动能定理机械能守恒定律分类练习
高考物理机械能守恒定律和功能关系专题练习

2019-2019高考物理机械能守恒定律和功能关系专题练习在只有重力或系统内弹力做功的物体系统内,物体的动能和势能可以相互转化,但机械能保持不变,下面是机械能守恒定律和功能关系专题练习,请考生仔细练习。
1.(2019高考天津卷)如图所示,固定的竖直光滑长杆上套有质量为m的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止起先下滑,已知弹簧原长为L,圆环下滑到最大距离时弹簧的长度变为2L(未超过弹性限度),则在圆环下滑到最大距离的过程中()A.圆环的机械能守恒B.弹簧弹性势能改变了mgLC.圆环下滑到最大距离时,所受合力为零D.圆环重力势能与弹簧弹性势能之和保持不变解析:选B.圆环沿杆下滑的过程中,圆环与弹簧组成的系统机械能守恒,选项A、D错误;弹簧长度为2L时,圆环下落的高度h=L,依据机械能守恒定律,弹簧的弹性势能增加了Ep=mgh=mgL,选项B正确;圆环释放后,圆环向下先做加速运动,后做减速运动,当速度最大时,合力为零,下滑到最大距离时,具有向上的加速度,合力不为零,选项C错误.2.如图所示,可视为质点的小球A、B用不行伸长的细软轻线连接,跨过固定在地面上半径为R的光滑圆柱,A的质量为B的两倍.当B位于地面时,A恰与圆柱轴心等高.将A由静止释放,B上升的最大高度是()A.2RB.C.D.解析:选C.如图所示,以A、B为系统,以地面为零势能面,设A质量为2m,B质量为m,依据机械能守恒定律有:2mgR=mgR+3mv2,A落地后B将以v做竖直上抛运动,即有mv2=mgh,解得h=R.则B上升的高度为R+R=R,故选项C正确.3.(2019山东潍坊二模)(多选)如图所示,足够长粗糙斜面固定在水平面上,物块a通过平行于斜面的轻绳跨过光滑轻滑轮与物块b相连,b的质量为m.起先时,a、b均静止且a刚好不受斜面摩擦力作用.现对b施加竖直向下的恒力F,使a、b做加速运动,则在b下降h高度过程中()A.a的加速度为B.a的重力势能增加mghC.绳的拉力对a做的功等于a机械能的增加D.F对b做的功与摩擦力对a做的功之和等于a、b动能的增加解析:选BD.由a、b均静止且a刚好不受斜面摩擦作用知:FT=mg,FT=magsin .即:mg=magsinEpa=maghsin由得:Epa=mgh选项B正确.当有力F作用时,物块a与斜面之间有滑动摩擦力的作用,即绳子的拉力增大,所以a的加速度小于,选项A错误;对物块a、b 分别由动能定理得:WFT-magsin h+Wf=EkaWF-WFT+mgh=Ekb由式可知,选项C错、D对.4.(2019湖北八校高三联考)(多选)如图所示,足够长的传送带以恒定速率沿顺时针方向运转.现将一个物体轻轻放在传送带底端,物体第一阶段被加速到与传送带具有相同的速度,其次阶段匀速运动到传送带顶端.则下列说法中正确的是()A.第一阶段和其次阶段摩擦力对物体都做正功B.第一阶段摩擦力对物体做的功大于物体机械能的增加量C.其次阶段摩擦力对物体做的功等于其次阶段物体机械能的增加量D.第一阶段摩擦力与物体和传送带间的相对位移的乘积在数值上等于系统产生的内能解析:选ACD.第一阶段和其次阶段传送带对物体的摩擦力方向均沿传送带方向向上,故对物体都做正功,选项A正确;在第一阶段和其次阶段摩擦力对物体做的功等于物体机械能的增加量,选项B错误、选项C正确;第一阶段摩擦力与物体和传送带之间的相对位移的乘积数值上等于系统产生的内能,选项D正确.5.(多选)如图所示,长为L的长木板水平放置,在木板的A端放置一个质量为m的小物块,现缓慢地抬高A端,使木板以左端为轴转动,当木板转到与水平面的夹角为时小物块起先滑动,此时停止转动木板,小物块滑究竟端的速度为v,在整个过程中() A.木板对小物块做的功为mv2B.支持力对小物块做的功为零C.小物块的机械能的增量为mv2-mgLsinD.滑动摩擦力对小物块做的功为mv2-mgLsin解析:选AD.在运动过程中,小物块受重力、木板施加的支持力和摩擦力,整个过程重力做功为零,由动能定理W木=mv2-0,A 正确;在物块被缓慢抬高过程中摩擦力不做功,由动能定理得W 木-mgLsin =0-0,则有W木=mgLsin ,故B错误;由功能关系,机械能的增量为木板对小物块做的功,大小为mv2,C错误;滑动摩擦力对小物块做的功Wf=W木-W木=mv2-mgLsin ,D正确.6.(2019长春二模)(多选)如图所示,物体A的质量为M,圆环B 的质量为m,通过轻绳连接在一起,跨过光滑的定滑轮,圆环套在光滑的竖直杆上,设杆足够长.起先时连接圆环的绳处于水平,长度为l,现从静止释放圆环.不计定滑轮和空气的阻力,以下说法正确的是()A.当M=2m时,l越大,则圆环m下降的最大高度h越大B.当M=2m时,l越大,则圆环m下降的最大高度h越小C.当M=m时,且l确定,则圆环m下降过程中速度先增大后减小到零D.当M=m时,且l确定,则圆环m下降过程中速度始终增大解析:选AD.由系统机械能守恒可得mgh=Mg(-l),当M=2m时,h=l,所以A选项正确;当M=m时,对圆环受力分析如图,可知FT=Mg,故圆环在下降过程中系统的重力势能始终在削减,则系统的动能始终在增加,所以D选项正确.7.