浙教版九年级数学数学第一章教学课件全套
合集下载
浙教版九年级上册数学课件%3A第1章 二次函数 复习课 (共31张PPT)

类型之五 二次函数的实际应用 例5 某商品的进价为每件30元,现在的售价为每件 40元,每星期可卖出150件.市场调查反映:如果每件的 售价每涨1元(售价每件不能高于45元),那么每星期少卖 10件.设每件涨价x元(x为非负整数),每星期销售量为y 件.(1)求y与x的函数表达式及自变量x的取值范围;(2)如 何定价才能使每星期的利润最大且每星期销量较大?每星 期的最大利润是多少? 【解析】 利用总利润=件数×每件利润,建立二次 函数关系式,再利用二次函数性质解决问题.
已知二次函数y=x2-bx+1(-1≤b≤1),当b从-1逐 渐变化到1的过程中,它所对应的抛物线位置也随之变 动.下列关于抛物线的移动方向的描述中,正确的是
A.先往左上方移动,再往左下方移动 B.先往左下方移动,再往左上方移动 C.先往右上方移动,再往右下方移动 D.先往右下方移动,再往右上方移动
(1)求抛物线的函数表达式; (2)若过点C的直线y=kx+b与抛物线相交于点E(4, m),求△CBE的面积.
图1-1
解:(1)设抛物线的解析式为y=a(x-3)2-4,
将C(0,5)代入y=a(x-3)2-4得a=1,
抛物线的函数表达式为y=(x-3)2-4; (2)∵抛物线 y=(x-3)2-4 过点 E(4,m),∴m=1-4=-3, ∴E(4,-3), ∵E(4,-3),C(0,5), ∴4bk=+5b=-3,
=-10x-522+1 562.5(0≤x≤5) ∵a=-10<0, ∴当 x=2.5 时,W 有最大值 1 562.5. ∵0≤x≤5 且 x 为整数, ∴当 x=2 时,40+x=42,y=150-10x=130, W=1 560 元.
1.已知二次函数y=ax2+bx+c(a,b,c为
九年级数学上册第1章二次函数1.2二次函数的图象课件浙教版

是(-1,5)则 h=____, k1=____,它的5对称轴是________.
直 线x 1
2的形. 如状果相一同条,抛且物顶线点的坐形标y状是与(413,x-22 ),2则函 数关系式是______.
3
4
5.已知二次函数 y a( x 1)2 c 的图象
如图,则函数 y ax c的图象是(D )
3
1.把函数 y 1 x2 的图象作怎样的平移变换, 3
就能得到函数 y 1 ( x 4)2 的图象。
3
2.说出函数 y 1 ( x 4)2的图象的顶点坐标 和对称轴。 3
做一做:
抛物线
开口方向
y =2(x+3)2
y = -3(x-1)2 y = -4(x-3)2
向上 向下 向下
对称轴
1 (x 3)2 2
顶点坐标(0,0) (3,0)对称轴:直线 x=0
直线 x=3
y 1 x2 向左平移3个单位 y 1 ( x 3)2
2
2
顶点坐标(0,0) (-3,0)对称轴:直线x=0 直线x=-3
请你总结二次函数y=a(x+ m)2的图象和性质.
y ax 2 当m>0时,向左平移 当m<0时,向右平移
y
y
y
0x ( A)
1 0 x
y
0x
(C )
0x
(B)
y
0x (D)
y a(x m)2
y a( x m)2的图象
对称轴是 __直__线__x_=__-_m___,
顶点坐标是 _(_-_m__,_0_)___。
aa><00时时,,开开口口____向向____上下________,,
浙教版数学九年级上册第1章《1.1二次函数》课件

新知学习
【新知】二次函数 我们把形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数.
y = ax2 +bx + c
二一 常 次次 数 项项 项 系系 数数
二次函数的一般式 (1)右边都是关于x的整式. (2)自变量x的最高次数是2. (3)二次项系数不能为0.
例题探究
【例1】下列函数中,哪些是二次函数?
复习回顾
【思考】我们学过哪些函数呢?
