浙教版九年级上册数学第一章:二次函数易错题——最值问题(含解析)
九年级上册数学 二次函数易错题(Word版 含答案)

九年级上册数学 二次函数易错题(Word 版 含答案)一、初三数学 二次函数易错题压轴题(难)1.在平面直角坐标系中,将函数2263,(y x mx m x m m =--≥为常数)的图象记为G .(1)当1m =-时,设图象G 上一点(),1P a ,求a 的值; (2)设图象G 的最低点为(),o o F x y ,求o y 的最大值;(3)当图象G 与x 轴有两个交点时,设右边交点的横坐标为2,x 则2x 的取值范围是 ; (4)设1112,,2,16816A m B m ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,当图象G 与线段AB 没有公共点时,直接写出m 的取值范围.【答案】(1)0a =或3a =-;(2)118;(3)21136x -<<-;(4)18m <-或116m >-【解析】 【分析】(1)将m=-1代入解析式,然后将点P 坐标代入解析式,从而求得a 的值; (2)分m >0和m ≤0两种情况,结合二次函数性质求最值; (3)结合二次函数与x 轴交点及对称轴的性质确定取值范围; (4)结合一元二次方程根与系数的关系确定取值范围. 【详解】解:(1)当1m =-时,()22613y x x x =++≥把(),1P a 代入,得22611a a ++=解得0a =或3a =- (2)当0m >时,,(3)F m m - 此时,0o y m =-<当0m ≤时,2223926=2()22y x mx m x m m m =----- ∴239,22F m m m ⎛⎫--⎪⎝⎭此时,229911=()22918m m m ---++ ∴0y 的最大值118=综上所述,0y 的最大值为118(3)由题意可知:当图象G 与x 轴有两个交点时,m >0当抛物线顶点在x 轴上时,22=4(6)42()=0b ac m m -=--⨯⨯-△ 解得:m=0(舍去)或29m =-由题意可知抛物线的对称轴为直线x=32m 且x ≥3m∴当图象G 与x 轴有两个交点时,设右边交点的横坐标为x 2,则x 2的取值范围是21136x -<<- (4)18m <-或116m >- 【点睛】本题属于二次函数综合题,考查了二次函数的性质,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.2.已知函数222222(0)114(0)22x ax a x y x ax a x ⎧-+-<⎪=⎨---+≥⎪⎩(a 为常数). (1)若点()1,2在此函数图象上,求a 的值. (2)当1a =-时,①求此函数图象与x 轴的交点的横坐标.②若此函数图象与直线y m =有三个交点,求m 的取值范围.(3)已知矩形ABCD 的四个顶点分别为点()2,0A -,点()3,0B ,点()3,2C ,点()2,2D -,若此函数图象与矩形ABCD 无交点,直接写出a 的取值范围.【答案】(1)1a =或3a =-;(2)①1x =--1x =+;②724m ≤<或21m -<<-;(3)3a <--或1a ≤<-或a >【解析】 【分析】(1)本题根据点(1,2)横坐标大于零,故将点代入对应解析式即可求得a 的取值. (2)①本题将1a =-代入解析式,分别令两个函数解析式y 值为零即可求得函数与x 轴交点横坐标;②本题可求得分段函数具体解析式,继而求得顶点坐标,最后平移直线y m =观察其与图像交点,即可得到答案.(3)本题可根据对称轴所在的位置分三种情况讨论,第一种为当2a <-,将2222y x ax a =-+-函数值与2比大小,将2211422y x ax a =---+与0比大小;第二种为当20a -≤<,2222y x ax a =-+-函数值与0比大小,且该函数与y 轴的交点和0比大小,2211422y x ax a =---+函数值与2比大小,且该函数与y 轴交点与2比大小;第三种为2222y x ax a =-+-与y 轴交点与2比大小,2211422y x ax a =---+与y 轴交点与0比大小. 【详解】(1)将()1,2代入2211422y x ax a =---+中,得2112422a a =---+,解得1a =或3a =-.(2)当1a =-时,函数为2221,(0)17(0)22x x x y x x x ⎧+-<⎪=⎨-++≥⎪⎩,①令2210x x +-=,解得1x =--1x =- 令217022x x -++=,解得1x =+或1x =-综上,1x =--1x =+.②对于函数()2210y x x x =+-<,其图象开口向上,顶点为()1,2--; 对于函数217(0)22y x x x =-++≥,其图象开口向下,顶点为()1,4,与y 轴交于点70,2⎛⎫⎪⎝⎭. 综上,若此函数图象与直线y m =有三个交点,则需满足724m ≤<或21m -<<-. (3)2222y x ax a =-+-对称轴为x a =;2211422y x ax a =---+对称轴为x a =-. ①当2a <-时,若使得2222y x ax a =-+-图像与矩形ABCD 无交点,需满足当2x =-时,2222y x ax a =-+-24+422a a =->+,解不等式得0a >或4a ,在此基础上若使2211422y x ax a =---+图像与矩形ABCD 无交点,需满足当3x =时,2221111493422220y x ax a a a =---+=⨯--+<-,解得3a >或3a <--,综上可得:3a <--.②当20a -≤<时,若使得2222y x ax a =-+-图像与矩形ABCD 无交点,需满足2x =-时,2222y x ax a =-+-24+420a a =+-<;当0x =时,22222=20y x ax a a =-+--≤;得222a -≤<-,在此基础上若使2211422y x ax a =---+图像与矩形ABCD 无交点,需满足0x =时,2221114=42222y x ax a a ---+->=;3x =时,2221111493422222y x ax a a a =---+=⨯--+>-;求得21a -<<-; 综上:21a -≤<-.③当0a ≥时,若使函数图像与矩形ABCD 无交点,需满足0x =时,22222=22y x ax a a =-+--≥且2221114+40222y x ax a a =---+=-<;求解上述不等式并可得公共解集为:22a >.综上:若使得函数与矩形ABCD 无交点,则322a <--或21a -≤<-或22a >. 【点睛】本题考查二次函数综合,求解函数解析式常用待定系数法,函数含参数讨论时,往往需要分类讨论,分类讨论时需要先选取特殊情况以用来总结规律,继而将规律一般化求解题目.3.如图,若抛物线y =x 2+bx+c 与x 轴相交于A ,B 两点,与y 轴相交于点C ,直线y =x ﹣3经过点B ,C . (1)求抛物线的解析式;(2)点P 是直线BC 下方抛物线上一动点,过点P 作PH ⊥x 轴于点H ,交BC 于点M ,连接PC .①线段PM 是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P 运动的过程中,是否存在点M ,恰好使△PCM 是以PM 为腰的等腰三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.【答案】(1)y =x 2﹣2x ﹣3;(2)①有,94;②存在,(2,﹣3)或(32,2﹣2) 【解析】 【分析】(1)由直线表达式求出点B 、C 的坐标,将点B 、C 的坐标代入抛物线表达式,即可求解;(2)①根据PM =(x ﹣3)﹣(x 2﹣2x ﹣3)=﹣(x ﹣32)2+94即可求解; ②分PM =PC 、PM =MC 两种情况,分别求解即可. 【详解】解:(1)对于y =x ﹣3,令x =0,y =﹣3,y =0,x =3, 故点B 、C 的坐标分别为(3,0)、(0,﹣3), 将点B 、C 的坐标代入抛物线表达式得:9303b c c ++=⎧⎨=-⎩,解得:32c b =-⎧⎨=-⎩,故抛物线的表达式为:y =x 2﹣2x ﹣3;(2)设:点M (x ,x ﹣3),则点P (x ,x 2﹣2x ﹣3), ①有,理由:PM =(x ﹣3)﹣(x 2﹣2x ﹣3)=﹣(x ﹣32)2+94, ∵﹣1<0,故PM 有最大值,当x =32时,PM 最大值为:94; ②存在,理由:PM 2=(x ﹣3﹣x 2+2x+3)2=(﹣x 2+3x )2; PC 2=x 2+(x 2﹣2x ﹣3+3)2; MC 2=(x ﹣3+3)2+x 2;(Ⅰ)当PM =PC 时,则(﹣x 2+3x )2=x 2+(x 2﹣2x ﹣3+3)2, 解得:x =0或2(舍去0), 故x =2,故点P (2,﹣3);(Ⅱ)当PM =MC 时,则(﹣x 2+3x )2=(x ﹣3+3)2+x 2,解得:x =0或(舍去0和),故x =3,则x 2﹣2x ﹣3=2﹣,故点P (3,2﹣).综上,点P 的坐标为:(2,﹣3)或(3,2﹣). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.4.如图,抛物线2(0)y ax bx c a =++≠与坐标轴的交点为()30A -,,()10B ,,()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式.(2)若E 为第二象限内一点,且四边形ACBE 为平行四边形,求直线CE 的解析式. (3)P 为抛物线上一动点,当PAB ∆的面积是ABD ∆的面积的3倍时,求点P 的坐标.【答案】(1)223y x x =+-;(2)33y x =--;(3)点P 的坐标为()5,12-或()3,12.【解析】 【分析】(1)本题考查二次函数解析式的求法,可利用待定系数法,将点带入求解;(2)本题考查二次函数平行四边形存在性问题,可根据题干信息结合平行四边形性质确定动点位置,进一步利用待定系数法求解一次函数解析式;(3)本题考查二次函数与三角形面积问题,可先根据题干面积关系假设动点坐标,继而带入二次函数,列方程求解. 【详解】(1)∵抛物线2y ax bx c =++与坐标轴的交点为()30A -,,()10B ,,()0,3C -,∴93003a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得123a b c =⎧⎪=⎨⎪=-⎩∴抛物线的解析式为223y x x =+-. (2)如图,过点E 作EH x ⊥轴于点H,则由平行四边形的对称性可知1AH OB ==,3EH OC ==. ∵3OA =,∴2OH =,∴点E 的坐标为()2,3-. ∵点C 的坐标为()0,3-,∴设直线CE 的解析式为()30y kx k =-< 将点()2,3E -代入,得233k --=,解得3k =-,∴直线CE 的解析式为33y x =--.(3)∵2223(1)4y x x x =+-=+-,∴抛物线的顶点为()1,4D --.∵PAB ∆的面积是ABD ∆的面积的3倍, ∴设点P 为(),12t .将点(),12P t 代入抛物线的解析式223y x x =+-中,得22312t t +-=,解得3t =或5t =-, 故点P 的坐标为()5,12-或()3,12. 【点睛】本题考查二次函数与几何的综合,利用待定系数法求解解析式时还可以假设交点式,几何图形存在性问题求解往往需要利用其性质,假设动点坐标,列方程求解.5.如图,抛物线2y x bx c =-++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.点A 坐标的为3,0,点C 的坐标为()0,3.(Ⅰ)求抛物线的解析式;(Ⅱ)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作i 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作//PQ AB 交抛物线于点Q ,过点Q 作QN x ⊥轴于点N .若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(Ⅲ)在(Ⅱ)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若=22FG DQ ,求点F 的坐标.【答案】(Ⅰ)223y x x =--+;(Ⅱ)12;(Ⅲ)()4,5F --或()1,0 【解析】 【分析】(Ⅰ)将点A ,点C 坐标代入解析式可求解;(Ⅱ)设M (x ,0),P (x ,-x 2-2x+3),利用对称性可求点Q (-2-x ,-x 2-2x+3),可求MP=-x 2-2x+3,PQ=-2-x-x=-2-2x ,则可用x 表示矩形PMNQ 的周长,由二次函数的性质可求当矩形PMNQ 的周长最大时,点P 的坐标,即可求点E ,点M 的坐标,由三角形面积公式可求解;(Ⅲ)先求出点D 坐标,即可求DQ=2,可得FG=4,设F (m ,-m 2-2m+3),则G (m ,m+3),用含有m 的式子表示FG 的长度即可求解. 【详解】解:(Ⅰ)依题意()()2330{3b c c --+⨯-+==解得2{3b c =-= 所以223y x x =--+(Ⅱ)2223(1)4yx x x抛物线的对称轴是直线1x =-(,0)M x ,()2,23P x x x --+,其中31x -<<-∵P 、Q 关于直线1x =-对称 设Q 的横坐标为a 则()11a x --=-- ∴2a x =--∴()22,23Q x x x ----+∴223MP x x =--+,222PQ x x x =---=--∴周长()222222232822(2)10d x x x x x x =----+=--+=-++ 当2x =-时,d 取最大值,此时,(2,0)M - ∴2(3)1AM =---= 设直线AC 的解析式为y kx b =+则303k b b -+=⎧⎨=⎩,解得13k b =⎧⎨=⎩∴设直线AC 的解析式为3y x将2x =-代入3yx,得1y =∴(2,1)E -, ∴1EM=∴11111222AEM S AM ME ∆=⋅=⨯⨯=(Ⅲ)由(Ⅱ)知,当矩形PMNQ 的周长最大时,2x =-此时点()0,3Q ,与点C 重合, ∴3OQ = ∵2223(1)4yx x x∴()1,4D -过D 作DK y ⊥轴于K , 则1DK =,4OK = ∴431OK OK OQ =-=-= ∴DKQ 是等腰直角三角形,2DQ =∴224FG DQ ==设()2,23F m m m --+,则(,3)G m m +()223233FG m m m m m =+---+=+∴234m m +=,解得14m =-,21m = 当4m =-时,2235m m --+=- 当1m =时,2230m m --+=. ∴()4,5F --或()1,0【点睛】本题是二次函数综合题,考查了二次函数的性质,矩形的性质,等腰直角三角形的性质等,利用参数表示线段的长度是本题的关键.6.如图,直线3yx与x 轴、y 轴分别交于点A ,C ,经过A ,C 两点的抛物线2y ax bx c =++与x 轴的负半轴的另一交点为B ,且tan 3CBO ∠=(1)求该抛物线的解析式及抛物线顶点D 的坐标;(2)点P 是射线BD 上一点,问是否存在以点P ,A ,B 为顶点的三角形,与ABC 相似,若存在,请求出点P 的坐标;若不存在,请说明理由【答案】(1)243y x x =++,顶点(2,1)D --;(2)存在,52,33P ⎛⎫--⎪⎝⎭或(4,3)-- 【解析】 【分析】(1)利用直线解析式求出点A 、C 的坐标,从而得到OA 、OC ,再根据tan ∠CBO=3求出OB ,从而得到点B 的坐标,然后利用待定系数法求出二次函数解析式,整理成顶点式形式,然后写出点D 的坐标;(2)根据点A 、B 的坐标求出AB ,判断出△AOC 是等腰直角三角形,根据等腰直角三角形的性质求出AC ,∠BAC=45°,再根据点B 、D 的坐标求出∠ABD=45°,然后分①AB 和BP 是对应边时,△ABC 和△BPA 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可;②AB 和BA 是对应边时,△ABC 和△BAP 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可. 