(多选)如图为用一钢管弯成的轨道,其中两圆形轨道部分的半径均为R.现有始终径小于钢管口径的可视为质点的小球由图中的A位置以肯定的初速度射入轨道,途经BCD最终从E离开轨道.其中小球的质量为m,BC为右侧圆轨道的竖直直径,D点与左侧圆轨道的圆心等高,重力加速度为g,忽视一切摩擦以及转弯处能量的损失.则下列说法正确的是()A.小球在C点时,肯定对圆管的下壁有力的作用B.当小球刚好能通过C点时,小球在B点处轨道对小球的支持力为自身重力的6倍C.小球在圆管中运动时通过D点的速度最小D.小球离开轨道后的加速度大小恒定解析:选BD.当小球运动到C点的速度v=时,小球与轨道间没有力的作用,当v时,小球对轨道的上壁有力的作用;当v时,小球对轨道的下壁有力的作用,A错误;小球在C点对管壁的作用力为0时,有vC=,依据机械能守恒定律有mg2R+mv=mv,在B点时依据牛顿其次定律有N-mg=m,解得轨道对小球的支持力N=6mg,B正确;在B、C、D三点中瞬时速度最大的是B点,瞬时速度最小的是C点,C错误;小球从E点飞出后只受重力作用,加速度恒定,则小球做匀变速曲线运动,D正确.8.(2019名师原创卷)我国两轮电动摩托车的标准是:由动力驱动,整车质量大于40 kg,最高车速不超过50 km/h,最大载重量为75 kg.某厂欲生产一款整车质量为50 kg的电动摩托车,厂家已经测定该车满载时受水泥路面的阻力为85 N,g=10 m/s2.求:(1)请你设计该款电动摩托车的额定功率;(2)小王同学质量为50 kg,他骑着该电动车在平直的水泥路面上从静止起先以0.4 m/s2的加速度运动10 s,试求这10 s内消耗的电能.(设此时路面的阻力为65 N)解析:(1)该款摩托车满载时以额定功率匀速行驶,则P=FvF=f解得:P=1 181 W.(2)摩托车匀加速过程:F-f=ma解得F=105 N当达到额定功率时v1==11.2 m/s从静止起先以0.4 m/s2的加速度动身运动10 s的速度v2=at=4 m/s11.2 m/s故在10 s内做匀加速直线运动的位移x=at2=20 m牵引力做的功W=Fx=2 100 J由功能关系可得:E=W=2 100 J.答案:(1)1 181 W (2)2 100 J9.(2019高考福建卷)如图,质量为M的小车静止在光滑水平面上,小车AB段是半径为R的四分之一圆弧光滑轨道,BC段是长为L的水平粗糙轨道,两段轨道相切于B点.一质量为m的滑块在小车上从A点由静止起先沿轨道滑下,重力加速度为g. (1)若固定小车,求滑块运动过程中对小车的最大压力;(2)若不固定小车,滑块仍从A点由静止下滑,然后滑入BC轨道,最终从C点滑出小车.已知滑块质量m=,在任一时刻滑块相对地面速度的水平重量是小车速度大小的2倍,滑块与轨道BC间的动摩擦因数为,求:滑块运动过程中,小车的最大速度大小vm;滑块从B到C运动过程中,小车的位移大小s.解析:(1)滑块滑到B点时对小车压力最大,从A到B机械能守恒mgR=mv滑块在B点处,由牛顿其次定律得N-mg=m解得N=3mg由牛顿第三定律得N=3mg(2)①滑块下滑到达B点时,小车速度最大.由机械能守恒得mgR=Mv+m(2vm)2解得vm=②设滑块运动到C点时,小车速度大小为vC,由功能关系得mgR-mgL=Mv+m(2vC)2设滑块从B到C过程中,小车运动加速度大小为a,由牛顿其次定律得mg=Ma由运动学规律得v-v=-2as解得s=L答案:(1)3mg (2) L10.某电视消遣节目装置可简化为如图所示模型.倾角=37的斜面底端与水平传送带平滑接触,传送带BC长L=6 m,始终以v0=6 m/s 的速度顺时针运动.将一个质量m=1 kg的物块由距斜面底端高度h1=5.4 m的A点静止滑下,物块通过B点时速度的大小不变.物块与斜面、物块与传送带间动摩擦因数分别为1=0.5、2=0.2,传送带上表面距地面的高度H=5 m,g取10 m/s2,sin 37=0.6,cos 37=0.8.(1)求物块由A点运动到C点的时间;(2)若把物块从距斜面底端高度h2=2.4 m处静止释放,求物块落地点到C点的水平距离;(3)求物块距斜面底端高度满意什么条件时,将物块静止释放均落到地面上的同点D.解析:(1)A到B过程:依据牛顿其次定律mgsin 1mgcos =ma1=a1t代入数据解得a1=2 m/s2,t1=3 s所以滑到B点的速度:vB=a1t1=23 m/s=6 m/s物块在传送带上匀速运动到Ct2== s=1 s所以物块由A到C的时间:t=t1+t2=3 s+1 s=4 s.(2)在斜面上依据动能定理mgh2-1mgcos =mv2解得v=4 m/s6 m/s设物块在传送带先做匀加速运动达v0,运动位移为x,则:a2==2g=2 m/s2v-v2=2ax,x=5 m6 m所以物块先做匀加速直线运动后和传送带一起匀速运动,离开C 点做平抛运动s=v0t0,H=gt,解得s=6 m.(3)因物块每次均抛到同一点D,由平抛学问知:物块到达C点时速度必需有vC=v0当离传送带高度为h3时物块进入传送带后始终匀加速运动,则:mgh3-1mgcos 2mgL=mvh3=1.8 m当离传送带高度为h4时物块进入传送带后始终匀减速运动,则:mgh4-1mgcos 2mgL=mvh4=9.0 m所以当离传送带高度在1.8~9.0 m的范围内均能满意要求,即1.8 m9.0 m.答案:(1)4 s (2)6 m (3)1.8 m9.0 m机械能守恒定律和功能关系专题练习及答案共享到这里,更多内容请关注高考物理试题栏目。