一次函数 y=kx+b (k≠0)
函 数
(正比例函数) y=kx (k≠0)
反比例函数
y k (k 0) x
y B
OA
x
y=kx+b
y
y = k (k>0) x
O
x
新知探究
【探究】写出下列问题中两个变量y与x之间的关系,并判定它们是否是函数关系.
(1)圆的面积 y (cm2)与圆的半径 x (cm) y =πx2
(1) y x2
(2)
y
1 x2
(3) y 2x2 x 1
(4) y x(1 x)
(5) y (x 1)2 (x 1)(x 1)
是 不是
是 是 不是
【小结】判断一个函数前必须要先化简;是否为二次函数要看二次项的系数 是否为0.
例题探究
【例2】分别指出下列函数的二次项系数、一次项系数和常数项.
(2)王先生存入银行2万元,先存一个一年定期,一年后银行将本息自动转存为又 一个一年定期,设一年定期的年存款利率为 x , 两年后王先生共得本息 y 元.
y = 2(1+x)2=2x2+4x+2
(3)一个温室连同外围通道的矩形平面图如图 1-1,这个矩形的周长为 120m, 设一条边长为 x(m),种植用地面积为 y(m2).
浙教版数学九年级上册全册优质课件【完整版】

函数y x2 px q,得:
{1 p q 4 4 2 p q 5
解得,p 12, q 15.
所求的二次函数是y x2 12x 15
已知二次函数 y 2(x 1)2 4
(1)你能说出此函数的最小值吗? 当x=1时,函数y有最小值为4
(2)你能说出这里自变量能取哪些值呢? x取任意实数
解:(1)a 0 (2)a 0,b 0
(3)a 0,b 0, c 0
回顾知识:
一、正比例函数y=kx(k ≠ 0)其图象是什么.
正比例函数y=kx(k ≠ 0)其图象是一条经过原点的 直线. 二、一次函数y=kx+b(k ≠ 0)其图象又是什么.
一次函数y=kx+b(k ≠ 0)其图象也是一条直线.
上述三个问题中的函数表达式具有哪些共同的特征?
经化简后都具有y=ax²+bx+c 的形式.
(其中a,b,c是常数, a≠0 )
我们把形如y=ax²+bx+c(其中a,b,c是
常数,a≠0)的函数叫做二次函数
称:a为二次项系数, b为一次项系数, c为常数项.
下列函数中,哪些是二次函数?
(1) y x 2
(l)求y关于 x的函数表达式和自变量x的取值范围;
(2)当x分别为0.25,0.5,1,1.5,
D
2–X
GX C
1.75 时 ,求对应的四边形EFGH的 X
面积y,并列表表示.
H 2–X
x 0.25 0.5 1 1.5 1.75
y
2
2–X
F
X
AX E
2–X
B
填表
x 0.25 0.5 1 1.5 1.75
(1) y=-3x2-x-1 (2)y=x2+x (3)y=5x2-6
{1 p q 4 4 2 p q 5
解得,p 12, q 15.
所求的二次函数是y x2 12x 15
已知二次函数 y 2(x 1)2 4
(1)你能说出此函数的最小值吗? 当x=1时,函数y有最小值为4
(2)你能说出这里自变量能取哪些值呢? x取任意实数
解:(1)a 0 (2)a 0,b 0
(3)a 0,b 0, c 0
回顾知识:
一、正比例函数y=kx(k ≠ 0)其图象是什么.
正比例函数y=kx(k ≠ 0)其图象是一条经过原点的 直线. 二、一次函数y=kx+b(k ≠ 0)其图象又是什么.
一次函数y=kx+b(k ≠ 0)其图象也是一条直线.
上述三个问题中的函数表达式具有哪些共同的特征?
经化简后都具有y=ax²+bx+c 的形式.
(其中a,b,c是常数, a≠0 )
我们把形如y=ax²+bx+c(其中a,b,c是
常数,a≠0)的函数叫做二次函数
称:a为二次项系数, b为一次项系数, c为常数项.
下列函数中,哪些是二次函数?
(1) y x 2
(l)求y关于 x的函数表达式和自变量x的取值范围;
(2)当x分别为0.25,0.5,1,1.5,
D
2–X
GX C
1.75 时 ,求对应的四边形EFGH的 X
面积y,并列表表示.