【详解】解:(1)令y=0,则x+3=0, 解得x=-3, 令x=0,则y=3,∴点A (-3,0),C (0,3), ∴OA=OC=3, ∵tan ∠CBO=3OCOB=, ∴OB=1, ∴点B (-1,0),把点A 、B 、C 的坐标代入抛物线解析式得,93003a b c a b c c -+=⎧⎪-+=⎨⎪=⎩,解得:143a b c =⎧⎪=⎨⎪=⎩, ∴该抛物线的解析式为:243y x x =++, ∵y=x 2+4x+3=(x+2)2-1, ∴顶点(2,1)D --;(2)∵A(-3,0),B(-1,0),∴AB=-1-(-3)=2,∵OA=OC,∠AOC=90°,∴△AOC是等腰直角三角形,∴AC=2OA=32,∠BAC=45°,∵B(-1,0),D(-2,-1),∴∠ABD=45°,①AB和BP是对应边时,△ABC∽△BPA,∴AB ACBP BA=,即2322BP=,解得BP=22,过点P作PE⊥x轴于E,则BE=PE=23×22=23,∴OE=1+23=53,∴点P的坐标为(-53,-23);②AB和BA是对应边时,△ABC∽△BAP,∴AB ACBA BP=,即2322BP =,解得BP=32过点P作PE⊥x轴于E,则BE=PE=2=3, ∴OE=1+3=4, ∴点P 的坐标为(-4,-3); 综合上述,当52,33P ⎛⎫--⎪⎝⎭或(4,3)--时,以点P ,A ,B 为顶点的三角形与ABC ∆相似;【点睛】本题是二次函数综合题型,主要利用了直线与坐标轴交点的求解,待定系数法求二次函数解析式,等腰直角三角形的判定与性质,相似三角形的判定与性质,难点在于(2)要分情况讨论.7.定义:在平面直角坐标系中,O 为坐标原点,设点P 的坐标为(x ,y ),当x <0时,点P 的变换点P′的坐标为(﹣x ,y );当x≥0时,点P 的变换点P′的坐标为(﹣y ,x ). (1)若点A (2,1)的变换点A′在反比例函数y=k x的图象上,则k= ; (2)若点B (2,4)和它的变换点B'在直线y=ax+b 上,则这条直线对应的函数关系式为 ,∠BOB′的大小是 度.(3)点P 在抛物线y=x 2﹣2x ﹣3的图象上,以线段PP′为对角线作正方形PMP'N ,设点P 的横坐标为m ,当正方形PMP′N 的对角线垂直于x 轴时,求m 的取值范围.(4)抛物线y=(x ﹣2)2+n 与x 轴交于点C ,D (点C 在点D 的左侧),顶点为E ,点P 在该抛物线上.若点P 的变换点P′在抛物线的对称轴上,且四边形ECP′D 是菱形,求n 的值.【答案】(1) -2;(2) y=13x+103,90;(3) m <0,或;(4) n=﹣8,n=﹣2,n=﹣3.【解析】【分析】(1)先求出A 的变换点A ′,然后把A ′代入反比例函数即可得到结论;(2)确定点B ′的坐标,把问题转化为方程组解决;(3)分三种情形讨论:①当m <0时;②当m ≥0,PP '⊥x 轴时;③当m ≥0,MN ⊥x 轴时.(4)利用菱形的性质,得到点E 与点P '关于x 轴对称,从而得到点P '的坐标为(2,﹣n ).分两种情况讨论:①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ),代入抛物线解析式,求解即可;②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入抛物线解析式,求解即可.【详解】(1)∵A (2,1)的变换点为A ′(-1,2),把A ′(-1,2)代入y =k x中,得到k =-2.故答案为:-2.(2)点B (2,4)的变换点B ′(﹣4,2),把(2,4),(﹣4,2)代入y =ax +b 中.得到:2442a b a b +=⎧⎨-+=⎩,解得:13103a b ⎧=⎪⎪⎨⎪=⎪⎩,∴11033y x =+. ∵OB 2=2224+=20,OB ′2=2224+=20,BB ′2=22(42)(24)--+-=40,∴OB 2+OB ′2=BB ′2,∴∠BOB ′=90°.故答案为:y =13x +103,90. (3)①当m <0时,点P 与点P '关于y 轴对称,此时MN 垂直于x 轴,所以m <0. ②当m ≥0,PP '⊥x 轴时,则点P '的坐标为(m ,m ),点P 的坐标为(m ,﹣m ). 将点P (m ,﹣m )代入y =x 2﹣2x ﹣3,得:﹣m =m 2﹣2m ﹣3.解得:12m m ==(不合题意,舍去).所以m = ③当m ≥0,MN ⊥x 轴时,则PP '∥x 轴,点P 的坐标为(m ,m ).将点P (m ,m )代入y =x 2﹣2x ﹣3,得:m =m 2﹣2m ﹣3.解得:123322m m ==(不合题意,舍去).所以32m +=. 综上所述:m 的取值范围是m <0,m=12+或m=32. (4)∵四边形ECP 'D 是菱形,∴点E 与点P '关于x 轴对称.∵点E 的坐标为(2,n ),∴点P '的坐标为(2,﹣n ).①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ).代入y =(x ﹣2)2+n ,得:﹣n =(﹣2﹣2)2+n ,解得:n =﹣8.②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入y =(x ﹣2)2+n ,得:﹣2=(﹣n ﹣2)2+n .解得:n 1=﹣2,n 2=﹣3.综上所述:n 的值是n =﹣8,n =﹣2,n =﹣3.【点睛】本题是二次函数综合题、一次函数的应用、待定系数法、变换点的定义等知识,解题的关键是理解题意,学会用分类讨论的射线思考问题,学会用方程的思想思考问题,属于中考压轴题.8.如图,已知顶点为M (32,258)的抛物线过点D (3,2),交x 轴于A ,B 两点,交y 轴于点C ,点P 是抛物线上一动点.(1)求抛物线的解析式;(2)当点P 在直线AD 上方时,求△PAD 面积的最大值,并求出此时点P 的坐标; (3)过点P 作直线CD 的垂线,垂足为Q ,若将△CPQ 沿CP 翻折,点Q 的对应点为Q '.是否存在点P ,使Q '恰好落在x 轴上?若存在,求出点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =-++;(2)最大值为4,点P (1,3);(3)存在,点P 139313-+). 【解析】【分析】 (1)用待定系数法求解即可;(2)由△PAD 面积S =S △PHA +S △PHD ,即可求解;(3)结合图形可判断出点P 在直线CD 下方,设点P 的坐标为(a ,213222a a -++),当P 点在y 轴右侧时,运用解直角三角形及相似三角形的性质进行求解即可.【详解】解:(1)设抛物线的表达式为:y =a (x ﹣h )2+k =a (x ﹣32)2+258, 将点D 的坐标代入上式得:2=a (3﹣32)2+258, 解得:a =﹣12, ∴抛物线的表达式为:213222y x x =-++; (2)当x =0时,y =﹣12x 2+32x +2=2, 即点C 坐标为(0,2), 同理,令y =0,则x =4或﹣1,故点A 、B 的坐标分别为:(﹣1,0)、(4,0),过点P 作y 轴的平行线交AD 于点H,由点A 、D 的坐标得,直线AD 的表达式为:y =12(x +1), 设点P (x ,﹣12x 2+32x +2),则点H (x ,12x +12), 则△PAD 面积为:S =S △PHA +S △PHD =12×PH ×(x D ﹣x A )=12×4×(﹣12x 2+32x +2﹣12x 12-)=﹣x 2+2x +3, ∵﹣1<0,故S 有最大值,当x =1时,S 有最大值,则点P (1,3);(3)存在满足条件的点P ,显然点P 在直线CD 下方,设直线PQ 交x 轴于F ,点P 的坐标为(a ,﹣12a 2+32a +2),当P 点在y 轴右侧时(如图2),CQ =a ,PQ =2﹣(﹣12a 2+32a +2)=12a 2﹣32a , 又∵∠CQ ′O +∠FQ ′P =90°,∠COQ ′=∠Q ′FP =90°,∴∠FQ ′P =∠OCQ ′,∴△COQ ′∽△Q ′FP ,'''Q C Q P CO FQ =,即213222'a a a Q F-=, ∴Q ′F =a ﹣3,∴OQ ′=OF ﹣Q ′F =a ﹣(a ﹣3)=3,CQ =CQ ′=22223213CO OQ +=+=, 此时a =13,点P 的坐标为(13,9313-+). 【点睛】 此题考查了二次函数的综合应用,综合考查了翻折变换、相似三角形的判定与性质,解答此类题目要求我们能将所学的知识融会贯通,属于中考常涉及的题目.9.在平面直角坐标系xOy 中(如图),已知二次函数2y ax bx c =++(其中a 、b 、c 是常数,且a ≠0)的图像经过点A (0,-3)、B (1,0)、C (3,0),联结AB 、AC . (1)求这个二次函数的解析式;(2)点D 是线段AC 上的一点,联结BD ,如果:3:2ABD BCD S S ∆∆=,求tan ∠DBC 的值; (3)如果点E 在该二次函数图像的对称轴上,当AC 平分∠BAE 时,求点E 的坐标.【答案】(1)243y x x =-+-;(2)32;(3)E (2,73-) 【解析】【分析】(1)直接利用待定系数法,把A 、B 、C 三点代入解析式,即可得到答案;(2)过点D 作DH ⊥BC 于H ,在△ABC 中,设AC 边上的高为h ,利用面积的比得到32AD DC =,然后求出DH 和BH ,即可得到答案; (3)延长AE 至x 轴,与x 轴交于点F ,先证明△OAB ∽△OFA ,求出点F 的坐标,然后求出直线AF 的方程,即可求出点E 的坐标.【详解】解:(1)将A (0,-3)、B (1,0)、C (3,0)代入20y ax bx c a =++≠()得,03,0934,300a b a b c =+-⎧⎪=+-⎨⎪-=++⎩解得143abc=-⎧⎪=⎨⎪=-⎩,∴此抛物线的表达式是:243y x x=-+-.(2)过点D作DH⊥BC于H,在△ABC中,设AC边上的高为h,则11:():():3:222ABD BCDS S AD h DC h AD DC∆∆=⋅⋅==,又∵DH//y轴,∴25CH DC DHOC AC OA===.∵OA=OC=3,则∠ACO=45°,∴△CDH为等腰直角三角形,∴26355CH DH==⨯=.∴64255BH BC CH=-=-=.∴tan∠DBC=32DHBH=.(3)延长AE至x轴,与x轴交于点F,∵OA=OC=3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC -∠BAC=45°-∠BAC ,∠OFA=∠OCA -∠FAC=45°-∠FAC ,∵∠BAC=∠FAC ,∴∠OAB=∠OFA .∴△OAB ∽△OFA , ∴13OB OA OA OF ==. ∴OF=9,即F (9,0);设直线AF 的解析式为y=kx+b (k≠0),可得093k b b =+⎧⎨-=⎩ ,解得133k b ⎧=⎪⎨⎪=-⎩, ∴直线AF 的解析式为:133y x =-, 将x=2代入直线AF 的解析式得:73y =-, ∴E (2,73-). 【点睛】 本题考查了相似三角形的判定和性质,二次函数的性质,求二次函数的解析式,等腰直角三角形的判定和性质,求一次函数的解析式,解题的关键是掌握二次函数的图像和性质,以及正确作出辅助线构造相似三角形.10.如图,经过原点的抛物线2y ax x b =-+与直线2y =交于A ,C 两点,其对称轴是直线2x =,抛物线与x 轴的另一个交点为D ,线段AC 与y 轴交于点B .(1)求抛物线的解析式,并写出点D 的坐标;(2)若点E 为线段BC 上一点,且2EC EA -=,点(0,)P t 为线段OB 上不与端点重合的动点,连接PE ,过点E 作直线PE 的垂线交x 轴于点F ,连接PF ,探究在P 点运动过程中,线段PE ,PF 有何数量关系?并证明所探究的结论;(3)设抛物线顶点为M ,求当t 为何值时,DMF ∆为等腰三角形?【答案】(1)214y x x =-;点D 的坐标为(4,0);(2)5PF PE =,理由见解析;(3)512t =或98t = 【解析】【分析】(1)先求出a 、b 的值,然后求出解析式,再求出点D 的坐标即可;(2)由题意,先求出点E 的坐标,然后证明Rt Rt PBE FHE ∆∆∽,得到2EF PE =,结合勾股定理,即可得到答案;(3)根据题意,可分为三种情况进行分析:FM FD =或DF DM =或FM MD =,分别求出三种情况的值即可.【详解】解:(1)∵抛物线2y ax x b =-+经过原点, ∴0b =.又抛物线的对称轴是直线2x =,∴122a --=,解得:14a =. ∴抛物线的解析式为:214y x x =-. 令2104y x x =-=, 解得:10x =,24x =.∴点D 的坐标为(4,0).(2)线段PE 、PF 的数量关系为:5PF PE =.证明:由抛物线的对称性得线段AC 的中点为(2,2)G ,如图①,AE EG GC +=,∴EG GC AE =-,∴EG EG EG GC AE EC EA +=+-=-,∵2EC EA -=,∴1EG =,∴(1,2)E ,过点E 作EH x ⊥轴于H ,则2EH OB ==.∵PE EF ⊥,∴90PEF ∠=︒,∵BE EH ⊥,∴90BEH ∠=︒.∴PEB HEF ∠=∠.在Rt PBE ∆与Rt FHE ∆中,∵PEB HEF ∠=∠,90EHF EBP ∠=∠=︒,∴Rt Rt PBE FHE ∆∆∽,∴12PE BE EF HE ==, ∴2EF PE =. 在Rt PEF ∆中,由勾股定理得:222222(2)5PF PE EF PE PE PE =+=+=,∴5PF PE =.(3)由2211(2)144y x x x =-=--, ∴顶点M 坐标为(2,1)-.若DMF ∆为等腰三角形,可能有三种情形:(I )若FM FD =.如图②所示:连接MG 交x 轴于点N ,则90MNF ∠=︒,∵(4,0)D ,∴2222125MD MN ND =+=+=. 设FM FD k ==,则2NF k =-.在Rt MNF ∆中,由勾股定理得:222NF MN MF +=,∴22(2)1k k -+=,解得:54k =, ∴54FM =,34NF =, ∴1MN =,即点M 的纵坐标为1-;令1y =-,则2114x x -=-, ∴2x =,即ON=2,∴OF=114, ∴11,04F ⎛⎫ ⎪⎝⎭. ∵(1,2)E ,∴1,2BE BP t ==-,∴221(2)PE t =+-,∴251(2)PF t =•+-,在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴22211()55(2)4t t +=+-, ∴98t =. (II )若DF DM =.如图③所示:此时5FD DM ==∴45OF =,∴(45,0)F ,由(I )知,PE =,PF =在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴222(455(2)t t +-=+-∴12t =. (III )若FM MD =.由抛物线对称性可知,此时点F 与原点O 重合.∵PE EF ⊥,点P 在直线AC 上方,与点P 在线段OB 上运动相矛盾,故此种情形不存在.【点睛】本题考查的是二次函数综合运用,涉及到相似三角形的判定和性质,一次函数的性质,等腰三角形的性质,全等三角形的判定和性质,以及勾股定理等知识,其中(3),要注意分类求解,避免遗漏.。