专题09动能定理、机械能守恒定律和功能关系(原卷版)

2023年高三物理二轮高频考点冲刺突破专题09 动能定理、机械能守恒定律和功能关系【典例专练】一、高考真题1.如图所示,轻质弹簧一端固定,另一端与物块A连接在一起,处于压缩状态,A由静止释放后沿斜面向上运动到最大位移时,立即将物块B轻放在A右侧,A、B由静止开始一起沿斜面向下运动,下滑过程中A、B始终不分离,当A回到初始位置时速度为零,A、B与斜面间的动摩擦因数相同、弹簧未超过弹性限度,则()A.当上滑到最大位移的一半时,A的加速度方向沿斜面向下B.A上滑时、弹簧的弹力方向不发生变化C.下滑时,B对A的压力先减小后增大D.整个过程中A、B克服摩擦力所做的总功大于B的重力势能减小量2.固定于竖直平面内的光滑大圆环上套有一个小环,小环从大圆环顶端P 点由静止开始自由下滑,在下滑过程中,小环的速率正比于( )A .它滑过的弧长B .它下降的高度C .它到P 点的距离D .它与P 点的连线扫过的面积3.风力发电已成为我国实现“双碳”目标的重要途径之一。
如图所示,风力发电机是一种将风能转化为电能的装置。
某风力发电机在风速为9m /s 时,输出电功率为405kW ,风速在5~10m /s 范围内,转化效率可视为不变。
该风机叶片旋转一周扫过的面积为A ,空气密度为ρ,风场风速为v ,并保持风正面吹向叶片。
下列说法正确的是( )A .该风力发电机的输出电功率与风速成正比B .单位时间流过面积A 的流动空气动能为212A ρv C .若每天平均有81.010kW ⨯的风能资源,则每天发电量为92.410kW h ⨯⋅D .若风场每年有5000h 风速在6~10m /s 范围内,则该发电机年发电量至少为56.010kW h ⨯⋅4.某节水喷灌系统如图所示,水以015m/s v =的速度水平喷出,每秒喷出水的质量为2.0kg 。
喷出的水是从井下抽取的,喷口离水面的高度保持H=3.75m不变。
水泵由电动机带动,电动机正常工作时,输入电压为220V,输入电流为2.0A。
高中物理第八章机械能守恒定律第3节动能和动能定理训练含解析

第3节动能和动能定理1。
(多选)对于动能的理解,下列说法中正确的是()A.动能是普遍存在的机械能的一种基本形式,凡是运动的物体都具有动能B.动能总是正值,但对于不同的参考系,同一物体的动能大小是不同的C.一定质量的物体,动能变化时,速度一定变化,但速度变化时,动能不一定变化D.动能不变的物体,一定处于平衡状态2.下列关于运动物体的合外力做功和动能、速度变化的关系,正确的是()A.物体做变速运动,合外力一定不为零,动能一定变化B.若合外力对物体做功为零,则合外力一定为零C.物体的合外力做功,它的速度大小一定发生变化D.物体的动能不变,所受的合外力必定为零3。
如图所示,在2018世界杯足球比赛时,某方获得一次罚点球机会,该方一名运动员将质量为m的足球以速度v0猛地踢出,结果足球以速度v撞在球门高h的门梁上而被弹出.现用g 表示当地的重力加速度,则此足球在空中飞往门梁的过程中克服空气阻力所做的功应等于()A.mgh+错误!mv2-错误!mv错误!B. 错误!mv2-错误!mv错误!-mghC。
错误!mv错误!-错误!mv2-mghD.mgh+12mv错误!-错误!mv24.质量为m的金属块,当初速度为v0时,在水平面上滑行的最大距离为s,如果将金属块质量增加到2m,初速度增大到2v0,在同一水平面上该金属块最多能滑行的距离为() A.s B.2sC.4s D.8s5.一物体以初速度v0竖直向上抛出,落回原地速度为错误!,设物体在运动过程中所受的阻力大小保持不变,则重力与阻力大小之比为()A.3︰1 B.4︰3C.5︰3 D.3︰5关键能力综合练进阶训练第二层一、单选题1.下列关于动能的说法正确的是()A.两个物体中,速度大的动能也大B.某物体的速度加倍,它的动能也加倍C.做匀速圆周运动的物体动能保持不变D.某物体的动能保持不变,则速度一定不变2.从地面竖直向上抛出一个小球,小球运动一段时间后落回地面.忽略空气阻力,该过程中小球的动能E k与时间t的关系图像是()3.一质量为1 kg的滑块以6 m/s的初速度在光滑的水平面上向左滑行.从某一时刻起在滑块上施加一个向右的水平力,经过一段时间后,滑块的速度方向变成向右,大小仍为6 m/s。
动能和动能定理,机械能守恒典型例题和练习

学习目标1. 能够推导并理解动能定理知道动能定理的适用X 围2. 理解和应用动能定理,掌握外力对物体所做的总功的计算,理解“代数和〞的含义。