H 2–X
x 0.25 0.5 1 1.5 1.75
y
2
2–X
F
X
AX E
2–X
B
填表
x 0.25 0.5 1 1.5 1.75
(1) y=-3x2-x-1 (2)y=x2+x (3)y=5x2-6
浙教版数学九年级上册第1章二次函数复习课件(共16张ppt)

4.在平面直角坐标系中,如果抛物线y=2x2
不动,而把x轴、y轴分别向上、向右平移
2个单位,那么在新坐标系下抛物线的解
析式是 ( )
A.y=2(x-2)2 + 2
C.y=2(x-2)2-2
B.y=2(x + 2)2-2
D.y=2(x + 2)2 + 2
典型例题
例1.二次函数的图象经过A(1,0) B(3,0) C(2,-1)三点, (1)求这个函数的解析式. (2)求函数与直线 y=2x+1 的交点坐标 .
5 9 入得 : a 1, 顶点P ( , ) 2 4 5 2 9 (2)平移前的抛物线为 : y (x ) 2 4 5 向左平移只要超过 个单位,向上平移 2 9 超过 个单位即可 . 4
典型例题:例3
已知二次函数
y x 2 ax a 2 。
(1)求证:不论a为何实数,此函数图象与x轴总有两个交点。 (2)设a<0,当此函数图象与x轴的两个交点的距离为 13时,求 出此二次函数的解析式。 (3)在(2)中的二次函数图象与x轴交于A、B两点,在函数图象 上是否存在点P,使得△PAB的面积为 3 13 ,若存在求出P点坐 标,若不存在请说明理由。 2
例6:如图,等腰Rt△ABC的直角边AB=2,点P、Q分
别从A、C两点同时出发,以相等的速度作直线运动,已知
点P沿射线AB运动,点Q沿边BC的延长线运动,PQ与直线
相交于点D。(1)设 AP的长为x,△PCQ的面积为S,求出S关 于x的函数关系式; (2)当AP的长为何值时,S△PCQ= S△ABC 解:(1)∵P、Q分别从A、C两点同时出发,速度相等 ∴AP=CQ=x 当P在线段AB上时
新浙教版九年级数学下册第一章《 有关三角函数的计算》课件

D
ห้องสมุดไป่ตู้太阳光
25° A
住
宅
新
楼
楼
B
C
某居民小区有一朝向为正南方向的居民楼,该居民楼的一楼是 高6米的小区超市,超市以上是居民住房.在该楼的前面要盖一栋高20米的 新楼.当冬季正午的阳光与水平线的夹角为25°时.
问:若新楼的影子恰好落在超市1米高的窗台处,两楼应相距多少米?
D
太阳光
25° A
F
住 宅
新
楼
w如图,在Rt△ABC中,∠C=90°, BC=ABsin16° .
w你知道sin16°等于多少吗?
对于不是30°,45°,60°这些特殊角的三角函 数值,可以利用计算器来求
w怎样用科学计算器求锐角的三角函数值呢?
动手实践
知识在于积累
驶向胜利 的彼岸
w用科学计算器求锐角的三角函数值,要用到三个键: w例如,求sin16°、cos42°、tan85° 和sin72°38′25″的按键盘顺序如下: sin cos tan
A
B
变式:在△ABC中,已知AB=12cm,AC=10cm
∠ A=35 °,求△ABC 的周长和面积(周长精确到 0.1cm,面积保留3个是效数字).
模型: △ABC 的面积=1/2AC・AB ・sin ∠ A
随堂练习
行家看“门道”
驶向胜利 的彼岸
w1 用计算器求下列各式的值: w(1)sin56°,(2) sin15°49′,(3)cos20°,(4)tan29°, w(5)tan44°59′59″,(6)sin15°+cos61°+tan76°.
按键的顺序
显示结果
sin16° sin 1 6 °′″ =
ห้องสมุดไป่ตู้太阳光
25° A
住
宅
新
楼
楼
B
C
某居民小区有一朝向为正南方向的居民楼,该居民楼的一楼是 高6米的小区超市,超市以上是居民住房.在该楼的前面要盖一栋高20米的 新楼.当冬季正午的阳光与水平线的夹角为25°时.