《二次函数》易错题试卷及标准答案

浙教版数学九年级上《二次函数》单元测试卷(时间:60分钟 分值:100分一、选择题(每小题3分,共30分)1、在下列函数关系式中,(1)22x y -=;(2)2x x y -=;(3)3)1(22+-=x y ; (4)332--=x y ,二次函数有( )A.1个B.2个C.3个D.4个【答案】D【解析】二次函数的一般式为c bx ax y ++=2(0≠a ),4个均为二次函数,故选D.【易错点】本题考查二次函数的定义和一般式,属容易题,但学生对二次函数解析式的常见形式把握不够,还是出现把(3)不当二次函数来处理..2、若32)2(--=m x m y 是二次函数,且开口向上,则m 的值为( )A.5±B.5C. —5D.0【答案】C【解析】二次函数的“二次”体现为自变量的最高次数为2次,因此32-m =2,且2-m 0≠,故选C.【易错点】考查二次函数的定义,属容易题,学生容易得出32-m =2,但会忽略2-m 0≠,说明对二次函数的“二次”定义理解不透彻.3、把抛物线23x y =向上平移2个单位,向向右平移3个单位,所得的抛物线解析式是( )A. 2)3(32-+=x yB. 2)3(32++=x yC. 2)3(32--=x yD. 2)3(32+-=x y【答案】D【解析】由二次函数的平移规律即可得出答案,故选D.【易错点】考查二次函数的平移规律,属容易题,但学生过分强调死记硬背,不数形结合,往往会出错.4、下列二次函数的图象与x 轴没有交点的是( )A. x x y 932+=B. 322--=x x yC. 442-+-=x x yD. 5422++=x x y【答案】D【解析】由ac b 42-即可判断二次函数的图象与x 轴的交点情况,本题D 中 ac b 42-=-240<,表示与x 轴没有交点,故选D.【易错点】考查二次函数的图象与x 轴的交点情况,属容易题,但学生计算能力不高,导致错误较多.5、已知点(-1,1y ),(2,213y -),(21,3y )在函数12632++=x x y 的图象上,则1y 、2y 、3y 的大小关系是( )A.321y y y >>B. 312y y y >>C. 132y y y >>D. 213y y y >>【答案】C【解析】根据二次函数的解析式可得对称轴为直线1-=x ,又抛物线开口向上,所以横坐标越接近-1,对应的函数值越小,故选C.【易错点】考查二次函数的图象的对称性,属一般题,学生由于基础薄弱,习惯将所有x 的值一一代入,求得y 的值,一费时,二计算容易出错,导致得分率不高.6、已知抛物线c bx ax y ++=2经过原点和第一、二、三象限,那么,( )A.000>>>c b a ,,B. 000=<>c b a ,,C.000><<c b a ,,D. 000=>>c b a ,,【答案】D【解析】根据二次函数c b a 、、的符号判定方法,即可得出D ,故选D.【易错点】根据已知条件画不出二次函数图象的草图,故无法选择答案.7、若二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为( )A.0或2B.0C. 2D.无法确定【答案】C【解析】二次函数经过原点,则0=c ,本题中即0)2(=-m m ,则20或=m ,但二次函数二次项系数不等于0,因此0≠m ,故选C.【易错点】能得出0)2(=-m m ,却忽略了二次项系数不等于零.8、一次函数b ax y +=与二次函数c bx ax y ++=2在同一坐标系中的图象可能是( )A B C D【答案】C【解析】根据一次函数的图象得出a 、b 的符号,进而判断二次函数的草图是否正确,A 和B 中a 的符号已经发生矛盾,故不选,C 符合,D 中由一次函数得b 0<,而由二次函数得b 0>,矛盾,也舍去,故选C.【易错点】对于如何判断二次函数中一次项系数b 的符号理解不深,故常选错.9、当k 取任何实数时,抛物线22)(21k k x y +-=的顶点所在的曲线是( ) A .2x y = B. 2x y -= C. 2x y =(0>x ) D. 2x y =(0<x )【答案】A【解析】由给出的顶点式得出抛物线的顶点为(2,k k ,),在2x y =上,故选A. 【易错点】当二次函数解析式中出现参数时,学生往往不知所措,过多得关注了k 字母而没有看到这是一个顶点式的抛物线,故选不出答案.10、抛物线3522+-=x x y 与坐标轴的交点共有( )A.4个B.3个C.2个D.1个【答案】B【解析】由ac b 42->0得出抛物线与x 轴有2个交点,与y 轴一个交点,共3个,故选B.【易错点】仅仅得出与与x 轴的2个交点就选择C ,审题不严谨..二、填空题(每小题3分,共24分)11、函数7)5(2++-=x y 的对称轴是_____________,顶点坐标是_________,图象开口_______,当x ________时,y 随x 的增大而减小,当5-=x 时,函数有最____值,是______.【答案】直线5-=x ,(-5,7),向下,5-≥,大,7.【解析】根据二次函数顶点式的基本性质即可完成这一题.【易错点】在增减性填空时往往写成5->x ,忽略等号.12、抛物线2ax y =与22x y =形状相同,则a =_________.【答案】2±. 【解析】形状相同,即a 相同,故a =2±.【易错点】只写-2,忽略+2.13、二次函数)2)(3(-+-=x x y 的图象的对称轴是__________. 【答案】直线21-=x . 【解析】根据二次函数的交点式得抛物线与x 轴的两个交点的横坐标为-3和2,故对称轴为直线21223-=+-=x . 【易错点】直接将二次函数转化为一般式,再根据公式求解,导致计算错误较多.14、当x =________时,函数4)2(2+-=x y 有最_____值,是________. 【答案】2,小,2.【解析】4)2(2+-x 当2=x 有最小值4,故4)2(2+-=x y 在此时有最小值2. 【易错点】最小值容易写成4,而不是2.15、抛物线c bx x y ++-=2的图象如图所示,则此抛物线的解析式为______________.【答案】4)1(2+--=x y【解析】根据图象可设抛物线为k x y +--=2)1(,把点(3,0)代入求出4=k 即可.【易错点】从对称轴角度出发,过分注重对称性来解题,使题复杂化.(第15题图) (第16题图) (第17题图)16、如图是抛物线c bx ax y ++=2的一部分,对称轴是直线x =1,若其与x 轴的一个交点为(3,0),则由图象可知,不等式02>++c bx ax 的解集是_____________.【答案】31>-<x x 或【解析】根据图象得出抛物线的对称轴为直线2311+==x x ,得11-=x 故图象与x 轴的另一个交点为(-1,0),不等式的解集即为二次函数0>y 时x 的取值范围,故由图象得出在x 轴的上方,故31>-<x x 或【易错点】没有将不等式问题转化为二次函数0>y 的问题,另外不会观察图象也是导致本题得分率低的一个重要原因.17、如图是二次函数c bx ax y ++=2(0≠a )在平面直角坐标系中的图象,根据图形判断:①0>c ;②0<++c b a ;③02<-b a ;④ac a b 482>+,其中正确的是__________(填写序号).【答案】②④【解析】根据二次函数c 的符号判定方法,得出①错;观察图象,当1=x 时,图象上的点在x 轴下方,故②正确;由0,0<>b a 得出③正确;因为ac b 42->0,而0>-8a ,ac b 42-a 8->,移项得④正确.【易错点】对二次函数中通过数形结合判断字母和代数式符号的方法没有掌握.18、如图,从地面竖直向上跑出一个小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的关系式为2530t t h -=,那么小球从抛出至落到地面所需的时间是_____秒.【答案】6【解析】令0=h ,得05302=-t t ,解得60或=t ,因0>t ,故6=t .【易错点】没有将实际生活问题传化成二次函数问题.三、简答题(共56分)19、(8分)已知二次函数c bx ax y ++=2,当x =0时,y =4;当x =1时,y =9;当x =2时,y =18,求这个二次函数.【答案】把当x =0,y =4;x =1,y =9;x =2,y =18代入c bx ax y ++=2得,…1分⎪⎩⎪⎨⎧++=++==4241894b a cb ac ,……………………4分 解得⎪⎩⎪⎨⎧===432c b a ,…………………………7分∴4322++=x x y ……………………8分【易错点】本题考查学生利用三元一次方程组求解二次函数解析式的能力,而部分学生往往出现三元一次方程组解答出错,计算能力不高的情况.20、(8分)二次函数的图象顶点是(-2,4),且过(-3,0);(1)求函数的解析式;(2)求出函数图象与坐标轴的交点,并画出函数图象.【答案】(1)由题意得,设4)2(2++=x a y 把(-3,0)得,0=4+a ………………2分 ∴4-=a ,∴4)2(42++-=x y ……………………3分(2)令0=x ,则12444-=+⨯-=y ,∴与y 轴的交点为(0,-12)……4分 令0=y ,则04)2(42=++-x , 解得 11-=x ,32=x∴与x 轴的交点为(-1,0)和(-3,0)………………6分图象略.………………………………………………………8分【易错点】本题考查利用顶点式求二次函数解析式、二次函数与坐标轴的交点及函数图象画法.学生出错较多的地方是与坐标轴交点求解不齐全.21、(10分)利用图象判断方程23212-=x x 是否有解,若有解,请写出它的解.(结果精确到0.1)【答案】∵23212-=x x ,∴设23212+-=x x y , 则方程的解即函数图象与x 轴两个交点的横坐标.∴由图象得 8.01≈x ,2.52≈x【易错点】本题考查利用图象法求方程的近似解.学生不理解为何要用图象法求方程的近似解,进而会直接用公式法求解.22、(10分)某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价销售,根据市场调查,每降价5元,每星期可多售出20件.(1)求商家降价前每星期的销售利润是多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少?最大销售利润是多少?【答案】(1)(130-100)×80=2400元…………………………………3分(2)设每件降价x 元,商家每星期的利润为y 元,则………………4分)480)(30(x x y +-==24004042++-x x =-42)5(-x +2500…………7分∴当5=x 时,y 有最大值,为2500………………………………………9分即降价5元、售价为125元时,销售利润最大,为2500元.………………10分【易错点】本题是二次函数最值问题的实际应用,若学生把售价定为x 元,则无形中增加了题目的难度,所以本题中设置合理的未知数是至关重要的,而学生往往不会这一点而导致此题错解.23、(10分)如图,隧道的截面是由抛物线AED 和矩形ABCD 构成,矩形的长BC 为8m ,宽AB 为2m ,以BC 所在的直线为x 轴,线段BC 的中垂线为y 轴,建立平面直角坐标系.y 轴是抛物线的对称轴,顶点E 到坐标原点O 的距离为6m 。
浙教版九年级上册数学第1章 二次函数 含答案

浙教版九年级上册数学第1章二次函数含答案一、单选题(共15题,共计45分)1、将抛物线y=x2+2x﹣3的图象先向左平移2个单位,再向上平移3个单位,得到的抛物线的解析式是()A. B. C. D.2、二次函数y=2x2﹣3x+4的最值情况为()A.当x=﹣时取得最大值为B.当x=﹣时取得最小值为C.当x= 时取得最大值为D.当x= 时取得最小值为3、对于二次函数y=﹣(x﹣2)2﹣3,下列说法错误的是()A.图象的开口向下B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(2,﹣3)D.图象与y轴的交点坐标为(0,﹣3)4、当ab>0时,y=ax2与y=ax+b的图象大致是()A. B. C. D.5、将抛物线y=向左平移2个单位后,得到的新抛物线的解析式是()A. B. y= C. y= D. y=6、下列抛物线中,开口向下且开口最大的是()A.y=-x 2B.y=-x 2C.y= x 2D.y=-x 27、如图,已知二次函数图象与x轴交于A,B两点,对称轴为直线x=2,下列结论:①abc>0;②4a+b=0;③若点A坐标为(−1,0),则线段AB=5;④若点M(x1, y1)、N(x2, y2)在该函数图象上,且满足0<x1<1,2<x2<3,则y1<y2其中正确结论的序号为()A.①,②B.②,③C.③,④D.②,④8、把抛物线向上平移个单位,向右平移个单位,得到的抛物线是()A. B. C. D.9、如图,已知二次函数的图象与x轴分别交于A、B两点,与y轴交于C点,.则由抛物线的特征写出如下结论:①;②;③;④.其中正确的个数是()A.4个B.3个C.2个D.1个10、在同一平面直角坐标系中,函数y=ax+b与y=ax2﹣bx的图象可能是()A. B. C. D.11、如图,一次函数y=ax+b与二次函数y=ax2+bx+c的大致图象是()A. B. C. D.12、将二次函数的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是()A.b>8B.b>﹣8C.b≥8D.b≥﹣813、将抛物线向左平移2个单位后所得到的抛物线为()A. B. C. D.14、如图,线段AB长为10,端点A在y轴的正半轴上滑动,端点B随着线段AB在x轴的正半轴上滑动,(A、B与原点O不重合),△AOB的内切圆⊙C分别与OA、OB、AB相切于点D、E、F.设AD=x,△AOB的面积为S,则S关于x 的函数图象大致为()A. B. C.D.15、竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其图象如图所示.若小球在发射后第2s与第6s时的高度相等,则下列时刻中小球的高度最高的是第()A.3sB.3.5sC.4sD.6.5s二、填空题(共10题,共计30分)16、对于二次函数有下列说法:①如果,则有最小值;②如果当时的函数值与时的函数值相等,则当时的函数值为;③如果,当时随的增大而减小,则;④如果用该二次函数有最小值,则的最大值为.其中正确的说法是________.(把你认为正确的结论的序号都填上)17、如图,菱形ABCD的三个顶点在二次函数y=ax2+2ax+2(a<0)的图象上,点A,B分别是该抛物线的顶点和抛物线与y轴的交点,则点D的坐标为________.18、红光旅行社有100张床位,每床每日收费10元,客床可全部租出,若每床每日收费提高2元,则租出床位减少10张,若每床每日收费再提高2元,则租出床位再减少10张,以每提高2元的这种变化方法变化下去,每床每日提高________元可获最大利润。
【易错题】浙教版九年级数学上册《第一章二次函数》单元测试卷含答案解析.doc