3. 确立运用动能定理分析解决具体问题的步骤与方法类型一 .常规题型例1. 用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,拉力F 跟木箱前进的方向的夹角为,木箱与冰道间的动摩擦因数为,求木箱获得的速度αμ例2. 质量为m 的物体静止在粗糙的水平地面上,假设物体受水平力F 的作用从静止起通过位移s 时的动能为E1,当物体受水平力2F 作用,从静止开始通过一样位移s ,它的动能为E2,如此:A. E2=E1B. E2=2E1C. E2>2E1D. E1<E2<2E1针对训练 材料一样的两个物体的质量分别为m1和m2,且m m 124=,当它们以一样的初动能在水平面上滑行,它们的滑行距离之比s s 12:和滑行时间之比t t 12:分别是多少?〔两物体与水平面的动摩擦因数一样〕类型二、应用动能定理简解多过程问题例3:质量为m 的物体放在动摩擦因数为μ的水平面上,在物体上施加水平力F 使物体由静止开始运动,经过位移S 后撤去外力,物体还能运动多远?例4、一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图2-7-6,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数一样.求动摩擦因数μ.针对训练2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
〔g 取10m/s2〕针对训练3 质量为m 的球由距地面高为h 处无初速下落,运动过程中空气阻力恒为重力的0.2倍,球与地面碰撞时无能量损失而向上弹起,球停止后通过的总路程是多少?类型三、应用动能定理求变力的功例5. 质量为m 的小球被系在轻绳的一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。
高中物理专题练习-动能定理 机械能守恒定律及功能关系的应用(含答案)

高中物理专题练习-动能定理机械能守恒定律及功能关系的应用(含答案)满分:100分时间:60分钟一、单项选择题(本题共6小题,每小题5分,共30分.每小题只有一个选项符合题意.)1.(四川理综,1)在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小()A.一样大B.水平抛的最大C.斜向上抛的最大D.斜向下抛的最大2.(新课标全国卷Ⅱ,17)一汽车在平直公路上行驶.从某时刻开始计时,发动机的功率P随时间t的变化如图所示.假定汽车所受阻力的大小f恒定不变.下列描述该汽车的速度v随时间t变化的图线中,可能正确的是()3.(新课标全国卷Ⅱ,16)一物体静止在粗糙水平地面上,现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度变为v,若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v,对于上述两个过程,用W F1、W F2分别表示拉力F1、F2所做的功,W f1、W f2分别表示前后两次克服摩擦力所做的功,则()A.W F2>4W F1,W f2>2W f1B.W F2>4W F1, W f2=2W f1C.W F2<4W F1,W f2=2W f1D.W F2<4W F1, W f2<2W f14.(新课标全国卷Ⅰ,17)如图,一半径为R、粗糙程度处处相同的半圆形轨道竖直固定放置,直径POQ水平.一质量为m的质点自P点上方高度R处由静止开始下落,恰好从P点进入轨道.质点滑到轨道最低点N时,对轨道的压力为4mg,g为重力加速度的大小.用W表示质点从P点运动到N点的过程中克服摩擦力所做的功.则()A.W=12mgR,质点恰好可以到达Q点B .W >12mgR ,质点不能到达Q 点C .W =12mgR ,质点到达Q 点后,继续上升一段距离D .W <12mgR ,质点到达Q 点后,继续上升一段距离5.(海南单科,4)如图,一半径为R 的半圆形轨道竖直固定放置,轨道两端等高,质量为m 的质点自轨道端点P 由静止开始滑下,滑到最低点Q 时,对轨道的正压力为2mg ,重力加速度大小为g .质点自P 滑到Q 的过程中,克服摩擦力所做的功为( ) A.14mgR B.13mgRC.12mgRD.π4mgR 6.(天津理综,5)如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态.现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L (未超过弹性限度),则在圆环下滑到最大距离的过程中( ) A .圆环的机械能守恒 B .弹簧弹性势能变化了3mgLC .圆环下滑到最大距离时,所受合力为零D .圆环重力势能与弹簧弹性势能之和保持不变二、多项选择题(本题共4小题,每小题7分,共计28分.每小题有多个选项符合题意.全部选对的得7分,选对但不全的得4分,错选或不答的得0分.)7.(浙江理综,18)我国科学家正在研制航母舰载机使用的电磁弹射器.舰载机总质量为3.0×104kg,设起飞过程中发动机的推力恒为1.0×105 N ;弹射器有效作用长度为100 m,推力恒定.要求舰载机在水平弹射结束时速度大小达到80 m/s.弹射过程中舰载机所受总推力为弹射器和发动机推力之和,假设所受阻力为总推力的20%,则( ) A .弹射器的推力大小为1.1×106 N B .弹射器对舰载机所做的功为1.1×108 J C .弹射器对舰载机做功的平均功率为8.8×107 WD .舰载机在弹射过程中的加速度大小为32 m/s 28.