问:若新楼的影子恰好落在超市1米高的窗台处,两楼应相距多少米?
D
太阳光
25° A
F
住 宅
新
楼
w如图,在Rt△ABC中,∠C=90°, BC=ABsin16° .
w你知道sin16°等于多少吗?
对于不是30°,45°,60°这些特殊角的三角函 数值,可以利用计算器来求
w怎样用科学计算器求锐角的三角函数值呢?
动手实践
知识在于积累
驶向胜利 的彼岸
w用科学计算器求锐角的三角函数值,要用到三个键: w例如,求sin16°、cos42°、tan85° 和sin72°38′25″的按键盘顺序如下: sin cos tan
A
B
变式:在△ABC中,已知AB=12cm,AC=10cm
∠ A=35 °,求△ABC 的周长和面积(周长精确到 0.1cm,面积保留3个是效数字).
模型: △ABC 的面积=1/2AC・AB ・sin ∠ A
随堂练习
行家看“门道”
驶向胜利 的彼岸
w1 用计算器求下列各式的值: w(1)sin56°,(2) sin15°49′,(3)cos20°,(4)tan29°, w(5)tan44°59′59″,(6)sin15°+cos61°+tan76°.
按键的顺序
显示结果
sin16° sin 1 6 °′″ =
浙教版九年级数学下册第一章教学课件全套

这几个比值都是锐角∠A的函数,记作sin A、cos A、 tan A,即
A的对边 sin A= 斜边 A的对边 tan A= A的邻边
A的邻边 cos A= 斜边
图 19.3.1
分别叫做锐角∠A的正弦、余弦、正切,统称为锐角∠A的 三角函数.
1、sinA 不是一个角 2、sinA不是 sin与A的乘积 3、 sinA 是一个比值 4、sinA 没有单位
建立数学模型
C
5.5米
引例:山坡上种树,要求株距(相临两树间的水平
距离)是5.5米,测得斜坡倾斜角是24º,求斜坡上相
邻两树间的坡面距离是多少米?第二棵树离开地面的高度是 B 多少米?(精确到0.1米)
解:在Rt△ABC中,∠C=90°
AC cos A AB
24º
C
≈6.0(米)
5.5米
A
B c
a
A b ┌ C
练习:
1、下图中∠ACB=90° ,CD⊥AB 指出∠A的对边、邻边。 B D
A
C
2、1题中如果CD=5,AC=10,则sin∠ACD= sin ∠DCB=
如图:在等腰△ABC 中,AB=AC=5,BC=6. 求: sinB,cosB,tanB
A
5 B 5
┌ 6 D
C
提示:过点A作AD垂直于BC于D.
C
A
12cm
B
课堂小结
我学会了……
1.3 解直角三角形
数学家华罗庚曾经说:“宇宙之 大,粒子之微,火箭之速,化工之 巧,地球之变,日月之繁,无处不 用数学。”这是对数学与生活的精 彩描述。在我们周围处处有数学, 时时会碰到数学问题。
生活中的数学问题
引例:在山坡上种树(从低处往高处种),测得斜坡倾斜角 是24º,要求株距(相邻两树间的水平距离)是5.5米,求斜 坡上相邻两树间的坡面距离是多少米?第二棵树离开地面的 高度是多少米?(精确到0.1米) B 24º 5.5米 A
最新浙教版九年级数学上册教学课件全册

是一次函数? 正比例函数?
开动脑筋
问题:是否任何情况下二次函数中的自变量的取值范围 都是任意实数呢?
例如:圆的面积 y( cm2 )与圆的半径 x(cm)
的函数关系是 y =πx2
其中自变量x能取哪些值呢?
注意:当二次函数表示某个实际问题时,还必须根据题意确定自变量的取值范围.
课堂练习
课本P3练习
课堂小结
对自己说,你有什么收获? 对老师说,你有什么疑惑? 对同学说,你有什么温馨提示?
第1章 二次函数
1.2 二次函数的图象
画最简单的二次函数 y = x2 的图象
1. 列表:在y = x2 中自变量x可以是任意实数,列表表示几组对应值:
x ··· -3 -2 -1 0
y= x2
··· 9
4
即
此式表示了两年后的产量y与计划增产的倍数x之间的关系,对 于x的每一个值,y都有唯一的一个对应值,即y是x的函数。
问题1、2、3中的式子有什么共同点?