【易错题解析】浙教版九年级数学上册 第一章二次函数单元测试卷一、单选题(共10题;共30分)2.—小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下列函数解析式:h=-3 (t-2) 2+5, 则小球距离地面的最大高度是()4.二次函数y=・x 2+mx 的图象如图,对称轴为直线x=2,若关于x 的一元二次方程・x 2+mx ・t=0 (t 为实数) 在l<x<5的范围内有解,则t 的取值范围是()5.如果一个实际问题的函数图象的形状与y 二--x :+2的形状相同,且顶点坐标是(4, -2),那么它的函 A. 2米 B. 3米 2. 要得到二次函数y=-2 (x- 1) '-I 的图象,A.向左平移2个单位, C.向右平移1个单位, 3. 在平面直角坐标系屮, C. 5米 需将y= - 2x 2的图象()B.向右平移2个单位, D.向左平称1个单位, D. 6米A. 3 再向下平移3个单位 再向下平移1个单位 抛物线y=x 2 - 1与x 轴交点的个数()再向上平移1个单位再向上平移3个单位 B. 2 C. 1 D. 0C. 3<t<4D.・ 5<t<4数解析式为().A.y=;(兀一疔―2B. y=C.y= - £(X +4)'-2D. y= 6.已知二次函数y=ax 2+bx+c (aHO )的图象如图所示,①abc<0; @2a+b=0; ③a - b+c>0; ④4a - 2b+c<0%一4):一2或尸-^(x-4):-2 2(x_4)2_2 或尸-1(X +4)2-2 对称轴是直线x= - 1,下列结论:B.只有①7. 二次函数y=2 (x+1) S3的图象的对称轴是(A.直线x=3B.直线x=lC.③④ ) C.直线x=-lD.①④ D.直线x=-2 ・ 5<t<39.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1 元,每星期可多卖出20件.设每件商品降价x 元后,每星期售出商品的总销售额为y 元,则y 与x 的关系 式为( )A. y=60 (300+20X )B. y= (60 ・x) (300+20x)C. y=300 (60 - 20x)D. y= (60 - x) (300 - 20x)20.如图为二次函数y=ax 2+bx+c (g0)的图象,则下列说法:①a>0 ; (2)2a+b=0; (3)a+b+c>0 ;④当□.已知三角形的一边长为x,这条边上的高为x 的2倍少1,则三角形的面积y 与x 之间的关系为 ___________ . 12.如图,是二次函数y=ax 2+bx ・c 的部分图象,由图象可知关于x 的一元二次方程ax 2+bx=c 的两个根可能 是 _______ .(精确到0.1)13.将二次函数y=2x 2-l 的图像沿y 轴向上平移2个单位,所得图像对•应的函数表达式为 ___________ 14.若 A ( -y , yi ),B ( -| , y 2 ) , C (1, y 3 )为二次函数 y 二 x 2 +4x - 5 的图象上的三点,则%、?2 > 73的大小关系是 ______________15.将抛物线y = 2(>-1尸+ 4 ,绕着它的顶点旋转180° ,旋转后的抛物线表达式是 _________________ 16. (2016*大连)如图,抛物线y=ax 2+bx+c 与x 轴相交于点A 、B (m+2, 0)与y 轴相交于点C,点D 在该17.己知二次函数y=ax 2+bx+c 中,函数y 与自变量x 的部分对应值如表,则当x=3时,y= ___________A. 1B. 2 填空题(共10题;共30分)C. 3D. 4抛物线上,坐标为(m, c ),则点A 的坐标是 ____________X•••・3-2・101• •・y•••73113• ••18. 飞机着陆后滑行的距离S (单位:m)与滑行的吋I'可t (单位:s)的函数关系式是S=80t - 2t2,飞机着陆后滑行的最远距离是 ________m.19. 定义函数 f (x),当xS3 时,f (x) =x2 - 2x,当x>3 时,f (x) =x2 - 10x+24,若方程 f (x) =2x+m 有且只有两个实数解,则m的取值范围为_________ •20. (2017*玉林)已知抛物线:y=ax2+bx+c (a>0)经过A ( - 1, 1) , B (2, 4)两点,顶点坐标为(m,n),有下列结论:①bVl;②cV2;(3)0<m< | ;④nSl.则所有正确结论的序号是 ________.三、解答题(共9题;共60分)21. 抛物线y=-x2+bx+c 点(0,-3)和(2, 1),试确定抛物线的解析式,并求出抛物线与x轴的交点坐标.22.已知如图,抛物线的顶点D的坐标为(1, -4),且与y轴交于点C (0, 3)・(1)求该函数的关系式;(2)求该抛物线与x轴的交点A, B的坐标.23. 如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y (rr/)与它与墙平行的边的长x (m)之间的函数.24. 图屮是抛物线形拱桥,当水面宽AB = 8米时,拱顶到水面的距离CD = 4米.如果水面上升1米,那么水面宽度为多少米?「—T I^325. 根据条件求二次函数的解析式:(1)抛物线的顶点坐标为(-1, -1),且与y轴交点的纵坐标为-3(2)抛物线在x轴上截得的线段长为4,且顶点坐标是(3,・2)・2&画图求方程x1 2 3= - x+2的解,你是如何解决的呢?我们来看一看下面两位同学不同的方法.甲:先将方程x2= - x+2化为x2+x - 2=0,再画出y=x2+x - 2的图象,观察它与x轴的交点,得出方程的解; 乙:分别画出函数尸X?和y= - x+2的图彖,观察它们的交点,并把交点的横坐标作为方程的解. 你刈•这两种解法有什么看法?请与你的同学交流.27. 如图,已知直线丫= —2x+4与x轴、y轴分别相交于A、C两点,抛物线y=-2x2+bx+c (a*0)^过点A、C. 29.在平面直角坐标系屮,0为原点,直线y二・2x・1与y轴交于点A,与直线y= - x交于点B,点B关于原点的1求抛物线的解析式;2设抛物线的顶点为P,在抛物线上存在点Q,使△ABQ的面积等于4APC面积的4倍.求出点Q的坐标;3点M是直线y=-2x+4上的动点,过点M作ME垂直x轴于点E,在y轴(原点除外)上是否存在点F, 使AMEF 为等腰直角三角形?若存在,求出点F的坐标及对应的点M的坐标;若不存在,请说明理由.28. 某商品的进价为每件20元,售价为每件30元,每个月可卖!11 180件;如果每件商品的售价每上涨1 元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数), 每个月的销售利润为y元.(I)求y与x的函数关系式,并直接写出自变量x的取值范围;求x为何值时y的值为1920?(II)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少?对称点为点C.(I )求过B, C两点的抛物线y=ax2+bx - 1解析式;(ID P为抛物线上一点,它关于原点的对称点为Q・①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t (,当t为何值时,四边形PBQC面积最大?最大值是多少?并说明理【易错题解析】浙教版九年级数学上册第一章二次函数单元测试卷一、单选题(共10题;共30分)1•一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下列函数解析式:h=-3 (t-2) 2+5, 则小球距离地面的最大高度是()A. 2米B. 3米C. 5米D. 6米【答案】C【考点】二次函数的应用【解析】【解答】解:・・・h=-3 (t-2)仃5,・••当X2时,h取得最大值,此时h=5,故选C.【分析】根据二次函数的解析式,可以得到二次函数的最大值,从而可以解答本题.2. 要得到二次函数尸・2 (x-1)2・1的图象,需将尸・2x2的图象()A.向左平移2个单位,再向下平移3个单位B.向右平移2个单位,再向上平移1个单位C.向右平移1个单位,再向下平移1个单位D.向左平称1个单位,再向上平移3个单位【答案】C【考点】二次函数图象的几何变换【解析】【解答】二次函数尸・2 (x・l)的顶点坐标为(1,・1),y= - 2x2的顶点坐标为(0, 0),所以,要得到二次函数y=-2 (x的图象,需将尸・2x2的图象向右平移「个单位,再向下平移2 个单位.故答案为:C.【分析】根据二次函数的几何变换分别找出两个函数的顶点坐标,通过观察顶点坐标的变换特点即可得出平行规律。
九年级数学二次函数最值易错题总结(含答案)

九年级数学二次函数最值易错题总结(含答案)一、选择题(本大题共2小题,共6.0分)1. 已知y 关于x 的二次函数y =ax 2−6ax +1,当−1≤x ≤4,函数的最小值为−3,则a =( )A. −47B. −47或49C. 49D. −47或12【答案】B 【解析】 【分析】本题考查了二次函数的性质及最值,由y =ax 2−6ax +1=a (x −3)2−9a +1,可知当a >0时,最小值是−9a +1=−3,当a <0时,x =−1时,y 有最小值−3,则a +6a +1=−3,解关于a 的方程即可求得. 【解答】解:y =ax 2−6ax +1=a (x −3)2−9a +1, 其对称轴为直线x =3,当a >0时,最小值是−9a +1=−3,解得a =49;当a <0时,x =−1时,y 有最小值−3,则a +6a +1=−3,解得a =−47, 所以a 的值为49或−47, 故选:B .2. 已知二次函数y =−x²+3mx −3n ,图像与x 轴没有交点,则( )A. 2m +n >43B. 2m +n <43C. 2m −n <43D. 2m −n >43【答案】C 【解析】 【分析】本题考查了以及二次函数的性质、二次函数图象与x 轴的交点,关键是利用△=b 2−4ac 和零之间的关系来确定图象与x 轴交点的数目,即:当△>0时,函数与x 轴有2个交点,当△=0时,函数与x 轴有1个交点,当△<0时,函数与x 轴无交点.函数y =−x 2+3mx −3n 的图象与x 轴没有交点,用根的判别式:△<0,即可求出n >34m 2,然后分别求解即可.【解答】解:∵二次函数y =−x 2+3mx −3n ,图像与x 轴没有交点, 令y =0,则0=−x 2+3mx −3n , ∴△=b 2−4ac =9m 2−12n <0, 即:n >34m 2,∴2m +n >2m +34m 2=34(m +43)2−43≥−43, ∴2m +n >−43,同理:2m −n <2m −34m 2=−34(m −43)2+43≤43, 即2m −n <43, 故选:C .二、填空题(本大题共6小题,共18.0分)3. 已知二次函数y =x 2−2(m −1)x +2m 2−m −2(m 为常数),若对于一切实数m和x 均有y ≥k ,则k 的最大值为____. 【答案】 −134 【解析】 【分析】本题主要考查二次函数的性质,根据二次函数的性质先将二次函数化为顶点式,求出最值,令w =m 2+m −3,根据对于一切实数m 和x 均有y ≥k ,即k ≤w ,和w 的取值范围可求解. 【解答】解:∵y =x 2−2(m −1)x +2m 2−m −2=(x −m +1)2+m 2+m −3, ∴当x =m −1时,y 有最小值m 2+m −3. 令w =m 2+m −3=(m +12)2−134≥−134,∵对于一切实数m 和x 均有y ≥k ,即k ≤w , ∵w ≥−134,∴k ≤−134. 故答案为k ≤−134.4. 当−3≤x ≤2时,函数y =ax²−4ax +2(a ≠0)的最大值是8,则a =_____.【答案】27或−32 【解析】 【分析】本题考查的是二次函数的性质,二次函数的最值,分类讨论有关知识,本题首先求得对称轴,根据x 的取值,分a >0和a <0两种情况讨论求得即可. 【解答】解:∵函数y =ax 2−4ax +2(a ≠0)的对称轴为直线x =−−4a 2a=2,∴当a >0时,则x =−3时,函数y =ax 2−4ax +2(a ≠0)的最大值是8, ∴把x =−3代入得,9a +12a +2=8, 解得a =27;∴当a <0时,则x =2时,函数y =ax 2−4ax +2(a ≠0)的最大值是8, ∴把x =2代入得,4a −8a +2=8, 解得a =−32, 故答案为27或−32.5. 当−1≤a ≤14时,则抛物线y =−x 2+2ax +2−a 的顶点到x 轴距离的最小值为_______. 【答案】2916 【解析】 【分析】本题考查的是抛物线与x 轴的交点,熟知一元二次方程的根与抛物线与x 轴的交点之间的关系是解答此题的关键.得出抛物线y =−x 2+2ax +2−a 顶点的纵坐标表达式,把a 的取值代入即可. 【解答】解:∵抛物线y =−x 2+2ax +2−a 的顶点纵坐标=−4(2−a )−4a 2−4=2−a +a 2=(a −12)2+74,又∵−1≤a ≤14,当a =14时,(14−12)2+74=2916,∴顶点到x 轴距离的最小值是2916. 故答案为:2916.6. 已知二次函数y =x 2−2(m −1)x +2m 2−m −2(m 为常数),若对于一切实数m和x 均有y ≥k ,则k 的最大值为 . 【答案】−134【解析】解:y =x 2−2(m −1)x +2m 2−m −2=(x −m +1)2+m 2+m −3, 当x =m −1时,y 有最小值m 2+m −3, 令w =m 2+m −3=(m +12)2−134≥−134,∵对于一切实数m 和x 均有y ≥k ,即k ≤w , ∵w ≥−134, ∴k ≤−134, 故答案为−134.求出函数的最小值的取值范围即m 2+m −3=(m +12)2−134≥−134,由已知可知对于一切实数m 和x 均有y ≥k ,即k ≤w .本题考查二次函数的性质;熟练掌握二次函数的性质,能够将已知不等关系转化为函数的最值是解题的关键.7. 已知抛物线y =−x 2−3x +3,点P(m,n)在抛物线上,则m +n 的最大值是________. 【答案】4【解析】 【分析】本题考查了二次函数的最值问题,整理成用m 表示m +n 的形式是解题的关键.把点P(m,n)代入抛物线的解析式,得到n =−m 2−3m +3,等式两边同加m 得m +n =−m 2−2m +3,得到m +n 关于m 的二次函数解析式,然后整理成顶点式形式,再根据二次函数的最值问题解答. 【解答】解:∵点P(m,n)在抛物线y =−x 2−3x +3上, ∴n =−m 2−3m +3,∴m +n =−m 2−2m +3=−(m +1)2+4, ∴当m =−1时,m +n 有最大值4. 故答案为:4.8. 若实数a 、b 满足a +b 2=2,则a 2+5b 2的最小值为______.【答案】4 【解析】【分析】本题考查了二次函数的最值,根据题意得出a 2+5b 2=(a −52)2+154是关键.由a +b 2=2得出b 2=2−a ,代入a 2+5b 2得出a 2+5b 2=a 2+5(2−a)=a 2−5a +10,再利用配方法化成a 2+5b 2=(a −52)2+154,即可求出其最小值.【解答】解:∵a +b 2=2, ∴b 2=2−a ,a ≤2,∴a 2+5b 2=a 2+5(2−a)=a 2−5a +10=(a −52)2+154,当a =2时,a 2+5b 2可取得最小值为4. 故答案为:4.三、解答题(本大题共8小题,共64.0分)9. 已知两个函数:y 1=ax +4,y 2=a(x −1a )(x −4)(a ≠0).(1)求证:y 1,y 2的图象均经过点M(0,4);(2)当a>0,−2≤x≤2时,若y=y2−y1的最大值为4,求a的值;(3)当a>0,x<2时,比较函数值y1与y2的大小.【答案】解:(1)证明:当x=0时,y1=0+4=4,∴点M(0,4)在y1的图象上,)×(−4)=4,当x=0时,y2=a×(−1a所以点(0,4)在y2的图像上,即y1、y2的图象均经过点M(0,4);)(x−4)(a≠0).