降雨产流计算

合集下载

暴雨产流计算(云南省)

暴雨产流计算(云南省)

#NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
地面径流过程底宽T计算中间过程
求地面径流过程ㅡ洪水历时的中间过程
暴雨分区
历时 h
αt(%) 计算值
1
24
#NAME?
2
24
#NAME?
3
24
#NAME?
4
24
#NAME?
5
24
#NAME?
6
24
#NAME?
7
24
#NAME?
#NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
1 #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? #NAME?
200
mm
180
mm/h

暴雨产流计算(推理公式_四川省)

暴雨产流计算(推理公式_四川省)

2
盆地丘陵区
相对高差在200m以下,地势较平缓,植被较差,开垦度大,多为水平梯田
3
盆缘山区、川西南山地 同上。土层较薄,石灰岩分布较普遍
四川省小流域暴雨径流关系综合成果表
计算编号 α24计算值
1
#NAME?
2
#NAME?
3
#NAME?
4
#NAME?
5
#NAME?
6
#NAME?
7
#NAME?
8
#NAME?
点面系数 αt
#NAME? #NAME? #NAME? #NAME? #NAME?
面雨量设计值 PtP
#NAME? #NAME? #NAME? #NAME? #NAME?
暴雨强度衰减指数
β0.1-1
#NAME?
β1-6 β6-24
#NAME? #NAME?
n0.1-1 n12 n1-6 n6-24
#NAME? #NAME? #NAME? #NAME?
东部地
沱江 长江上游干流区、乌江、沅江 涪江、嘉陵江、渠江
4.55 2.97 1.81
法计算τ1n) 流参数
修正系数K 最小
参数m修正 否
损失系数μ mm/h 1.41
hP mm #NAME?
超限面积流域αt折减系数
K6
K24
0.94
1
QPm取值 m³/s #NAME? #NAME?
汇流型式
全面汇流 部分汇流
0.79
0.8
0.81 0.6
0.83 0.63
0.84 0.66
0.85 0.69
0.87 0.71
0.88 0.73
东部地区

暴雨产流计算(推理公式_四川省)

暴雨产流计算(推理公式_四川省)


地区
Ⅰ1
洪水过程线
雨型
3
计算参数
编号
5
东部地区 双峰 Ⅱ 金沙江
时段
10′ 1h 3h 6h 24h
点雨量均值 Ht(mm) 18 46 60 86 110
变差系数 Cv
0.35 0.42 0.45 0.53 0.55
偏差系数 Cs/Cv 3.5 3.5 3.5 3.5 3.5
模比系数 KP
1.67 1.82 1.88 2.05 2.09

0.94
1

1
1

1
1

1
1

1
1
雨型
历时T
单峰洪水
44.03
双峰洪水
61.92
洪水过程线计算参数
东部地区
单峰
川西南地区
双峰
设计洪水流量 WP(万m3) #NAME?
Q0(m3/s)
确定以日还是以时计算暴雨
1.83

2.58

计算参数


值m=0.2J-1/3,m范围为m=0.3~2.5。
影响因素
25
0.811
110
1
0.63
70
1
0.734
70
1
0.473
40
1
6h面深折减系数αt
100
300
0.966
0.901
0.924
0.802
0.932
0.822
0.888
0.7
0.851 0.887 0.795 0.811 0.868 0.763 0.738 0.84 0.4 0.78

暴雨产流计算(推理公式湖南省)

暴雨产流计算(推理公式湖南省)

0.489 0.489
径流分配系
F(km2)
湖南省最大24小时降雨概化过程线(计算取值)
湖南省最大24小时降雨概化过程线(一区)
湖南省最大24小时降雨概化过程线(二区)
湖南省最大24小时降雨概化过程线(三区)
湖南省最大24小时降雨概化过程线(四区)
湖南省最大24小时降雨概化过程线(五区)
湖南省最大24小时降雨概化过程线(六区)
湖南省最大24小时降雨概化过程线(七区)
湖南省最大24小时降雨概化过程线(八区)
湖南省暴雨点面关系表:设计暴雨的点面关系系数α~流域面积F(km2)~降
t ~流域面积F(km 2)~降雨时间t关系
Q m/∑Q i。