(新课标全国卷Ⅱ,21)如图,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距h,b放在地面上,a、b通过铰链用刚性轻杆连接,由静止开始运动,不计摩擦,a、b可视为质点,重力加速度大小为g.则() A.a落地前,轻杆对b一直做正功B.a落地时速度大小为2ghC.a下落过程中,其加速度大小始终不大于gD.a落地前,当a的机械能最小时,b对地面的压力大小为mg9.(江苏单科,9)如图所示,轻质弹簧一端固定,另一端与一质量为m、套在粗糙竖直固定杆A处的圆环相连,弹簧水平且处于原长.圆环从A处由静止开始下滑,经过B处的速度最大,到达C处的速度为零,AC=h.圆环在C处获得一竖直向上的速度v,恰好能回到A.弹簧始终在弹性限度内,重力加速度为g.则圆环()A.下滑过程中,加速度一直减小B.下滑过程中,克服摩擦力做的功为14m v2C.在C处,弹簧的弹性势能为14m v2-mghD.上滑经过B的速度大于下滑经过B的速度10.(江苏南通一模)一质点在0~15 s内竖直向上运动,其加速度-时间图象如图所示,若取竖直向下为正,g取10 m/s2,则下列说法正确的是()A.质点的机械能不断增加B.在0~5 s内质点的动能增加C.在10~15 s内质点的机械能减少D.在t=15 s时质点的机械能大于t=5 s时质点的机械能三、计算题(本题共2小题,共计42分.解答时写出必要的文字说明,方程式和重要的演算步骤,只写出最后答案的不得分.)11.(江苏单科,14)(20分)一转动装置如图所示,四根轻杆OA、OC、AB和CB与两小球及一小环通过铰链连接,轻杆长均为l,球和环的质量均为m,O端固定在竖直的轻质转轴上.套在转轴上的轻质弹簧连接在O与小环之间,原长为L.装置静止时,弹簧长为32L.转动该装置并缓慢增大转速,小环缓慢上升.弹簧始终在弹性限度内,忽略一切摩擦和空气阻力,重力加速度为g.求:(1)弹簧的劲度系数k;(2)AB杆中弹力为零时,装置转动的角速度ω0;(3)弹簧长度从32L缓慢缩短为12L的过程中,外界对转动装置所做的功W.12.(福建理综,21)(22分)如图,质量为M的小车静止在光滑水平面上,小车AB段是半径为R的四分之一圆弧光滑轨道,BC段是长为L的水平粗糙轨道,两段轨道相切于B点.一质量为m的滑块在小车上从A点由静止开始沿轨道滑下,重力加速度为g.(1)若固定小车,求滑块运动过程中对小车的最大压力;(2)若不固定小车,滑块仍从A点由静止下滑,然后滑入BC轨道,最后从C点滑出小车.已知滑块质量m=M2,在任一时刻滑块相对地面速度的水平分量是小车速度大小的2倍,滑块与轨道BC间的动摩擦因数为μ,求:①滑块运动过程中,小车的最大速度大小v m;②滑块从B到C运动过程中,小车的位移大小s. 答案1. A [由机械能守恒定律mgh +12m v 21=12m v 22知,落地时速度v 2的大小相等,故 A 正确.]2.A [当汽车的功率为P 1时,汽车在运动过程中满足P 1=F 1v ,因为P 1不变,v 逐渐增大,所以牵引力F 1逐渐减小,由牛顿第二定律得F 1-f =ma 1,f 不变,所以汽车做加速度减小的加速运动,当F 1=f 时速度最大,且v m =P 1F 1=P 1f .当汽车的功率突变为P 2时,汽车的牵引力突增为F 2,汽车继续加速,由P 2=F 2v 可知F 2减小,又因F 2-f =ma 2,所以加速度逐渐减小,直到F 2=f 时,速度最大v m ′=P 2f ,以后匀速运动.综合以上分析可知选项A 正确.]3.C [两次物体均做匀加速运动,由于时间相等,两次的末速度之比为1∶2,则由v =at 可知两次的加速度之比为a 1a 2=12,F 1合F 2合=12,又两次的平均速度分别为v 2、v ,故两次的位移之比为x 1x 2=12,由于两次的摩擦阻力相等,由W f =fx 可知,W f 2=2W f 1;由动能定理知W 合1W 合2=ΔE k1ΔE k2=14,因为W 合=W F -W f ,故W F =W 合+W f ;W F 2=W 合2+W f 2=4W 合1+2W f 1<4W 合1+4W f 1=4W F 1;选项C 正确.]4.C [根据动能定理得P 点动能E k P =mgR ,经过N 点时,由牛顿第二定律和向心力公式可得4mg-mg =m v 2R ,所以N 点动能为E k N =3mgR2,从P 点到N 点根据动能定理可得mgR -W =E k N -E k P ,即克服摩擦力做功W =mgR2.质点运动过程,半径方向的合力提供向心力即F N -mg cos θ=ma =m v 2R ,根据左右对称,在同一高度处,由于摩擦力做功导致在右边圆形轨道中的速度变小,轨道弹力变小,滑动摩擦力F f =μF N 变小,所以摩擦力做功变小,那么从N 到Q ,根据动能定理-mgR -W ′=E k Q -E k N ,Q 点动能E k Q =3mgR 2-mgR -W ′=12mgR -W ′,由于W ′<mgR2,所以Q 点速度仍然没有减小到0,会继续向上运动一段距离,对照选项,C 正确.]5.C [在Q 点质点受到竖直向下的重力和竖直向上的支持力,两力的合力充当向心力,所以有F N -mg =m v 2R ,F N =2mg ,联立解得v =gR ,下滑过程中,根据动能定理可得mgR -W f =12m v 2,解得W f =12mgR ,所以克服摩擦力做功 12mgR ,C 正确.]6.B [圆环在下落过程中弹簧的弹性势能增加,由能量守恒定律可知圆环的机械能减少,而圆环与弹簧组成的系统机械能守恒,故A 、D 错误;圆环下滑到最大距离时速度为零,但是加速度不为零,即合外力不为零,故C 错误;圆环重力势能减少了3mgl ,由能量守恒定律知弹簧弹性势能增加了3mgl ,故B 正确.]7.ABD [设总推力为F ,位移x ,阻力F 阻=20%F ,对舰载机加速过程由动能定理得Fx -20%F ·x=12m v 2,解得F =1.2×106 N,弹射器推力F 弹=F -F 发=1.2×106 N -1.0×105 N =1.1×106 N,A 正确;弹射器对舰载机所做的功为W =F 弹·x =1.1×106×100 J =1.1×108 J,B 正确;弹射器对舰载机做功的平均功率P -=F 弹·0+v2=4.4×107 W,C 错误;根据运动学公式v 2=2ax ,得a =v 22x =32 m/s 2,D 正确.]8.BD [滑块b 的初速度为零,末速度也为零,所以轻杆对b 先做正功,后做负功,选项A 错误;以滑块a 、b 及轻杆为研究对象,系统的机械能守恒,当a 刚落地时,b 的速度为零,则mgh =12m v 2a +0,即v a =2gh ,选项B 正确;a 、b 的先后受力如图所示.由a 的受力图可知,a 下落过程中,其加速度大小先小于g 后大于g ,选项C 错误;当a 落地前b 的加速度为零(即轻杆对b 的作用力为零)时,b 的机械能最大,a 的机械能最小,这时b 受重力、支持力,且F N b =mg ,由牛顿第三定律可知,b 对地面的压力大小为mg ,选项D 正确.] 9.BD [由题意知,圆环从A 到C 先加速后减速,到达B 处的加速度减小为零,故加速度先减小后增大,故A 错误;根据能量守恒,从A 到C 有mgh =W f +E p ,从C 到A 有12m v 2+E p =mgh +W f ,联立解得:W f =14m v 2,E p =mgh -14m v 2,所以B 正确,C 错误;根据能量守恒,从A 到B 有mgh 1=12m v 2B 1+ΔE p1+W f 1,从C 到B 有12m v 2+ΔE p2=12m v 2B 2+W f 2+mgh 2,又有12m v 2+E p =mgh +W f ,联立可得v B 2>v B 1,所以D 正确.]10.CD [质点竖直向上运动,0~15 s 内加速度方向向下,质点一直做减速运动,B 错误;0~5 s内,a=10 m/s2,质点只受重力,机械能守恒;5~10 s内,a=8 m/s2,受重力和向上的力F1,F1做正功,机械能增加;10~15 s内,a=12 m/s2,质点受重力和向下的力F2,F2做负功,机械能减少,A错误,C正确;由F合=ma可推知F1=F2,由于做减速运动,5~10 s内通过的位移大于10~15 s内通过的位移,F1做的功大于F2做的功,5~15 s内增加的机械能大于减少的机械能,所以D正确.]11.解析(1)装置静止时,设OA、AB杆中的弹力分别为F1、T1,OA杆与转轴的夹角为θ1小环受到弹簧的弹力F弹1=k·L2小环受力平衡:F弹1=mg+2T1cos θ1小球受力平衡:F1cos θ1+T1cos θ1=mg, F1sin θ1=T1sin θ1解得k=4mg L(2)设OA、AB杆中的弹力分别为F2、T2,OA杆与转轴的夹角为θ2,弹簧长度为x 小环受到弹簧的弹力F弹2=k(x-L)小环受力平衡:F弹2=mg,得x=54L对小球:F2cos θ2=mg, F2sin θ2=mω20l sin θ2且cos θ2=x 2l解得ω0=8g 5L(3)弹簧长度为L2时,设OA、AB杆中的弹力分别为F3、T3,OA杆与弹簧的夹角为θ3小环受到弹簧的弹力F弹3=k·L2小环受力平衡:2T3cos θ3=mg+F弹3,且cos θ3=L 4l对小球:F3cos θ3=T3cos θ3+mg;F3sin θ3+T3sin θ3=mω23l sin θ3解得ω3=16g L整个过程弹簧弹性势能变化为零,则弹力做的功为零, 由动能定理:W -mg ⎝ ⎛⎭⎪⎫3L 2-L 2-2mg ⎝ ⎛⎭⎪⎫3L 4-L 4=2×12m (ω3l sin θ3)2解得:W =mgL +16mgl 2L 答案 (1)4mgL (2)8g 5L (3)mgL +16mgl 2L12.解析 (1)滑块滑到B 点时对小车压力最大,从A 到B 机械能守恒mgR =12m v 2B ①滑块在B 点处,由牛顿第二定律知 N -mg =m v 2B R ② 解得N =3mg ③ 由牛顿第三定律知 N ′=3mg ④(2)①滑块下滑到达B 点时,小车速度最大.由机械能守恒 mgR =12M v 2m +12m (2v m )2⑤ 解得v m =gR3⑥②设滑块运动到C 点时,小车速度大小为v C ,由功能关系 mgR -μmgL =12M v 2C +12m (2v C )2⑦ 设滑块从B 到C 过程中,小车运动加速度大小为a ,由牛顿第二定律 μmg =Ma ⑧ 由运动学规律v 2C -v 2m =-2as ⑨解得s =13L ⑩ 答案 (1)3mg (2)①gR 3 ②13L1.运用功能关系分析问题的基本思路(1)选定研究对象或系统,弄清物理过程;(2)分析受力情况,看有什么力在做功,弄清系统内有多少种形式的能在参与转化;(3)仔细分析系统内各种能量的变化情况、变化数量.2.功能关系。