(2)∵y1=ax+4,y2=a(x−1a)(x−4)−(ax+4),∴y=y2−y1=a(x−1a即y=ax2−(5a+1)x,>2,∵a>0,对称轴为x=5a+12a∴当−2≤x≤2时,y随x的增大而减小,∴当x=−2时,y取最大值为4a+2(5a+1),∵y=y2−y1的最大值为4,∴14a+2=4,;解得,a=17(3)由(2)知y=y2−y1=ax2−(5a+1)x,当a>0,x<2时,y随x的增大而减小,当x=2时,y=y2−y1=4a−10a−2=−6a−2<0,又当y=0时,ax2−(5a+1)x=0,x=(5a+1)±(5a+1),2a(大于2,舍去)x1=0,x2=5+1a故,当x<0时,y2>y1;当x=0时,y2=y1;当0<x<2时,y2<y1.【解析】(1)代入点M 的坐标进行验证便可; (2)根据二次函数的图象与性质进行解答; (3)由(2)的二次函数的性质进行讨论便可.本题是一个一次函数与二次函数的综合题,考查函数图象上点坐标特征,二次函数的最值,一次函数与二次函数的性质,第(3)题难度较大,要根据二次函数的性质,分情况讨论解决问题.10. 在平面直角坐标系中,设二次函数y 1=x 2+bx +a ,y 2=ax 2+bx +1(a,b 是实数,a ≠0).(1)若函数y 1的对称轴为直线x =3,且函数y 1的图象经过点(a,b),求函数y 1的表达式.(2)若函数y 1的图象经过点(r,0),其中r ≠0,求证:函数y 2的图象经过点(1r ,0). (3)设函数y 1和函数y 2的最小值分别为m 和n ,若m +n =0,求m ,n 的值. 【答案】解:(1)由题意,得到−b2=3,解得b =−6, ∵函数y 1的图象经过(a,−6), ∴a 2−6a +a =−6, 解得a =2或3,∴函数y 1=x 2−6x +2或y 1=x 2−6x +3.(2)∵函数y 1的图象经过点(r,0),其中r ≠0, ∴r 2+br +a =0, ∴1+br +a r 2=0,即a(1r )2+b ⋅1r +1=0, ∴1r 是方程ax 2+bx +1的根, 即函数y 2的图象经过点(1r ,0).(3)由题意a >0,∴m =4a−b 24,n =4a−b 24a,∵m +n =0, ∴4a−b 24+4a−b 24a=0,∴(4a −b 2)(a +1)=0, ∵a +1>0, ∴4a −b 2=0, ∴m =n =0.【解析】(1)利用待定系数法解决问题即可.(2)函数y 1的图象经过点(r,0),其中r ≠0,可得r 2+br +a =0,推出1+br +ar 2=0,即a(1r )2+b ⋅1r +1=0,推出1r 是方程ax 2+bx +1的根,可得结论. (3)由题意a >0,∴m =4a−b 24,n =4a−b 24a,根据m +n =0,构建方程可得结论.本题考查二次函数的图象与系数的关系,二次函数的性质等知识,解题的关键是熟练掌握待定系数法,学会利用参数解决问题,属于中考常考题型.11. 已知二次函数y =−x 2+2kx +1−k(k 是常数).(1)求此函数的顶点坐标.(用k 的代数式表示) (2)当x ≥1时,y 随x 的增大而减小,求k 的取值范围. (3)当0≤x ≤1时,该函数有最大值3,求k 的值.【答案】解:(1)∵抛物线的解析式为y =−x 2+2kx +1−k =−(x −k)2+1−k +k 2, ∴抛物线的顶点坐标为(k,1−k +k 2);(2)∵抛物线的解析式为y =−(x −k)2+1−k +k 2, ∴当x ≥k 时,y 随x 的增大而减小, ∵当x ≥1时,y 随x 的增大而减小, ∴k ≤1.(3)①当k <0时,x =0时,函数值最大, ∴1−k =3,解得k =−2;②当0≤k ≤1时,则1−k +k 2=3方程无解; ③当k >1时,x =1时,函数值最大,∴−1+2k+1−k=3,解得k=3综上,当0≤x≤1时,该函数有最大值3,则k=−2或k=3.【解析】(1)配方得到顶点式,可确定顶点坐标;(2)根据二次函数的性质即可得到k的取值;(3)分三种情况讨论,关键是根据题意得到关于k的方程,解方程即可求得.本题考查二次函数图象与系数的关系,二次函数的最值,二次函数的性质,分类讨论是解题的关键.12.已知二次函数y=−x2+2kx+1−k(k是常数)(1)求此函数的顶点坐标.(2)当x≥1时,y随x的增大而减小,求k的取值范围.(3)当0≤x≤1时,该函数有最大值3,求k的值.【答案】解:(1)∵抛物线的解析式为y=−x2+2kx+1−k=−(x−k)2+1−k+k2,∴抛物线的顶点坐标为(k,1−k+k2);(2)∵抛物线的解析式为y=−(x−k)2+1−k+k2,∴当x≥k时,y随x的增大而减小,∵当x≥1时,y随x的增大而减小,∴k≤1.(3)①当k<0时,x=0时,函数值最大,最大值为1−k,∴1−k=3,解得k=−2;②当0≤k≤1时,最大值为1−k+k2,则1−k+k2=3,解得k=2(舍去)或−1(舍去);③当k>1时,x=1时,函数值最大,最大值为−1+2k+1−k,∴−1+2k+1−k=3,解得k=3综上,当0≤x≤1时,该函数有最大值3,则k=−2或k=3.【解析】本题考查二次函数的性质,二次函数的最值,分类讨论是解题的关键.(1)配方得到顶点式,可确定顶点坐标;(2)根据二次函数的性质即可得到k的取值;(3)分三种情况讨论,关键题意得到关于k的方程,解方程即可求得.13.如图所示,矩形ABCD的四个顶点在正三角形EFG的边上,已知△EFG的边长为2,设边长AB为x,矩形ABCD的面积为S.求:(1)S关于x的函数表达式和自变量x的取值范围.(2)S的最大值及此时x的值.【答案】解:(1)过E作EM⊥FG,交DC于点N,∵四边形ABCD是矩形,∴CD//FG,AB=CD=x,∴△EDC∽△EFG,,∵△EFG是等边三角形,EM⊥FG,∴FM=12FG=1,∴EM=√22−12=√3,∴x2=√3−MN√3,∴MN=2√3−√3x2,∴S=AB·MN=x·2√3−√3x2=−√32x2+√3x(0<x<2);(2)S=−√32x2+√3x=−√32(x−1)2+√32,当x=1时,S最大=√32.【解析】本题考查了相似三角形的判定和性质,矩形的性质,等边三角形的性质,二次函数的性质,正确的理解题意是解题的关键.(1)根据矩形的性质得到△EDC∽△EFG,则,用x表示出MN的长,根据矩形的面积公式即可得到结论;(2)根据二次函数的性质即可得到结论.14.已知二次函数y=ax2−4ax+3+b(a≠0).(1)求出二次函数图象的对称轴;(2)若该函数的图象经过点(1,3),且整数a,b满足4<a+|b|<9,求二次函数的表达式;(3)在(2)的条件下且a>0,当t≤x≤t+1时有最小值3,求t的值.2=2;【答案】解:(1)二次函数图象的对称轴是x=−−4a2a(2)该二次函数的图象经过点(1,3),∴a−4a+3+b=3,∴b=3a,把b=3a代入4<a+|b|<9,得4<a+3|a|<9..当a>0时,4<4a<9,则1<a<94而a为整数,∴a=2,则b=6,∴二次函数的表达式为y=2x2−8x+9;<a<−2.当a<0时,4<−2a<9,则−92而a为整数,∴a=−3或−4,则对应的b=−9或−12,∴二次函数的表达式为y=−3x2+12x−6或y=−4x2+16x−9;(3)在(2)的条件下,且a >0,所以y =2x 2−8x +9,开口向上,对称轴为直线x =2,①当t +1<2时,即t <1.y 随着x 的增大而减少,当x =t +1时,y 取得最小值.即2(t +1)2−8(t +1)+9=32,解得t 1=12,t 2=32(舍去), 所以t =12,②当t ≤2≤t +1时,即1≤t ≤2.此时,x =2时,y 取最小为1≠32,③当t >2时,y 随着x 的增大而增大,当x =t 时,y 取得最小值.即2t 2−8t +9=32,解得t 1=32(舍去),t 2=52 ,所以t =52,综上可得:t 的值为12或52.【解析】略15. 如图,矩形ABCD 的四个顶点在正三角形EFG 的边上,已知△EFG 的边长为2,设边长AB 为x ,矩形ABCD 的面积为S .求:(1)S 关于x 的函数表达式和自变量x 的取值范围.(2)S 的最大值及此时x 的值.【答案】解:(1)过E 作EM ⊥GF 于M ,交DC 于N , ∵△EFG 的边长为2,∴FM=MG=1,∵四边形ABCD是矩形,∴AD=CB=MF,DC=AB=x,DC//AB,∴△EDC∽△EFG,∴DCGF =ENEM,∴x2=√3−AD√3,解得:AD=2√3−√3x2,∴矩形ABCD的面积S=AD×AB=2√3−√3x2x,即S=−√32x2+√3x;(2)S=−√32x2+√3x=−√32(x−1)2+√32,即当x=1时,S的最大值是√32.【解析】(1)过E作EM⊥GF于M,交DC于N,根据矩形得出DC//AB,根据相似三角形的判定得出△EDC∽△EFG,根据相似三角形的性质得出比例式,代入求出AD,即可求出答案;(2)先把解析式化成顶点式,再得出答案即可.本题考查了相似三角形的性质和判定,二次函数的解析式,二次函数的最值,等边三角形的性质,矩形的性质等知识点,能求出△EDC∽△EFG解此题的关键.16.已知两个函数:y1=ax+4,y2=a(x−1a)(x−4)(a≠0).(1)求证:y1,y2的图象均经过点M(0,4).(2)当a>0,−2≤x≤2时,若y=y2−y1的最大值为4,求a的值.(3)当a>0,x<2时,比较函数值y1与y2的大小.【答案】解:(1)证明:当x=0时,y1=0+4=4,∴点M(0,4)在y1的图象上,当x=0时,y2=a×(−1a)×(−4)=4,所以点(0,4)在y2的图像上,即y1、y2的图象均经过点M(0,4);)(x−4)(a≠0).(2)∵y1=ax+4,y2=a(x−1a)(x−4)−(ax+4),∴y=y2−y1=a(x−1a即y=ax2−(5a+1)x,>2,∵a>0,对称轴为x=5a+12a∴当−2≤x≤2时,y随x的增大而减小,∴当x=−2时,y取最大值为4a+2(5a+1),∵y=y2−y1的最大值为4,∴14a+2=4,解得,a=1;7(3)由(2)知y=y2−y1=ax2−(5a+1)x,当a>0,x<2时,y随x的增大而减小,当x=2时,y=y2−y1=4a−10a−2=−6a−2<0,又当y=0时,ax2−(5a+1)x=0,x=(5a+1)±(5a+1),2a(大于2,舍去)x1=0,x2=5+1a故,当x<0时,y2>y1;当x=0时,y2=y1;当0<x<2时,y2<y1.【解析】(1)代入点M的坐标进行验证便可;(2)根据二次函数的图象与性质进行解答;(3)由(2)的二次函数的性质进行讨论便可.本题是一个一次函数与二次函数的综合题,考查函数图象上点坐标特征,二次函数的最值,一次函数与二次函数的性质,第(3)题难度较大,要根据二次函数的性质,分情况讨论解决问题.。
九年级数学上册 二次函数易错题(Word版 含答案)

九年级数学上册 二次函数易错题(Word 版 含答案)一、初三数学 二次函数易错题压轴题(难)1.在平面直角坐标系中,将函数2263,(y x mx m x m m =--≥为常数)的图象记为G .(1)当1m =-时,设图象G 上一点(),1P a ,求a 的值;(2)设图象G 的最低点为(),o o F x y ,求o y 的最大值;(3)当图象G 与x 轴有两个交点时,设右边交点的横坐标为2,x 则2x 的取值范围是 ;(4)设1112,,2,16816A m B m ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,当图象G 与线段AB 没有公共点时,直接写出m 的取值范围.【答案】(1)0a =或3a =-;(2)118;(3)21136x -<<-;(4)18m <-或116m >- 【解析】【分析】(1)将m=-1代入解析式,然后将点P 坐标代入解析式,从而求得a 的值;(2)分m >0和m ≤0两种情况,结合二次函数性质求最值;(3)结合二次函数与x 轴交点及对称轴的性质确定取值范围;(4)结合一元二次方程根与系数的关系确定取值范围.【详解】解:(1)当1m =-时,()22613y x x x =++≥ 把(),1P a 代入,得22611a a ++=解得0a =或3a =-(2)当0m >时,,(3)F m m -此时,0o y m =-<当0m ≤时,2223926=2()22y x mx m x m m m =----- ∴239,22F m m m ⎛⎫-- ⎪⎝⎭此时,229911=()22918m m m ---++ ∴0y 的最大值118=综上所述,0y 的最大值为118(3)由题意可知:当图象G 与x 轴有两个交点时,m >0 当抛物线顶点在x 轴上时,22=4(6)42()=0b ac m m -=--⨯⨯-△解得:m=0(舍去)或29m =- 由题意可知抛物线的对称轴为直线x=32m 且x ≥3m ∴当图象G 与x 轴有两个交点时,设右边交点的横坐标为x 2,则x 2的取值范围是21136x -<<- (4)18m <-或116m >- 【点睛】本题属于二次函数综合题,考查了二次函数的性质,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.2.如图,直线l :y =﹣3x +3与x 轴,y 轴分别相交于A 、B 两点,抛物线y =﹣x 2+2x +b 经过点B .(1)该抛物线的函数解析式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值; (3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M '.①写出点M '的坐标;②将直线l 绕点A 按顺时针方向旋转得到直线l ',当直线l ′与直线AM '重合时停止旋转,在旋转过程中,直线l '与线段BM '交于点C ,设点B ,M '到直线l '的距离分别为d 1,d 2,当d 1+d 2最大时,求直线l '旋转的角度(即∠BAC 的度数).【答案】(1)2y x 2x 3=-++;(2)21525228S m ⎛⎫=--+ ⎪⎝⎭ ,258;(3)①57,24M ⎛⎫' ⎪⎝⎭;②45°【解析】【分析】(1)利用直线l的解析式求出B点坐标,再把B点坐标代入二次函数解析式即可求出b的值.(2)设M的坐标为(m,﹣m2+2m+3),然后根据面积关系将△ABM的面积进行转化.(3)①由(2)可知m=52,代入二次函数解析式即可求出纵坐标的值.②可将求d1+d2最大值转化为求AC的最小值.【详解】(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B(0,3)代入y=﹣x2+2x+b并解得:b=3,∴二次函数解析式为:y=﹣x2+2x+3.(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为-1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,令y=0代入y=﹣3x+3,∴x=1,∴A的坐标为(1,0),由题意知:M的坐标为(m,﹣m2+2m+3),∴S=S四边形OAMB﹣S△AOB=S△OBM+S△OAM﹣S△AOB=12×m×3+12×1×(-m2+2m+3)-12×1×3=﹣12(m﹣52)2+258,∴当m =52时,S 取得最大值258. (3)①由(2)可知:M′的坐标为(52,74). ②设直线l′为直线l 旋转任意角度的一条线段,过点M′作直线l 1∥l′,过点B 作BF ⊥l 1于点F ,根据题意知:d 1+d 2=BF ,此时只要求出BF 的最大值即可,∵∠BFM′=90︒,∴点F 在以BM′为直径的圆上,设直线AM′与该圆相交于点H ,∵点C 在线段BM′上,∴F 在优弧'BM H 上,∴当F 与M′重合时,BF 可取得最大值,此时BM′⊥l 1,∵A (1,0),B (0,3),M′(52,74), ∴由勾股定理可求得:AB 10,M′B 55M′A =854, 过点M′作M′G ⊥AB 于点G ,设BG =x ,∴由勾股定理可得:M′B 2﹣BG 2=M′A 2﹣AG 2,∴851610﹣x )2=12516﹣x 2, ∴x =5108, cos ∠M′BG ='BG BM 2,∠M′BG= 45︒此时图像如下所示,∵l 1∥l′,F 与M′重合,BF ⊥l 1∴∠B M′P=∠BCA =90︒,又∵∠M′BG=∠CBA= 45︒∴∠BAC =45︒.