下册分式方程教案2新人教版

河南省洛阳市下峪镇初级中学八年级数学下册《分式方程 2》教课设计新人教版主持人:时间参加人员地址主备人教课目标重、难点即考点剖析课时安排 4 课时教具使用教学环节安排(一)复习并问题导入1.复习练习3 x4 x2解下列方程:(1)x 1x1课题分式方程2备注( 2 )237x322x62. 列方程解应用题的一般步骤?议论后回答 .[ 归纳 ] 这些解题方法与步骤,关于学习分式方程应用题也合用. 这节课,我们将学习列分式方程解应用题.(二)实践与探究1:列分式方程解应用题[ 剖析 ] ( 1)如何设[ 例 1] 某校招生录取时,为了防备数据输入犯错, 2640名学生的成元( 2)题目中有几绩数据分别由两位程序操作员各向计算机输入一遍,而后让计算机个相等关系?( 3 )比较两人的输入能否一致. 已知甲的输入速度是乙的 2 倍,结果甲如何列方程比乙少用 2 小时输完 . 问这两个操作员每分钟各能输入多少名学生的成绩?解设乙每分钟能输入x 名学生的成绩,则甲每分能输入2x名学重申:既要查验所求生的成绩,依据题意得的解是不是原分式26402640方程的解,还要查验260能否切合题意;时间2x=x.要一致. 读题、审解得 x= 11.题、设元、找相等关经查验, x= 11 是原方程的解 . 而且 x= 11,2x= 2× 11= 22,符合系列方程 . 此题有两题意 .个相等关系:答:甲每分钟能输入22 名学生的成绩,乙每分钟能输入11 名学( 1)甲速 =2 乙速生的成绩 .( 2)甲时 +120=乙时2.概括此中( 1 )用来设,列分式方程解应用题的一般步骤:( 2)用来列方程(1)审清题意;注意如何查验 .(2)设未知数(要有单位);(3)依据题目中的数目关系列出式子,找出相等关系,列出方程;(4)解方程,并验根,还要看方程的解能否切合题意;(5)写出答案(要有单位) .例 2 A, B 两地相距135 千米,两辆汽车从 A 开往 B,大汽车比小汽车早出发 5 小时,小汽车比大汽车晚到30 分钟,已知小汽车与大汽车的速度之比为5:2,求两车的速度 .分析:设大车的速度为2x 千米 / 时,小车的速度为 5x 千米 /时,依据题意得13513551解之得 x=92x5x2经查验 x=9 是原方程的解当 x=9 时, 2x=18 , 5x=45答:大车的速度为18 千米 / 时,小车的速度为45千米/ 时板演 .(三)创新实践与探究3:自编一道可列方程为畅所欲言畅所1020的应用题 .欲言说内心话x x5(四)小结列分式方程与列一元一次方程解应用题的差异是什么?你能总结一以下分式方程应用题的步骤吗?作业课本 14页2、3题布置重(1)甲乙两人同时从地出发,骑自行车到地,已知难两地的距离为,甲每小时比乙多走,而且比乙点先到 40 分钟.设乙每小时走及,则可列方程为()考A B点.巩C. D .固(2)我军某部由驻地到距离30 千米的地方去履行任务,由性1.5练于状况发生了变化,急行军速度必要是原计划的倍,才2 小时抵达,求急行军的速度 .习能按要求提早。
八年级数学下册实践与探索(第2课时)教案

17.5实践与探索第2课时(一)本课目标1.了解一次函数与一元一次方程、一元一次不等式之间的相互关系.2.学会用图象法解一元一次方程和一元一次不等式.(二)教学流程1.情境导入教师利用多媒体演示课本第60页图17.5.2(上节课的例题图象).对照图象,请同学们回答下列问题.(1)当x取何值时,2x-5=-x+1?(2)当x取何值时,2x-5>-x+1?(3)当x取何值时,2x-5<-x+1?2.课前热身学生展示上节课课后收集的华氏温度与摄氏温度的相关资料和图片, 交流探讨-得出的两种温度之间的函数关系.3.合作探究(1)整体感知上节课我们学习了通过观察一次函数的图象, 回答提出的问题和用图象法解一元一次方程组的方法,本节课我们将着重探讨一次函数与一元一次方程、一元一次不等式之间的联系.(2)四边互动.互动1师:利用多媒体演示幻灯片4.问题2:画出函数y=32x+3的图象,根据图象,指出:(1)x取什么值时,函数值y 等于零?(2)x 取什么值时,函数值y始终大于零?生:动手操作,讨论交流解答的结果.师:由问题2,想想看,一元一次方程32x+3=0的解,不等式32x+3>0 的解集与函数y=32x+3的图象有什么关系?说说你的想法,并和同学讨论交流.生:分组讨论交流后,再在全班展开交流,让全体同学达成共识.明确教师利用多媒体演示画出的函数图象,如图所示.由图象可知: 当x=-2时,函数值等于零;当x>-2时,函数值始终大于零.归纳可得:从“数”的角度来看,一次函数y=kx+b(k≠0)的函数值是0时,对应的x 的值就是一元一次方程kx+b=0的解;当一次函数y=kx+b的值大于0时,对应部分x 的取值的集合,就是不等式kx+b>0的解集;当一次函数y=kx+b的值小于0时, 对应部分x的取值的集合,就是不等式kx+b<0的解集.从“形”的角度看,直线y=kx+b(k≠0)与x轴交点的横坐标就是方程kx+b=0的解;直线y=kx+b位于x轴上方部分对应的x的值的集合,就是不等式kx+b>0的解集; 直线y=kx+b位于x轴下方部分对应的x的值的集合,就是不等式kx+b<0的解集.