周测(8)动能定理 机械能守恒定律

周测(7)弹性势能 动能定理 班级_________学号_________ 姓名_________ 一、选择题(每题5分,共50分,答案填入表格中) 1.下列情况中,运动物体机械能一定守恒的是( ). (A)物体所受的合外力为零(B)物体不受摩擦力(C)物体受到重力和摩擦力(D)物体只受重力 答案:D 2.关于机械能是否守恒,下列叙述中正确的是().(A)作匀速直线运动的物体的机械能一定守恒(B)作匀变速运动的物体机械能可能守恒(C)外力对物体做功为零时,机械能一定守恒(D)只有重力对物体做功,物体机械能一定守恒 答案:BD 3.下列说法中正确的是().(A)一个物体所受的合外力为零,它的机械能一定守恒(B)一个物体所受的合外力恒定不变,它的机械能可能守恒 (C)一个物体作匀速直线运动,它的机械能一定守恒(D)一个物体作匀加速直线运动,它的机械能可能守恒 答案:BD 4.a 、b 、c 三球自同一高度以相同速率抛出,a 球竖直上抛,b 球水平抛出,c 球竖直下抛.设三球落地的迷率分别为v a 、v b ,v c 则( ).(A)v a >v b >v c (B)v a =v b >v c (C)v a >v b =v c (D)v a =v b =v c 答案:D5.质量为m 的物体,以初速度v 0由固定的光滑斜面的底端沿斜面向上滑动,在滑动过程中,当高度为h 时,该物体具有的机械能为().(A)20mv 21(B)mgh mv 2120 (C)mgh(D)mgh -mv 2120 答案:A 6.如图所示,质量相同的两个小球,分别用长l 和2l 的细绳悬挂在天花板上,分别拉起小球使线伸直呈水平状态,然后轻轻释放.当小球到达最低位置时().(A)两球运动的线速度相等(B)两球运动的角速度相等(C)两球的向心加速度相等(D)细绳对两球的拉力相等 答案:CD 7.当重力对物体做正功时,物体的().(A)重力势能一定增加,动能一定减少(B)重力势能一定减少,动能一定增加(C)重力势能一定减少,动能不一定增加(D)重力势能不一定减少,动能一定增加答案:C 8.以下运动中机械能守恒的是( ).(A)物体沿斜面匀速下滑(B)物体从高处以g/3的加速度竖直下落(C)不计阻力,细绳一端拴一小球,使小球在竖直平面内作圆周运动(D)物体沿光滑的曲面滑下答案:CD9.图中的四个选项,木块均在固定的斜面上运动,其中图(A)(B)(C)中的斜面是光滑的,图(A)(B)中的F 为木块所受的外力,方向如图中箭头所示,图(A)(B)(D)中的木块向下运动,图(C)中的木块向上运动.在这四个图所示的运动过程中,机械能守恒的是图()答案:C10起重机的钢索将重物由地面吊到空中某一高度,其速度图象如图(a )所示,则钢索拉力的功率随时间变化的图象可能是图(b )中的哪一个( )选择题答案填入表格中二、填空题(每空2分,共20分)11.小球做匀速圆周运动,半径为R,质量为m,向心加速度为a,则小球受到的合力的大小为________,小球做圆周运动的周期为_________.30角迎面打来,那么人行走的速度大小是12.雨点以8m/s的速度竖直下落,雨中步行的人感到雨点与竖直方向成︒_________.60的物体2,则它们的线速度之比为13.如图,由于地球自转,比较位于赤道上的物体1与位于北纬︒________________;它们的向心加速度之比为________________;14.两个行星的质量分别为m1、m2,绕太阳运行的轨道半长轴分别是r1和r2,则它们的公转周期之比t1:t2=_______.2的物体,现用25N的力从静止出发竖直向上拉物体,使物体匀加速上升,已知2s末时物体的15.有一个质量为kg速度为5m/s,则拉力做功_____J;重力做功______J;s1末时拉力的瞬时功率为______W(g取10m/s).16.一个压缩的弹簧把小球弹出,若小球只有弹力对它做功500J,则弹簧的弹性势能减少了________J,小球的动能增加了_______J三、计算题(共30分)19.(6分).如图所示,光滑圆管形轨道AB部分平直,BC部分是处于竖直平面内半径为R的半圆,圆管截面半径r<<R.有一质量为m、半径比r略小的光滑小球以水平初速度v0射入圆管,问:若要使小球能从C端出来,初速度v0,至少多大?13题19题21题60,则20.(7分)某星球的质量约为地球的9倍,半径为地球一半,若从地球上高为h处平抛一物体,射程为m在该星球上从同样高度以同样初速度平抛同一物体,射程为多少?21. . 如图所示,在高为h,长为L的光滑斜面顶端装有滑轮,斜面底端有一物体m,通过滑轮用细线跟重锤M相连,由于重锤的下落,使m沿斜面上升,要使物体m能上升到斜面顶端,重锤M原来离地的高度H最小是多少?。
专题12动能定理和机械能守恒定律-【好题汇编】三年(2022-2024)高考物理真题分类汇编(解析)