第四章-流域产流与汇流计算

第四章-流域产流与汇流计算
等雨量线法:适用于面积大、地形起伏大、站点较密的 流域。理论上完善,但每次降雨都必须绘制等雨量线, 并计算权重,工作量大。
泰森多边形法算例
Ax11
Ax22
Ax33
Ax66
Ax55
Ax44
单元面积权重计算公式:
第i 块单元面积的权重i =Ai /ΣA
总面积ΣA=(A1+A2+A3+A4+A5+A6)
三、蓄满产流模型
1.产流机理
任一地点上,土壤含水量达蓄满(即达田间持水 量)前,降雨量全部补充土壤含水量,不产流;当土 壤蓄满后,其后续降雨量全部产生径流。由此形成蓄 满产流概念
蓄满产流机制比较接近或符合土壤缺水量不大的 湿润地区。这些地区,一场较大的降雨常易使全流域 土壤含水量蓄满。
2、蓄满产流概念形成
4.3 蓄满产流计算 一、蓄满产流模式
包气带土壤含水量达到田间持水量前(即未蓄满)不产 流,降雨全部被土壤吸收,补充包气带缺水量;包气带 土壤含水量达到田间持水量后(即蓄满)开始产流,之后 的降雨扣除蒸发后全部形成净雨。这种产流方式称为 “蓄满产流”。计算表达式为:
RP(W mW 0)
二、降雨径流相关图 主要影响因素:W0,T(降雨历时),M(季节), 暴雨类型(Type),暴雨中心(Center)
流域平均雨量计算公式: x 1 x 1 2 x 2 6 x 6
等雨量线法
90
110
70
A2
50
A4 A3
A1
40 A5
A6
总面积ΣA=(A1+A2+A3+A4+A5+A6) 各子块权重i =A i /ΣA x= Σ i x i

暴雨产流计算(推理公式-四川省)

暴雨产流计算(推理公式-四川省)

#NAME? #NAME?
#NAME? #NAME?
#NAME? #NAME?
基流量Q0与 F关系表
地区
岷江、大渡河、青衣江
金沙江
概化相对坐标
y
x
0
0
0.05
0.1
0.1
0.165
0.2
0.26
0.4
0.48
0.42
0.53
0.4
0.58
0.2
0.84
0.13
1
0.1
1.1
0.2
1.2
0.4
1.31
1
0.938
0.835
0.77
1
0.928
0.832
0.771
1
0.972
0.909
0.861
1
0.815
0.539
0.423
1
0.962
0.875
0.81
根据实测资料的对应分析,μ值随集水面积的减小而增大。在四川其平均变化关系为:μ=k·F-0.19,k值变化归
计算编号
地区
流域地形地貌
1
青衣江~鹿头山暴雨区 相对高差在200m以上,地势较陡,切割较深,植被较好,有部分荒山或坡地
影响因素
,调蓄能力小,洪峰涨退快,基流较低 河网发育,调洪作用大,洪峰涨快退慢,基流较高 强,洪峰上尖下肥,基流较高
θ=1~30
m=0.40θ0.204
0.803
m=0.318θ0.204
0.638
m=0.221θ0.204
0.444
汇流参数式 θ=30~300
m=0.092θ0.636 m=0.055θ0.72 m=0.025θ0.845

(完整)流域产流与汇流计算

(完整)流域产流与汇流计算

第四章流域产流与汇流计算第一节概述根据第二章的论述,由降雨形成流域出口断面径流的过程是非常复杂的,为了进行定量阐述,将这一过程概化为产流和汇流两个阶段进行讨论。

实际上,在流域降雨径流形成过程中,产流和汇流过程几乎是同时发生的,在这里提到的所谓产流阶段和汇流阶段,并不是时间顺序含义上的前后两个阶段,仅仅是对流域径流形成过程的概化,以便根据产流和汇流的特性,采用不同的原理和方法分别进行计算。

产流阶段是指降雨经植物截留、填洼、下渗的损失过程.降雨扣除这些损失后,剩余的部分称为净雨,净雨在数量上等于它所形成的径流量,净雨量的计算称为产流计算。

由流域降雨量推求径流量,必须具备流域产流方案。

产流方案是对流域降雨径流之间关系的定量描述,可以是数学方程也可以是图表形式。

产流方案的制定需充分利用实测的流域降雨、蒸发和径流资料,根据流域的产流模式,分析建立流域降雨径流之间的定量关系。

汇流阶段是指净雨沿地面和地下汇入河网,并经河网汇集形成流域出口断面流量的过程。

由净雨推求流域出口断面流量过程称为汇流计算。

流域汇流过程又可以分为两个阶段,由净雨经地面或地下汇入河网的过程称为坡面汇流;进入河网的水流自上游向下游运动,经流域出口断面流出的过程称为河网汇流.由净雨推求流域出口流量过程,必须具备流域汇流方案。