函数都是用自变 量的二次整式表
示的
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数 叫做二次函数.其中a为二次项系数,b为一次项系数,c为常 数项.
(5)因为y
1 x2
x2 , 所以该函数不是二次函数.
(6)因为v=10π r²是二次函数,所以该函数二次项 系数为a=10π ,一次项系数为b=0,常数项为c=0.
归纳:
新课讲解
二次函数的一般形式: y=ax2+bx+c (其中a、b、c是常数,a≠0) 二次函数的特殊形式: 当b=0时, y=ax2+c 当c=0时, y=ax2+bx 当b=0,c=0时, y=ax2 当a、b、c为何值时函数y=ax2+bx+c
开动脑筋
问题:是否任何情况下二次函数中的自变量的取值范围 都是任意实数呢?
例如:圆的面积 y( cm2 )与圆的半径 x(cm)
的函数关系是 y =πx2
其中自变量x能取哪些值呢?
注意:当二次函数表示某个实际问题时,还必须根据题意确定自变量的取值范围.
课堂练习
课本P3练习
课堂小结
对自己说,你有什么收获? 对老师说,你有什么疑惑? 对同学说,你有什么温馨提示?
第1章 二次函数
1.2 二次函数的图象
画最简单的二次函数 y = x2 的图象
1. 列表:在y = x2 中自变量x可以是任意实数,列表表示几组对应值:
x ··· -3 -2 -1 0
y= x2
··· 9
4
即
此式表示了两年后的产量y与计划增产的倍数x之间的关系,对 于x的每一个值,y都有唯一的一个对应值,即y是x的函数。
问题1、2、3中的式子有什么共同点?
函数都是用自变 量的二次整式表
示的
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的函数 叫做二次函数.其中a为二次项系数,b为一次项系数,c为常 数项.
(5)因为y
1 x2
x2 , 所以该函数不是二次函数.
(6)因为v=10π r²是二次函数,所以该函数二次项 系数为a=10π ,一次项系数为b=0,常数项为c=0.
归纳:
新课讲解
二次函数的一般形式: y=ax2+bx+c (其中a、b、c是常数,a≠0) 二次函数的特殊形式: 当b=0时, y=ax2+c 当c=0时, y=ax2+bx 当b=0,c=0时, y=ax2 当a、b、c为何值时函数y=ax2+bx+c
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
我们把形如y=ax² +bx+c (其中a,b,C是常数,a≠0)的函数叫做 二次函数(quadratic funcion) ,
例:y=x²+ 2x – 3
注意:当二次函
数表示某个实际 问题时,还必须根 据题意确定自变 量的取值范围.
想一想:函数的 自变量x是否可 以取任何值呢?
例1 如图, 一张正方形纸板的边长为2cm, 将它剪去4个全等 的直角三角形 (图中阴影部分 )· 设AE=BF=CG=DH=x(cm), 四边形 EFGH的面积为y(cm2), 求: (l) y关于 x的函数解析式和自变量x的取值池围 ; (2 )当 x分别为0.25,0.5,1,1.5,1.75时 , 对应的四边形 EFGH的 面积,并列表表示.
D X H 2–X A X E 2–X 2–X G
X
C 2–X
F X B
试一试:
3. 用20米的篱笆围一个矩形的花圃(如
图),设连墙的一边为x,矩形的面积为y, 求:
(1)写出y关于x的函数关系式. (2)当x=3时,矩形的面积为多少?
解: (1) y x(20 2 x)
2 x 20x
c为常数项
例如, 1、二次函数 y=-x2+58x-112 的 二次项系数为 a=-1 , 一次项系数为 b=58 , 常数项 c=-112 。 2、二次涵数y=πx2的 二次项系 a=π 一次项系数 b=0 常数项 c=0 。 , ,
做一做:
1.下列函数中,哪些是二次函数?