【点睛】本题主要考查了一次函数与二次函数的综合以及一次函数旋转求角度问题,正确掌握一次函数与二次函数性质及综合问题的解法是解题的关键.3.二次函数22(0)63m m y x x m m =-+>的图象交y 轴于点A ,顶点为P ,直线PA 与x 轴交于点B .(1)当m =1时,求顶点P 的坐标;(2)若点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上,且0b m ->,试求a 的取值范围;(3)在第一象限内,以AB 为边作正方形ABCD .①求点D 的坐标(用含m 的代数式表示);②若该二次函数的图象与正方形ABCD 的边CD 有公共点,请直接写出符合条件的整数m 的值.【答案】(1)P (2,13);(2)a 的取值范围为:a <0或a >4;(3)①D (m ,m +3); ②2,3,4.【解析】【分析】(1)把m =1代入二次函数22(0)63m m y x x m m =-+>解析式中,进而求顶点P 的坐标即可;(2)把点Q (a ,b )代入二次函数22(0)63m m y x x m m =-+>解析式中,根据0b m ->得到关于a 的一元二次不等式即一元一次不等式组,解出a 的取值范围即可; (3)①过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,求出二次函数与y 轴的交点A 的坐标,得到OA 的长,再根据待定系数法求出直线AP 的解析式,进而求出与x 轴的交点B 的坐标,得到OB 的长;通过证明△ADF ≌△ABO ,得到AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,求出点D 的坐标;②因为二次函数的图象与正方形ABCD 的边CD 有公共点,由①同理可得:C (m+3,3),分当x 等于点D 的横坐标时与当x 等于点C 的横坐标两种情况,进行讨论m 可能取的整数值即可.【详解】解:(1)当m =1时,二次函数为212163y x x =-+, ∴顶点P 的坐标为(2,13); (2)∵点Q (a ,b )在二次函数22(0)63m m y x x m m =-+>的图象上, ∴2263m m b a a m =-+, 即:2263m m b m a a -=- ∵0b m ->, ∴2263m m a a ->0, ∵m >0, ∴2263a a ->0, 解得:a <0或a >4,∴a 的取值范围为:a <0或a >4;(3)①如下图,过点D 作DE ⊥x 轴于点E ,过点A 作AF ⊥DE 于点F ,∵二次函数的解析式为2263m m y x x m =-+, ∴顶点P (2,3m ), 当x=0时,y=m ,∴点A (0,m ),∴OA=m ;设直线AP 的解析式为y=kx+b(k≠0),把点A (0,m ),点P (2,3m )代入,得: 23m b m k b =⎧⎪⎨=+⎪⎩, 解得:3m k b m⎧=-⎪⎨⎪=⎩,∴直线AP 的解析式为y=3m -x+m , 当y=0时,x=3,∴点B (3,0);∴OB=3;∵四边形ABCD 是正方形,∴AD=AB ,∠DAF+∠FAB=90°,且∠OAB+∠FAB =90°,∴∠DAF=∠OAB ,在△ADF 和△ABO 中,DAF OAB AFD AOB AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△ABO (AAS ),∴AF=OA=m ,DF=OB=3,DE=DF+EF= DF+OA=m+3,∴点D 的坐标为:(m ,m+3);②由①同理可得:C (m+3,3),∵二次函数的图象与正方形ABCD 的边CD 有公共点,∴当x =m 时,3y m ≤+,可得322363m m m m -+≤+,化简得:32418m m -≤. ∵0m >,∴2184m m m -≤,∴218(2)4m m--≤, 显然:m =1,2,3,4是上述不等式的解,当5m ≥时,2(2)45m --≥,18 3.6m ≤,此时,218(2)4m m-->, ∴符合条件的正整数m =1,2,3,4; 当x = m +3时,y ≥3,可得2(3)2(3)363m m m m m ++-+≥, ∵0m >,∴21823m m m ++≥,即218(1)2m m++≥, 显然:m =1不是上述不等式的解,当2m ≥时,2(1)211m ++≥,189m ≤,此时,218(1)2m m++>恒成立, ∴符合条件的正整数m =2,3,4;综上:符合条件的整数m 的值为2,3,4.【点睛】本题考查二次函数与几何问题的综合运用,熟练掌握二次函数的图象和性质、一次函数的图象和性质、正方形的性质是解题的关键.4.如图1.在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,4D AB =,(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180︒,得到新的抛物线'C .()1求抛物线C 的函数表达式:()2若抛物线'C 与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. ()3如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线'C 上的对应点P',设M 是C 上的动点,N 是'C 上的动点,试探究四边形'PMP N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.【答案】()12142y x =-+;()2222m <<()3四边形'PMP N 可以为正方形,6m = 【解析】【分析】(1)由题意得出A,B 坐标,并代入,,A B D 坐标利用待定系数法求出抛物线C 的函数表达式;(2)根据题意分别求出当C '过点()0,4D 时m 的值以及当C '过点()22,0B 时m 的值,并以此进行分析求得;(3)由题意设(),P n n ,代入解出n ,并作HK OF ⊥,PH HK ⊥于H ,利用正方形性质以及全等三角形性质得出M 为()2,2m m --,将M 代入21: 42C y x =-+即可求得答案.【详解】解:()142AB =(), 22,0)2,0(2A B ∴-将,,A B D 三点代入得2 y ax bx c =++8220.8220.4a b ca b cc⎧-+=⎪⎪++=⎨⎪=⎪⎩解得124abc⎧=-⎪⎪=⎨⎪=⎪⎩2142y x∴=-+;()2如图21:42C y x=-+.关于(),0F m对称的抛物线为()21:242C y x m'=--当C'过点()0,4D时有()2140242m=--解得:2m=当C'过点()2,0B时有()21022242m=-解得:22m=222m∴<<;()3四边形'PMP N可以为正方形由题意设(),P n n,P是抛物线C第一象限上的点2142n n∴-+=解得:122,2n n==-(舍去)即()2,2P如图作HK OF⊥,PH HK⊥于H,MK HK ⊥于K四边形PMP N '为正方形 易证PHK FKM ≌2FK HP m ∴==-2MK HF ==M ∴为()2,2m m --∴将M 代入21: 42C y x =-+得()212242m m -=--+ 解得:126,0m m ==(舍去)∴当6m =时四边形PMP N ''为正方形.【点睛】本题考查二次函数综合题、中心对称变换、正方形的性质、全等三角形的判定和性质、一元二次方程的根与系数的关系等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题,难度大.5.已知抛物线2(0)y ax bx c a =++≠过点(0,2)A -. (1)若点(2,0)-也在该抛物线上,请用含a 的关系式表示b ;(2)若该抛物线上任意不同两点()11,M x y 、()22,N x y 都满足:当120x x <<时,()()12120x x y y --<;当120x x <<时,()()12120x x y y -->;若以原点O 为圆心,OA 为半径的圆与抛物线的另两个交点为B 、C (点B 在点C 左侧),且ABC ∆有一个内角为60,求抛物线的解析式;(3)在(2)的条件下,若点P 与点O 关于点A 对称,且O 、M 、N 三点共线,求证:PA 平分MPN ∠.【答案】(1)21b a =-;(2)22y x =-;(3)见解析.【解析】 【分析】(1)把点()0,2-、()2,0-代入抛物线解析式,然后整理函数式即可得到答案. (2)根据二次函数的性质可得出抛物线的对称轴为y 轴、开口向上,进而可得出0b =,由抛物线的对称性可得出ABC ∆为等腰三角形,结合其有一个60︒的内角可得出ABC ∆为等边三角形,设线段BC 与y 轴交于点D ,根据等边三角形的性质可得出点C 的坐标,再利用待定系数法可求出a 值,此题得解;(3)由(1)的结论可得出点M 的坐标为1(x ,212)x -+、点N 的坐标为2(x ,222)x -+,由O 、M 、N 三点共线可得出212x x =-,进而可得出点N 及点'N 的坐标,由点A 、M 的坐标利用待定系数法可求出直线AM 的解析式,利用一次函数图象上点的坐标特征可得出点'N 在直线PM 上,进而即可证出PA 平分MPN ∠. 【详解】解:(1)把点()0,2-、()2,0-分别代入,得2420c a b c =-⎧⎨-+=⎩. 所以21b a =-.(2),如图1,当120x x <<时,()()12120x x y y --<,120x x ∴-<,120y y ->, ∴当0x <时,y 随x 的增大而减小;同理:当0x >时,y 随x 的增大而增大,∴抛物线的对称轴为y 轴,开口向上,0b ∴=.OA 为半径的圆与拋物线的另两个交点为B 、C , ABC ∴∆为等腰三角形,又ABC ∆有一个内角为60︒, ABC ∴∆为等边三角形.设线段BC 与y 轴交于点D ,则BD CD =,且30OCD ∠=︒, 又2OB OC OA ===,·303CD OC cos ∴=︒=,·301OD OC sin =︒=. 不妨设点C 在y 轴右侧,则点C 的坐标为(3,1). 点C 在抛物线上,且2c =-,0b =,321a ∴-=,1a ∴=,∴抛物线的解析式为22y x =-.(3)证明:由(1)可知,点M 的坐标为1(x ,212)x -,点N 的坐标为2(x ,222)x -.如图2,直线OM 的解析式为()110y k x k =≠.O 、M 、N 三点共线,10x ∴≠,20x ≠,且22121222x x x x --=,121222x x x x ∴-=-, ()1212122x x x x x x -∴-=-,122x x ∴=-,即212x x =-, ∴点N 的坐标为12(x -,2142)x -. 设点N 关于y 轴的对称点为点'N ,则点'N 的坐标为12(x ,2142)x -. 点P 是点O 关于点A 的对称点,24OP OA ∴==,∴点P 的坐标为()0,4-.设直线PM 的解析式为24y k x =-,点M 的坐标为1(x ,212)x -,212124x k x ∴-=-,21212x k x +∴=,∴直线PM 的解析式为21124x y x x +=-.()222111221111224224·42x x x x x x x +-+-==-, ∴点'N 在直线PM 上,PA ∴平分MPN ∠. 【点睛】本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、等边三角形的性质以及一次(二次)函数图象上点的坐标特征,解题的关键是:(1)利用二次函数图象上点的坐标特征求出a 、b 满足的关系式;(2)①利用等边三角形的性质找出点C 的坐标;②利用一次函数图象上点的坐标特征找出点'N 在直线PM 上.6.已知二次函数y =ax 2+bx +c (a ≠0).(1)若b =1,a =﹣12c ,求证:二次函数的图象与x 轴一定有两个不同的交点; (2)若a <0,c =0,且对于任意的实数x ,都有y ≤1,求4a +b 2的取值范围;(3)若函数图象上两点(0,y 1)和(1,y 2)满足y 1•y 2>0,且2a +3b +6c =0,试确定二次函数图象对称轴与x 轴交点横坐标的取值范围. 【答案】(1)见解析;(2)240a b +≤ ;(3)12323b a <-< 【解析】 【分析】(1)根据已知条件计算一元二次方程的判别式即可证得结论; (2)根据已知条件求得抛物线的顶点纵坐标,再整理即可;(3)将(0,y 1)和(1,y 2)分别代入函数解析式,由y 1•y 2>0,及2a +3b +6c =0,得不等式组,变形即可得出答案. 【详解】解:(1)证明:∵y =ax 2+bx+c (a≠0), ∴令y =0得:ax 2+bx+c =0 ∵b =1,a =﹣12c ,∴△=b 2﹣4ac =1﹣4(﹣12c )c =1+2c 2, ∵2c 2≥0,∴1+2c 2>0,即△>0,∴二次函数的图象与x 轴一定有两个不同的交点; (2)∵a <0,c =0,∴抛物线的解析式为y =ax 2+bx ,其图象开口向下, 又∵对于任意的实数x ,都有y≤1,∴顶点纵坐标214b a-≤,∴﹣b 2≥4a , ∴4a+b 2≤0;(3)由2a+3b+6c =0,可得6c =﹣(2a+3b ), ∵函数图象上两点(0,y 1)和(1,y 2)满足y 1•y 2>0, ∴c (a+b+c )>0, ∴6c (6a+6b+6c )>0,∴将6c =﹣(2a+3b )代入上式得,﹣(2a+3b )(4a+3b )>0, ∴(2a+3b )(4a+3b )<0, ∵a≠0,则9a 2>0, ∴两边同除以9a 2得,24()()033b b a a ++<, ∴203403b a b a ⎧+<⎪⎪⎨⎪+>⎪⎩或203403b a b a ⎧+>⎪⎪⎨⎪+<⎪⎩,∴4233b a -<<-, ∴二次函数图象对称轴与x 轴交点横坐标的取值范围是:12323b a <-<. 【点睛】本题考查了抛物线与x 轴的交点、抛物线与一元二次方程的关系及抛物线与不等式的关系等知识点,熟练掌握二次函数的性质是解题的关键.7.如图①抛物线y =ax 2+bx +4(a ≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.【答案】(1)y=﹣x2+3x+4;(2)存在.P(﹣34,1916).(3)1539(,)24M--21139 (,) 24M-3521 (,) 24M【解析】【分析】(1)将A,B,C三点代入y=ax2+bx+4求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m2+3m+4=21 4∴3521 (,) 24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539 (,)24M--21139 (,) 24M-3521 (,) 24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.8.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.【答案】(1)A(-1,0) ,B(2,3)(2)△ABP最大面积s=1927322288⨯=; P(12,﹣34)(3)存在;25【解析】【分析】(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1,然后解方程组211y xy x⎧=⎨=+⎩﹣即可;(2)设P(x,x2﹣1).