流域汇流方案是根据流域净雨计算流域出口断面流量过程,应根据流域雨量、流量及下垫面特征等资料条件及计算要求制定。

就径流的来源而论,流域出口断面的流量过程是由地面径流、壤中流、浅层地下径流和深层地下径流组成的,这四类径流的汇流特性是有差别的.在常规的汇流计算中,为了计算简便,常将径流概化为直接径流和地下径流两种水源。

地面径流和壤中流在坡面汇流过程中经常相互交换,且相对于河网汇流,坡面汇流速度较快,几乎是直接进入河网,故可以合并考虑,称为直接径流,但在很多情况仍称为地面径流。

浅层地下径流和深层地下径流合称为地下径流,其特点是坡面汇流速度较慢,常持续数十天乃至数年之久.目前,在一些描述降雨径流的流域水文模型中,为了更确切地反映流域径流形成的过程,采用了三水源或四水源进行模拟计算。

第七章 流域产流、汇流的计算与分析

第七章  流域产流、汇流的计算与分析

口断面汇集的过程,包括坡地汇流和河网汇流两个阶段。
流域汇流主要是研究流域上的地面净雨、表层净雨和地 下净雨如何转化为流域出口断面的流量过程。
9/11
本章重点
1. 降雨径流的要素 2. 产流和汇流及其分类
10/11
自然界中有两种基本的产流形式:
蓄满产流(p.42 Fig.4-4)和超渗产流(p.47 Fig.4-7)
6/11
包气带对降雨的再分配作用: 由于包气带是由不同土壤构成的有孔介质,具有吸收、 储存和输送水分的功能,因而其对降雨起到了调节和再分配 的作用。
蓄满产流—— 雨末包气带达到田间持水量时
P=E+(W'm-W'0)+RS+RG 超渗产流—— 雨末包气带未达到田间持水量时 P=E+(W'm-W'0)+RS
式中, P降雨量;E蒸发量;W’m包气带蓄水容量;W’0降雨 开始时包气带的起始蓄水量;RS地表径流;RG包气带中自由运 动的重力水。
7/11
区别标准:包气带中是否形成自由运动的重力水 RG。
两种基本的产流机制
Horton型 超渗产流
Dunne型 蓄满产流
8/11
7.3 流域汇流的分析与计算
流域汇流,指降落在流域上的雨水,从流域各处向出
净雨量的计算称为产流计算 第 II 阶段:汇流过程—— 净雨 径流
分别从地面和地下经河网汇集成流域出口断面的流量与之 相应的计算称为汇流计算。 产流计算+汇流计算=流域产汇流计算
5/11
流域出口断面的流量=地面径流
+表层流径流(壤中流) +浅层地下径流+深层地下径流
直接径流
不同的流域,其下垫面条件具有不同的产流机制,进而又 影响整个产流过程的发展,使其呈现不同的径流特征。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

降雨产流计算
1. 经验公式法:这是一种基于观测数据和经验关系的方法。

通过对以往降雨和径流数据进行分析,可以建立经验公式来描述降雨与产流之间的关系。

这些公式通常基于流域的特征,如面积、坡度、土壤类型等。

常见的经验公式包括单位线法、SCS 曲线数法等。

2. 水箱模型法:水箱模型将流域视为一系列相互连接的水箱,每个水箱代表一个子流域或流域的一部分。

降雨进入水箱后,根据水箱的蓄水能力和出水特性,计算出水箱的出流量。

通过将各个水箱的出流量相加,可以得到整个流域的产流量。

3. 分布式水文模型:分布式水文模型将流域划分为多个单元,考虑了地形、土壤、植被等因素在空间上的分布。

通过对每个单元的降雨、入渗、蒸散发和产流过程进行模拟,可以更准确地计算降雨产流。

4. 物理模型法:物理模型法基于物理过程的原理,如质量守恒、能量守恒等,来描述降雨在流域内的运动和转化过程。

这些模型通常需要更详细的输入数据,如地形、土壤特性、植被分布等,并且计算过程较为复杂。

在进行降雨产流计算时,需要考虑流域的特征、降雨的时空分布、土壤水分状况等因素。

不同的方法适用于不同的流域和条件,选择合适的方法需要根据具体情况进行评估和比较。

同时,准确的输入数据和合理的模型参数也是确保降雨产流计算准确可靠的关键。

相关文档
最新文档