(1) y x 2 1 ( 2) y 2 x (3) y 2 x 2 x 1 (4) y x (1 x ) (5) y ( x 1) 2 ( x 1)(x 1)
2 一般式: y ax bx c(a 0)
顶点式: y a( x m) k (a 0)
2
函数y ax bx c(a 0) 的图像有以下性质:
2
图像形 状: 对称轴:
抛物线
b 直线x 2a
b 4ac b 2 ( , ) 顶点坐标: 2a 4a
解:把x=1,y=4和x=2,y=-5分别代入 函数y x 2 px q, 得:
{4 2 p q 5
解得,p 12, q 15.
1 p q 4
待定系数法
所求的二次函数是y x 12xFra bibliotek 152
变式:已知二次函数y=ax² +bx+3, 当x=2时,函数值为3, 当x= - 2时, 函数值为2, 求这个二次函数的解 析式.
1.2
二次函数的图象
复习提问:我们学过哪些类型的二次函数表达 式?
一般式: y ax bx c(a 0)
2
y a( x m) k (a 0) 顶点式:
2
你还记得用配方法解一元二次方程吗? 基本步骤有哪些? 你能将二次函数一般表达式用配方的方法变形 成顶点式?试试看。
(2)a 0, b 0
(3)a 0, b 0, c 0
知 识 运 用
当m取何值时,函数是y= (m+2)x
分别 是一次函数?
反比例函数? 二次函数?
m2-2
驶向胜利 的彼岸
知识拓展:
温馨提示:同桌校 对,互相帮助!
心理学家研究发现:一般情 况下,学生的注意力随着教师讲 t 2 24t 100 0 t 10 课时间的变化而变化,讲课开始 10 t 20 时,学生的注意力y随时间t的变 y 240 7t 380 化规律有如下关系式: 20 t 40 (1)讲课开始后第5分钟时与讲课开始后第25分钟时 比较,何时学生的注意力更集中? (2)讲课开始后多少分钟,学生的注意力最集中?能 持续多少分钟? (3)一道数学难题,需要讲解24分钟,为了效果较好,要 求学生的注意力最低达到180,那么经过适当安排,老师能 否在学生注意力达到所需的状态下讲解完这道题目?
a<0时,开口 向上 向下 a<0时,开口向下, 最低(高) a>0时,开口向上, 顶点是抛物线上的最 顶点是抛物线上的 点: 高点。 最低点。
是 不是 是 是 不是
课内练习:
2、分别说出下列二次函数的二次项系数、 一次项系数和常数项:
(1) y x 1
2
(2) y 3 x 7 x 12
2
(3) y 2 x(1 x)
例2:已知二次函数y=x² +px+q,当x=1时,函 数值为4,当x=2时,函数值为- 5, 求这个二次 函数的解析试.
=2x2+4x+2
=-x2+58x-112
上述三个问题中的函数解析式具有哪些共同的特征? 经化简后都具y=ax² +bx+c 的形式.
(a,b,c是常数, a≠0
)
我们把形如y=ax² +bx+c (其中a,b,C是常数,a≠0)的函数叫做 二次函数(quadratic funcion) ,
称:a为二次项系数, b为一次项系数,
1.1 二次函数
合作学习:
请用适当的函数解析式表示下列问题情境中 的两个变量 y 与 X 之间的关系· (1)圆的面积 y ( cm )与圆的半径 x ( cm )
2
y =πx2
(2)王先生存人银行2万元,先存一个一年定期,一年 后银行将本息自动转存为又一个一年定期,设一年定 期的年存款利率为 x, 两年后王先生共得本息y元; y = 2(1+x)2
2
(o<x<10)
2
(2)当x=3时
y 2 3 20 3 42m
2
x
这节课你有什么收获和体会?
想一想:
函数y ax2 bx c(其中a, b, c是常数),当a, b, c满足什么条件时 ( 1 )它是二次函数? (2)它是一次函数? (3)它是正比例函数?
解:( 1 )a 0
(3)拟建中的一个温室的平面图如图,如果温室外围是 一个矩形,周长为120m , 室内通道的尺寸如图,设一 条边长为 x (m), 种植面积为 y (m2)·
1
y = (60-x-4)(x-2)
1
1
x
3
这些关系中 y是x的什么函数?
1、y =πx2
2、y = 2(1+x)2
3、y = (60-x-4)(x-2)