过点P作PF∥y轴,交直线AB于点F,则F(x,x+1),所以利用S△ABP=S△PFA+S△PFB,,用含x的代数式表示为S△ABP=﹣x2+x+2,配方或用公式确定顶点坐标即可.(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,用k分别表示点E的坐标,点F的坐标,以及点C的坐标,然后在Rt△EOF中,由勾股定理表示出EF的长,假设存在唯一一点Q,使得∠OQC=90°,则以OC为直径的圆与直线AB相切于点Q,设点N为OC中点,连接NQ,根据条件证明△EQN∽△EOF,然后根据性质对应边成比例,可得关于k的方程,解方程即可.【详解】解:(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1.联立两个解析式,得:x2﹣1=x+1,解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,∴A (﹣1,0),B (2,3). (2)设P (x ,x 2﹣1).如答图2所示,过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1).∴PF=y F ﹣y P =(x+1)﹣(x 2﹣1)=﹣x 2+x+2.S △ABP =S △PFA +S △PFB =PF (xF ﹣xA )+PF (xB ﹣xF )=PF (xB ﹣xA )=PF ∴S △ABP=(﹣x 2+x+2)=﹣(x ﹣12)2+278当x=12时,yP=x 2﹣1=﹣34. ∴△ABP 面积最大值为,此时点P 坐标为(12,﹣34). (3)设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F , 则E (﹣1k ,0),F (0,1),OE=1k,OF=1. 在Rt △EOF 中,由勾股定理得:EF=22111=k k +⎛⎫+ ⎪⎝⎭.令y=x 2+(k ﹣1)x ﹣k=0,即(x+k )(x ﹣1)=0,解得:x=﹣k 或x=1. ∴C (﹣k ,0),OC=k .假设存在唯一一点Q ,使得∠OQC=90°,如答图3所示,则以OC 为直径的圆与直线AB 相切于点Q ,根据圆周角定理,此时∠OQC=90°. 设点N 为OC 中点,连接NQ ,则NQ ⊥EF ,NQ=CN=ON=2k.∴EN=OE﹣ON=1k﹣2k.∵∠NEQ=∠FEO,∠EQN=∠EOF=90°,∴△EQN∽△EOF,∴NQ ENOF EF=,即:1221kkkk-=,解得:k=±25,∵k>0,∴k=25.∴存在唯一一点Q,使得∠OQC=90°,此时k=25.考点:1.二次函数的性质及其应用;2.圆的性质;3.相似三角形的判定与性质.9.如图,已知二次函数1L:()22311y mx mx m m=+-+≥和二次函数2L:()2341y m x m=--+-()1m≥图象的顶点分别为M、N,与x轴分别相交于A、B 两点(点A在点B的左边)和C、D两点(点C在点D的左边),(1)函数()22311y mx mx m m=+-+≥的顶点坐标为______;当二次函数1L,2L的y 值同时随着x的增大而增大时,则x的取值范围是_______;(2)判断四边形AMDN的形状(直接写出,不必证明);(3)抛物线1L,2L均会分别经过某些定点;①求所有定点的坐标;②若抛物线1L位置固定不变,通过平移抛物线2L的位置使这些定点组成的图形为菱形,则抛物线2L应平移的距离是多少?【答案】(1)()1,41m--+,13x;(2)四边形AMDN是矩形;(3)①所有定点的坐标,1L经过定点()3,1-或()1,1,2L经过定点()5,1-或()1,1-;②抛物线2L应平移的距离是423+423-.【解析】【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M的坐标;结合函数图象填空;(2)利用抛物线解析式与一元二次方程的关系求得点A 、D 、M 、N 的横坐标,可得AD 的中点为(1,0),MN 的中点为(1,0),则AD 与MN 互相平分,可证四边形AMDN 是矩形;(3)①分别将二次函数的表达式变形为1:(3)(1)1L y m x x =+-+和2:(1)(5)1L y m x x =----,通过表达式即可得出所过定点;②根据菱形的性质可得EH 1=EF=4即可,设平移的距离为x ,根据平移后图形为菱形,由勾股定理可得方程即可求解.【详解】解:(1)12b x a=-=-,顶点坐标M 为(1,41)m --+, 由图象得:当13x 时,二次函数1L ,2L 的y 值同时随着x 的增大而增大. 故答案为:(1,41)m --+;13x ;(2)结论:四边形AMDN 是矩形.由二次函数21:231(1)L y mx mx m m =+-+和二次函数22:(3)41(1)L y m x m m =--+-解析式可得:A 点坐标为41(1m m ---,0),D 点坐标为41(3m m -+,0), 顶点M 坐标为(1,41)m --+,顶点N 坐标为(3,41)m -,AD ∴的中点为(1,0),MN 的中点为(1,0),AD ∴与MN 互相平分,∴四边形AMDN 是平行四边形,又AD MN =,∴□AMDN 是矩形;(3)①二次函数21:231(3)(1)1L y mx mx m m x x =+-+=+-+,故当3x =-或1x =时1y =,即二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41(1)(5)1L y m x m m x x =--+-=----,故当1x =或5x =时1y =-,即二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,②二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,如图:四个定点分别为(3,1)E -、(1,1)F ,(1,1)H -、(5,1)G -,则组成四边形EFGH 为平行四边形,∴FH ⊥HG ,FH=2,HM=4-x ,设平移的距离为x ,根据平移后图形为菱形,则EH 1=EF=H 1M=4,由勾股定理可得:FH 2+HM 2=FM 2,即22242(4)x =+-,解得:423x =±,抛物线1L 位置固定不变,通过左右平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是423+或423-.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.10.如图,经过原点的抛物线2y ax x b =-+与直线2y =交于A ,C 两点,其对称轴是直线2x =,抛物线与x 轴的另一个交点为D ,线段AC 与y 轴交于点B .(1)求抛物线的解析式,并写出点D 的坐标;(2)若点E 为线段BC 上一点,且2EC EA -=,点(0,)P t 为线段OB 上不与端点重合的动点,连接PE ,过点E 作直线PE 的垂线交x 轴于点F ,连接PF ,探究在P 点运动过程中,线段PE ,PF 有何数量关系?并证明所探究的结论;(3)设抛物线顶点为M ,求当t 为何值时,DMF ∆为等腰三角形?【答案】(1)214y x x =-;点D 的坐标为(4,0);(2)PF =,理由见解析;(3)t =98t = 【解析】【分析】(1)先求出a 、b 的值,然后求出解析式,再求出点D 的坐标即可;(2)由题意,先求出点E 的坐标,然后证明Rt Rt PBE FHE ∆∆∽,得到2EF PE =,结合勾股定理,即可得到答案;(3)根据题意,可分为三种情况进行分析:FM FD =或DF DM =或FM MD =,分别求出三种情况的值即可.【详解】解:(1)∵抛物线2y ax x b =-+经过原点, ∴0b =.又抛物线的对称轴是直线2x =, ∴122a --=,解得:14a =. ∴抛物线的解析式为:214y x x =-. 令2104y x x =-=, 解得:10x =,24x =.∴点D 的坐标为(4,0).(2)线段PE 、PF 的数量关系为:PF =.证明:由抛物线的对称性得线段AC 的中点为(2,2)G ,如图①,AE EG GC +=,∴EG GC AE =-,∴EG EG EG GC AE EC EA +=+-=-,∵2EC EA -=,∴1EG =,∴(1,2)E ,过点E 作EH x ⊥轴于H ,则2EH OB ==.∵PE EF ⊥,∴90PEF ∠=︒,∵BE EH ⊥,∴90BEH ∠=︒.∴PEB HEF ∠=∠.在Rt PBE ∆与Rt FHE ∆中,∵PEB HEF ∠=∠,90EHF EBP ∠=∠=︒,∴Rt Rt PBE FHE ∆∆∽,∴12PE BE EF HE ==, ∴2EF PE =. 在Rt PEF ∆中,由勾股定理得:222222(2)5PF PE EF PE PE PE =+=+=, ∴5PF PE =.(3)由2211(2)144y x x x =-=--, ∴顶点M 坐标为(2,1)-.若DMF ∆为等腰三角形,可能有三种情形:(I )若FM FD =.如图②所示:连接MG 交x 轴于点N ,则90MNF ∠=︒,∵(4,0)D ,∴2222125MD MN ND =+=+=设FM FD k ==,则2NF k =-.在Rt MNF ∆中,由勾股定理得:222NF MN MF +=,∴22(2)1k k -+=,解得:54k =, ∴54FM =,34NF =, ∴1MN =,即点M 的纵坐标为1-;令1y =-,则2114x x -=-, ∴2x =,即ON=2,∴OF=114, ∴11,04F ⎛⎫ ⎪⎝⎭. ∵(1,2)E ,∴1,2BE BP t ==-,∴221(2)PE t =+-,∴251(2)PF t =•+-,在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴22211()55(2)4t t +=+-, ∴98t =. (II )若DF DM =.如图③所示:此时5FD DM ==∴45OF =,∴(45,0)F ,由(I )知,221(2)PE t =+-,251(2)PF t =+-在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴222(45)55(2)t t +-=+-∴12t=.(III)若FM MD=.由抛物线对称性可知,此时点F与原点O重合.∵PE EF⊥,点P在直线AC上方,与点P在线段OB上运动相矛盾,故此种情形不存在.【点睛】本题考查的是二次函数综合运用,涉及到相似三角形的判定和性质,一次函数的性质,等腰三角形的性质,全等三角形的判定和性质,以及勾股定理等知识,其中(3),要注意分类求解,避免遗漏.。
浙教版九年级上册数学第1章 二次函数含答案完整版

浙教版九年级上册数学第1章二次函数含答案一、单选题(共15题,共计45分)1、下表是一组二次函数y=x2+3x﹣5的自变量x与函数值y的对应值:x 1 1.2 1.3 1.4y ﹣1 0.04 0.59 1.16那么方程x2+3x﹣5=0的一个近似根是()A.1B.1.1C.1.2D.1.32、二次函数y=﹣x2﹣2x+c在﹣3≤x≤2的范围内有最小值﹣5,则c的值是()A.﹣6B.﹣2C.2D.33、过点(1,0),B(3,0),C(﹣1,2)三点的抛物线的顶点坐标是()A.(1,2)B.(1,)C.(﹣1,5)D.(2,)4、已知二次函数y=ax2+bx+c的图象如图所示,那么下列结论:①a<0,②b<0,③c<0,其中正确的判断是()A.①②B.①③C.②③D.①②③5、抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点A 在点(﹣3,0)和点(﹣2,0)之间,其部分图象如图所示,则下列结论:①b2﹣4ac<0;②当x>﹣1时,y随x的增大而减小;③a+b+c<0;④若方程ax2+bx+c﹣m=0没有实数根,则m>2;⑤3a+c<0,其中正确结论的个数是()A.2 个B.3 个C.4 个D.5 个6、将y=3x2通过平移,先向上平移2个单位,再向左平移3个单位,可得到抛物线是( )A.y=3(x+3) 2-2B.y=3(x+ 3) 2+2C.y=3(x+2) 2-3D.y= 3(x-2) 2+37、二次函数的顶点坐标为,其部分图象如图所示.以下结论错误的是()A. B. C. D.关于x的方程无实数根8、已知抛物线y=-2(x-3)2+5,则此抛物线()A.开口向下,对称轴为直线x=-3B.顶点坐标为(-3,5)C.最小值为5D.当x>3时y随x的增大而减小9、如图抛物线(),下列结论错误的是()A. a、b同号B.C. 和时,y值相同 D.当时,10、已知抛物线y=ax2+bx+c与x轴交点为A(﹣2,0),B(6,0),则该二次函数的对称轴为()A.x=﹣1B.x=1C.x=2D.y轴11、二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 …y … 4 0 ﹣2 ﹣2 0 4 …下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣12、如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,若点P(2017,m)在第1009段抛物线C1009上,则m的值为()A.﹣1B.0C.1D.不确定13、要得到抛物线,可以将抛物线()A.向右平移6个单位长度,再向下平移3个单位长度B.向右平移6个单位长度,再向上平移3个单位长度C.向左平移6个单位长度,再向上平移3个单位长度D.向左平移6个单位长度,再向下平移3个单位长度14、如果将抛物线y=x2向左平移1个单位,那么所得新抛物线的表达式是()A.y=x 2+1B.y=x 2﹣1C.y=(x+1)2D.y=(x﹣1)2.15、小明将如图两水平线l1、l2的其中一条当成x轴,且向右为正方向;两条直线l3、l4的其中一条当成y轴,且向上为正方向,并在此坐标平面中画出二次函数y=ax2﹣2a2x+1的图象,则()A.l1为x轴,l3为y轴 B.l2为x轴,l3为y轴 C.l1为x轴,l4为y轴 D.l2为x轴,l4为y轴二、填空题(共10题,共计30分)16、已知点A(-1,y1)、B(-2,y2)、C(3,y3)在抛物线y=-x2-2x+c上,则y1、y2、y3的大小关系是________.17、将y=2x2的函数图象向左平移3个单位,再向上平移2个单位,得到二次函数解析式为________.18、将抛物线,绕着点旋转后,所得到的新抛物线的解析式是________.19、二次函数y=ax2+bx+c(a≠0)的图象如图(虚线部分为对称轴),给出以下5个结论:①x≤1时,y随x的增大而增大;②abc>0;③b<a+c;④4a+2b+c>0;⑤3a﹣b<0,其中正确的结论有________(填上所有正确结论的序号).20、小明推铅球,铅球行进高度与水平距离之间的关系为,则小明推铅球的成绩是________ .21、我们定义一种新函数:形如(,且)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为,和;②图象具有对称性,对称轴是直线;③当或时,函数值随值的增大而增大;④当或时,函数的最小值是0;⑤当时,函数的最大值是4.其中正确结论的个数是________.22、抛物线y=ax2+3与x轴的两个交点分别为(m,0)和(n,0),则当x=m+n 时,y的值为________.23、抛物线y=ax2+bx(a>0,b>0)的图象经过第________象限.24、当﹣1≤x≤3时,二次函数y=x2﹣4x+5有最大值m,则m=________.25、抛物线y=﹣ax2+2ax+3(a≠0)的对称轴是________.三、解答题(共5题,共计25分)26、已知函数y=2x2-(3-k)x+k2-3k-10的图象经过原点,试确定k的值。