互动2师:在合作交流的基础上,请同学们从“数”和“形”的不同角度, 概括归纳本节课开始提出的问题.生:讨论交流,达成共识.明确从“数”的角度来看,当一次函数y=2x-5和y=-x+1的函数值相等时,对应的x的值就是方程2x-5=-x+1的解;当一次函数y=2x-5的函数值大于y=-x+1 的函数值时,对应的x的值的集合就是不等式2x-5>-x+1的解集;当一次函数y=2x-5的函数值小于y=-x+1的函数值时,对应的x的值的集合就是不等式2x-5<-x+1的解集.从“形”的角度来看,直线y=2x-5和y=-x+1的交点的横坐标,就是方程2x-5=-x-+1的解;直线y=2x-5位于直线y=-x+1上方部分对应的x的值的集合,就是不等式2x-5>-x+1的解集;直线y=2x-5位于直线y=-x+1下方部分对应的x的值的集合,就是不等式2x-5<-x+1的解集.互动3师:利用多媒体演示幻灯片.画出函数y=-2x+2的图象,观察图象并回答问题.(1)确定当0<y<2时,对应的自变量的取值范围;(2)确定当-1≤x<1时,对应的函数值的取值范围.生:动手画图,并回答问题,然后与相邻的明确教师利用多媒体演示解答的过程和结果,验证学生的结论.依题意画出的函数图象如图所示,由图象观察可知:当0<y<2时,0<x<1;当-1<x<1时,0<y≤4.4.达标反馈请解答课本第62页练习第1题和第2题.(教师在教室里来回巡视,进行必要的指点和帮助)5.学习小结(1)内容总结本课我们主要学习了哪些内容?(一次函数与一元一次方程和不等式的关系;用图象法解一元一次方程和不等式)(2)方法归纳一次函数、一元一次方程、一元一次不等式可以相互转化, 利用一次函数的图象可以解决一元一次方程或不等式问题, 有时也可以利用一元一次方程或不等式解决一次函数问题.(三)延伸拓展1.链接生活如图所示,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于点A( --2,1),B(1,n).①根据条件,求一次函数与反比例函数的解析式;①根据图象写出使一次函数值大于反比例函数值的x的取值范围.答案:①y=-x-1,y=-2x, ①x<-22.实践探索(1)实践活动自编一道利用一次函数图象解决一元一次方程与一元一次不等式的题目.(2)巩固练习课本第64页习题17.5第1-3题.(四)板书设计xyB A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当函数值y等于零时,直线y=x+3与x轴相交于点(-2,0),这时的横坐标就是所求的x值。所以当x=-2时,函数值y等于零。因为在x轴上方的函数图象每一点的纵坐标都大于0,横坐标都大于-2。所以当x>-2时,函数值y始终大于零。
小结:在x轴上方的函数图象,任意一点的纵坐标都大于0,反映在函数解析式上,就是函数值大于0,在x轴下方的函数图象,任意一点的纵坐标都小于0,反映在函数解析上,就是函数值小于0。提问:①当x取什么值时,函数值y始终小于零?②当x取什么值时,函数值y小于3?③当x取何值时,0≤y≤3?
河南省洛阳市下峪镇初级中学八年级数学下册《实践与探索(二)》教案新人教版
主持人:
时间
参加人员
地点
主备人
课题
实践与探索(二)
教学
目标
1.知识与技能:熟练掌握一次函数图象的画法,能通过函数图象获取信息,发展形象思维。
2.过程与方法:体验一次函数图象与一元一次方程的解,一元一次不等式的解集之间关系的探索过程,
3.情感态度与价值观:培养学生图形语言,数学语言以及文字语言相互转化的能力。
重、难点及考点分析
掌握一次函数图象的画法,能通过函数图象获取信息,发展形象思维。
课时安排
一课时
教具使用
三角板
教学环节安排
一、范例
1.画出函数y=x+3的图象,根据图象,指出:
(1)x取什么值时,函数的值等于零?
(2)x取什么值时,函数值y始终大于零?
4.在常温下向一定量的水中加入食盐Nacl,则能表示盐水溶液的
浓度与加入的Nacl的量之间的变化关系的图象大致是()
5.一列货运火车从梅州站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一个车站停下,装完货以后,火车又匀加速行驶,一段时间后再次开始匀速行驶,那么可以近似地刻画出火车在这段时间内的速度变化情况的是( )
备注
作
业
布
置
P57页习题3、4
重
难
点
及
考
点
巩
固
性
练
习
1.下列图形中的曲线不表示 是 的函数( ).
(A)x≥- 3(B)x≤- 3(C)x≥3(D)x≤3
3.根据流程右边图中的程序,当输入数值x为-2时,输出数值y为B()
A.4 B.6 C.8 D.10
二、想一想
由上例,想想看,一元一次方程x+3=0的解,不等式x+3>0的解集与函数y=x+3的图象有什么关系?说说你的想法,并和同学讨论交流.
在学生讨论、交流和发表意见后,教师加以引导,最后归纳.
三、课堂练习
P55页练习l、2.
四、小结
本节课,通过作函数图象、观察函数图象,并从中初步体会一元一次不等式、一元一次方程与一次函数的内在联系,使我们感受到不等式、方程、函数是紧密联系着的一个整体,今后,我们还要继续学习并研究它们之间的内在联系。