浙教版九年级上册数学第一章:二次函数易错题——最值问题(含解析)

一. 单选题1・已知二次函数y=(m - 2)x 2+2mx+m - 3的图象与x 轴有两个交点,(xi , 0),(X2 , 0),则下列说法正确是()①该函数图象一泄过泄点(-1,-5):②若该函数图象开口向下,则m 的取值范用为:|< m<2;③当 m>2,且1 *2时,y 的最大值为:4m-5:④当m>2,且该函数图象与x 轴两交点的横坐标x 】,x 2 满足-3<X!< -2, - 1<X2<0时,m 的取值范圉为:扌v mVll ・A.①②®④B. ®@®C. ®@®2.已知二次函数y=- \2 +2X+3,则该函数的最大值为( )A. -2 ~B.2C. -3 3•二次函数y=-2(x+1)2-3的最大值为()A.-1B.・2 4•如图,二次函数y=ax2+bx+c (aiO )的图象与x 轴交于A, B 两点,点B 位于(4, 0)、(5, 0)之 间,与y 轴交于点C,对称轴为直线x=2,直线y =・x+c 与抛物线y=ax 】+bx+c 交于C, D 两点,D 点在x 轴上方且横坐标小于5,则下列结论:①4a+b+c>0:②a-b+c<0;③m (am+b ) <4a+2b (其中m 5 •把二次函数y=ax 2+bx+c (a>0)的图象作关于x 轴的对称变换,所得图象的解析式为y (x-1)2+4a t 若(m - 1) a+b 十cWO,则m 的最大值是()6•已知二次函数戶X2,当疋X?时咗口,则下列说法正确的是()A.当n-m=l 时,b ・a 有最小值B.当n-m=l 时,b-a 有最大值C.当b-a=l 时,n-m 无最小值D.当b-a=l 时,n-m 有最大值7•若关于x 的方程lax 2+bx+cl=5有三个不相等的实数根,则二次函数y=ax 2+bx+c 有()A.最小值为5B.最大值为5C.最大值为5或最小值・5D.最大值・5或最小值5二. 填空题8•在平而直角坐标系中,已知A (7m )和B (5,m )是抛物线y = x? + bx + 1上的两点,将抛物线y = x 2+ bx+l 的图象向上平移n 5是正整数)个单位,使平移后的图象与x 轴没有交点,则n 的最小值 为 ・9•汽车刹车后行驶的距离s 与行驶时间1 (秒)的函数关系是s=15t-6t 2 ,汽车从刹车到停下来所用时 间是___________ 秒.10 •已知y=x?+(l ・a )x+2是关于x 的二次函数,当x 的取值范用是0sxs4时,y 仅在x=4时取得最大 值,则实数a 的取值范围是 _______ ・ 浙教版九年级上册数学第一章:二次函数易错丿最值问 D.5 D. -4C.①②④D. ©(3Xg) A. - 4 B.O C.2 D.6为任意实数):④av ・l,其中正确的是(B.®@ ③三.综合题11.在平而直角坐标系中,抛物线y = a/+bx + 3与X轴相交于A(—3,0)、B(l, 0),交y轴于点N,点M抛物线的顶点,对称轴与x轴交于点C.(1)求抛物线的解析式:(2)如图1,连接AM,点E是线段AM上方抛物线上的一动点,EF丄AM于点F:过点E作EH丄x 轴于点H,交AM于点D・点P是y轴上一动点,当EF取最大值时.①•求PD + PC的最小值;②•如图2, Q点是y轴上一动点,请直接写出DQ +士OQ的最小值・412•某商品的进价为每件40元,在销售过程中发现,每周的销售量y (件)与销售单价x (元)之间的关系可以近似看作一次函数y = kx + b ,且当售价左为50元/件时,每周销售30件.当售价左为70元/件时,每周销售10件.(1)求k , b的值:(2)求销售该商品每周的利润w (元)与销售单价x (元)之间的函数解析式,并求出销售该商品每周可获得的最大利润.13•如图,在平而直角坐标系xoy中,已知直线y =扌*一2与X轴交于点A,与y轴交于点B,过A、B两点的抛物线y = ax2 + bx+c与X轴交于另一点C(一1,0)・(1)求抛物线的解析式:(2)在抛物线上是否存在一点P,使S°PAB=S“AB ?若存在,请求出点P的坐标,若不存在,请说明理由. (3)点M为直线AB下方抛物线上一点,点N为y轴上一点,当△ MAB的而积最大时,求MN + 扌ON的最小值.14•如图,抛物线y = ax2+bx + 4交X轴于A(-3,0) , B(4,0)两点,与y轴交于点C , ACBC・M为线段OB上的一个动点,过点M作PM丄x轴,交抛物线于点P ,交BC于点Q・(1)求抛物线的表达式:(2)过点P作PN丄BC ,垂足为点N・设M点的坐标为M(m,0),请用含m的代数式表示线段PN 的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q ,使得以A , C , Q为顶点的三角形是等腰三角形.若存在,谙求出此时点Q的坐标;若不存在,请说明理由.15•如图(1)放置两个全等的含有30。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙教版九年级上册数学第一章:二次函数易错题——最值问题一、单选题1.已知二次函数y=(m﹣2)x2+2mx+m﹣3的图象与x轴有两个交点,(x1,0),(x2,0),则下列说法正确是( )①该函数图象一定过定点(﹣1,﹣5);②若该函数图象开口向下,则m的取值范围为:65<m<2;③当m>2,且1≤x≤2时,y的最大值为:4m﹣5;④当m>2,且该函数图象与x轴两交点的横坐标x1,x2满足﹣3<x1<﹣2,﹣1<x2<0时,m的取值范围为:214<m<11.A. ①②③④B. ①②④C. ①③④D. ②③④2.已知二次函数y=﹣12x2+2x+3,则该函数的最大值为()A. ﹣2B. 2C. ﹣3D. 53.二次函数y=-2(x+1)²-3的最大值为()A. -1B. -2C. -3D. -44.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,点B位于(4,0)、(5,0)之间,与y轴交于点C,对称轴为直线x=2,直线y=﹣x+c与抛物线y=ax2+bx+c交于C,D两点,D点在x轴上方且横坐标小于5,则下列结论:①4a+b+c>0;②a﹣b+c<0;③m(am+b)<4a+2b(其中m 为任意实数);④a<﹣1,其中正确的是()A. ①②③④B. ①②③C. ①②④D. ①③④5.把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,若(m﹣1)a+b+c≤0,则m的最大值是()A. ﹣4B. 0C. 2D. 66.已知二次函数y=x²,当a≤x≤b时m≤y≤n,则下列说法正确的是( )A. 当n-m=1时,b-a有最小值B. 当n-m=1时,b-a有最大值C. 当b-a=1时,n-m无最小值D. 当b-a=1时,n-m有最大值7.若关于x的方程|ax2+bx+c|=5有三个不相等的实数根,则二次函数y=ax2+bx+c有()A. 最小值为5B. 最大值为5C. 最大值为5或最小值-5D. 最大值-5或最小值5二、填空题8.在平面直角坐标系中,已知A(−1,m)和B(5,m)是抛物线y=x2+bx+1上的两点,将抛物线y= x2+bx+1的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为________.9.汽车刹车后行驶的距离s与行驶时间t(秒)的函数关系是s=15t﹣6t2,汽车从刹车到停下来所用时间是________秒.10.已知y=x2+(1﹣a)x+2是关于x的二次函数,当x的取值范围是0≤x≤4时,y仅在x=4时取得最大值,则实数a的取值范围是________.三、综合题11.在平面直角坐标系中,抛物线y=ax2+bx+3与x轴相交于A(−3,0)、B(1, 0),交y轴于点N,点M抛物线的顶点,对称轴与x轴交于点C.(1)求抛物线的解析式;(2)如图1,连接AM,点E是线段AM上方抛物线上的一动点,EF⊥AM于点F;过点E作EH⊥x 轴于点H,交AM于点D.点P是y轴上一动点,当EF取最大值时.①.求PD+PC的最小值;OQ的最小值.②.如图2,Q点是y轴上一动点,请直接写出DQ+1412.某商品的进价为每件40元,在销售过程中发现,每周的销售量y(件)与销售单价x(元)之间的关系可以近似看作一次函数y=kx+b,且当售价定为50元/件时,每周销售30件,当售价定为70元/件时,每周销售10件.(1)求k ,b的值;(2)求销售该商品每周的利润w(元)与销售单价x(元)之间的函数解析式,并求出销售该商品每周可获得的最大利润.13.如图,在平面直角坐标系xoy中,已知直线y=12x−2与x轴交于点A,与y轴交于点B,过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(−1,0).(1)求抛物线的解析式;(2)在抛物线上是否存在一点P,使S△PAB=S△OAB?若存在,请求出点P的坐标,若不存在,请说明理由;(3)点M为直线AB下方抛物线上一点,点N为y轴上一点,当△MAB的面积最大时,求MN+12ON的最小值.14.如图,抛物线y=ax2+bx+4交x轴于A(−3,0),B(4,0)两点,与y轴交于点C ,AC ,BC .M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P ,交BC于点Q .(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N .设M点的坐标为M(m,0),请用含m的代数式表示线段PN 的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.15.如图(1)放置两个全等的含有30°角的直角三角板ABC与DEF(∠B=∠E=30°),若将三角板ABC向右以每秒1个单位长度的速度移动(点C与点E重合时移动终止),移动过程中始终保持点B、F、C、E在同一条直线上,如图(2),AB与DF、DE分别交于点P、M,AC与DE交于点Q,其中AC=DF=√3,设三角板ABC移动时间为x秒.(1)在移动过程中,试用含x的代数式表示△AMQ的面积;(2)计算x等于多少时,两个三角板重叠部分的面积有最大值?最大值是多少?16.如图,已知抛物线y= 1x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(-9,10),AC3∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.17.在平面直角坐标系xOy中,点A的坐标为(0,4),点B的坐标为(6,4),抛物线y=x2−5x+ a−2的顶点为C .(1)若抛物线经过点B时,求顶点C的坐标;(2)若抛物线与线段AB恰有一个公共点,结合函数图象,求a的取值范围;(3)若满足不等式x2−5x+a−2≤0的x的最大值为3,直接写出实数a的值.18.为了更好地做好复课准备,某班家委会讨论决定购买A,B两种型号的口罩供班级学生使用,已知A 型口罩每包价格a元,B型口罩每包价格比A型少4元,180元钱购买的A型口罩比B型口罩少12包。
(1)求a的值。
(2)经与商家协商,购买A型口罩价格可以优惠,其中每包价格y(元)和购买数量x(包)的函数关系如图所示,B型口罩一律按原价销售。
①求y关于x的函数解析式;②若家委会计划购买A型、B型共计100包,其中A型不少于30包,且不超过60包。
问购买A型口罩多少包时,购买口罩的总金额最少,最少为多少元?19.赣南脐橙果大形正,肉质脆嫩,风味浓甜芳香,深受大家的喜爱.某脐橙生产基地生产的礼品盒包装的脐橙每箱的成本为30元,按定价50元出售,每天可销售200箱.为了增加销量,该生产基地决定采取降价措施,经市场调研,每降价1元,日销售量可增加20箱.(1)求出每天销售量y(箱)与销售单价x(元)之间的函数关系式;(2)若该生产基地每天要实现最大销售利润,每箱礼品盒包装的脐橙应定价多少元?每天可实现的最大利润是多少?20.已知抛物线y=−12x2+32x+2,与x轴交于两点A ,B(点A在点B的左侧),与y轴交于点C .(1)求点A ,B和点C的坐标;(2)已知P是线段BC上的一个动点.①若PQ⊥x轴,交抛物线于点Q ,当BP+PQ取最大值时,求点P的坐标;②求√2AP+PB的最小值.21.已知抛物线y=x2+bx+c交x轴于A、B两点,其中点A坐标为(1,0),与y轴交于点C ,且对称轴在y轴的左侧,抛物线的顶点为P.(1)当b=2时,求抛物线的顶点坐标;(2)当BC=AB时,求b的值;(3)在(1)的条件下,点Q为x轴下方抛物线上任意一点,点D是抛物线对称轴与x轴的交点,直线AQ、BQ分别交抛物线的对称轴于点M、N.请问DM+DN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.22.在平面直角坐标系中,抛物线y=−mx2+2mx+3m(m>0)与x轴交于A、B两点(点B在A的右侧),与y轴交于点C,D是抛物线的顶点.(1)当m=1时,求顶点D的坐标(2)若OD=OB,求m的值;(3)设E为A,B两点间抛物线上的一个动点(含端点A,B),过点E作EH⊥x轴,垂足为H,交,求m的值.直线BC于点F. 记线段EF的长为t,若t的最大值为9223.我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元.(毛利润=销售额−生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)(2)求W与x之间的函数关系式;(写出自变量x的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?答案解析部分一、单选题1.【答案】B【解析】【解答】①y=(m﹣2)x2+2mx+m﹣3=m(x+1)2﹣2x2﹣3,当x=﹣1时,y=﹣5,故该函数图象一定过定点(﹣1,﹣5),符合题意;②若该函数图象开口向下,则m﹣2<0,且△>0,△=b2﹣4ac=20m﹣24>0,解得:m >65,且m<2,故m的取值范围为:65<m<2,符合题意;③当m>2,m-2>0,即二次函数开口向上,对称轴x=−b2a =−2m2(m−2)=−1−2m−2<−1,函数的对称轴在﹣1的左侧,则当1≤x≤2时,y随x的增加而增大,在x=2时,y取得最大值,y的最大为:4 (m-2)+4m+m-3=9m-11,故原答案错误,不符合题意;④当m>2,x=﹣3时,y=9(m﹣2)﹣6m+m﹣3=4m﹣21,当x=﹣2时,y=m﹣11,当﹣3<x1<﹣2时,则(4m﹣21)(m﹣11)<0,解得:214<m<11;同理﹣1<x2<0时,m>3,故m的取值范围为:214<m<11正确,符合题意.故答案为:B.【分析】①把二次函数整理成合适的形式,再把点(﹣1,﹣5)代入即可判断正误;②由函数图象开口向下可知,二次项系数小于0,即m﹣2<0,且根的判别式大于0,即△=b2﹣4ac=20m﹣24>0,解不等式即可求解;③由m>2,可知二次函数开口向上,再判断函数的对称轴的位置,再根据函数增减性即可判断;④根据开口向上的二次函数与x轴交点的特点可得关于m的不等式,解不等式即可判断.2.【答案】D【解析】【解答】解:∵二次函数y=﹣12x2+2x+3的二次项系数为﹣12,∴当x=﹣22×(−12)=2时,函数取得最大值y=﹣12×22+2×2+3=5故答案为:D.【分析】二次项系数为负值的二次函数,其图象开口向下,顶点纵坐标为函数的最大值,据此可解.3.【答案】C【解析】【解答】解:由二次函数的性质可知,二次函数的图象开口向下,当x=-1时,二次函数有最大值-3故答案为:C.【分析】根据二次函数的图象和性质进行判断即可得到答案。