专题12动能定理和机械能守恒定律考点三年考情(2022-2024)命题趋势考点1动能定理(5年4考)2024年高考福建卷:先后两次从高处斜向上抛出同一物体;2022年1月浙江选考:滑块在几段不同的轨道上运动;2022年福建高考:一物块以初速度0v自固定斜面底端沿斜面向上运动,一段时间后回到斜面底端。
1.动能定理是物理学中重要规律,也是高考考查频率较高的知识;考查的方式主要表现在:结合实际情景;结合图像等。
2.重力势能和机械能守恒定律的考查主要集中在结合体育运动、结合图像等。
3.能量转化和守恒定律贯穿于各个领域和各个方面。
高考对能量转化和守恒定律的考查在力学中主要有:计算损失的机械能,摩擦生热等。
考点2重力势能和机械能守恒定律(5年4考)2022年全国理综甲卷第14题:北京2022年冬奥会首钢滑雪大跳台;2022年全国理综乙卷第16题:固定于竖直平面内的光滑大圆环上套有一个小环,小环从大圆环顶端P点由静止开始自由下滑;2022新高考江苏卷:滑雪运动员从静止开始沿斜面下滑,经圆弧滑道起跳,选择正确的图像。
考点3能量转化和守恒定律(5年4考)2023年高考全国乙卷:一质量为M、长为l的木板静止在光滑水平桌面上,另一质量为m的小物块(可视为质点)从木板上的左端以速度v0开始运动。
2024年1月浙江选考:如图所示,质量为m的足球从水平地面上位置1被踢出,足球运动过程受到空气阻力。
考点01动能和动能定理1..(2024年高考福建卷)先后两次从高为 1.4m OH =高处斜向上抛出质量为0.2kg m =同一物体落于12Q Q 、,测得128.4m,9.8m OQ OQ ==,两轨迹交于P 点,两条轨迹最高点等高且距水平地面高为3.2m ,下列说法正确的是()A.74B.第一次过P 点比第二次机械能少1.3JC.落地瞬间,第一次,第二次动能之比为72:85D.第二次抛出时速度方向与落地瞬间速度方向夹角比第一次大【参考答案】B【名师解析】第一次斜抛出物体上升的高度为h 1=3.2m-1.4m=1.8m 逆向思维为平抛运动,可得h 1=2112gt 上,解得上升时间t 1上=0.6s 最高点距离水平地面高度为h 0=3.2m,由平抛运动规律,h 0=2112gt 下,解得下落时间t 1下=0.8s 第一次抛出上升时间,下降时间比值为t 1上׃t 1下=0.6׃0.8=3׃4,A 错误。
功能、动能定理、机械能守恒习题及其答案

功、机械能守恒定律、动能定理测试题1.如图所示,一个铁球从竖立在地面上的轻弹簧正上方某处自由下落,在A 点接触弹簧后将弹簧压缩,到B 点物体的速度为零,然后被弹回,下列说法中正确的是: ( ) A .物体从A 下落到B 的过程中,动能不断减小 B .物体从B 上升到A 的过程中,动能不断增大C .物体从A 下落到B 以及从B 上升到A 的过程中,动能都是先变大后变小D .物体在B 点的动能为零,是平衡位置2.一子弹以水平速度v 射入一树干中,射入深度为s ,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v /2的速度射入此树干中,射入深度为( ) A .s B .s/2 C .2/s D .s/43.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则此过程中物块克服空气阻力所做的功等于( )A .2022121mv mv mgh --B .mgh mv mv --2022121 C .2202121mv mv mgh -+ D .2022121mv mv mgh --4.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考平面,则物体刚被抛出时,其重力势能与动能之比为( )A .sin 2θB .cos 2θC .tan 2θD .cot 2θ 5.物体A 和B 叠放在光滑水平面上m A =1kg ,m B =2kg ,B 上作用一个3N 的水平拉力后,A 和B 一起前进了4m ,如图1所示。
在这个过程中B 对A 做 的功等于( )A .4JB .12JC .0D .-4J6.一个学生用100N 的力,将静止在操场上的质量为0.6kg 的足球,以15 m /s 的速度踢出20m 远。
则整个过程中学生对足球做的功为( )A .67.5JB .2000JC .1000JD .0J7.一个质量为m 的小球,用长为L 的轻绳悬挂在O 点,小球在水平拉力F 作用下, 从平衡位置P 点很缓慢地拉到Q 点,如图2所示,则拉力F 做的功为( ) A .m gLcos θ B .m gL(1-cos θ) C .FLsin θ D .FLcos θ8.如图所示,质量相同的两个小球,分别用长l 和2l 的细绳悬挂在天花板上,分别拉起小球使线伸直呈水平状态,然后轻轻释放.当小球到达最低位置时( ). (A)两球运动的线速度相等 (B)两球运动的角速度相等 (C)两球的向心加速度相等 (D)细绳对两球的拉力相等9.如图所示,一小球从倾角为30°的固定斜面上的A 点水平抛出,初动能为6J,问球落到斜面上的B 点时动能有多大?10.如图所示,一轻质弹簧竖直放置,下端固定在水平面上,上端处于a 位置,当一重球放在弹簧上端图1 PθQ OF图2静止时,弹簧上端被压缩到b 位置.现将重球(视为质点)从高于a 位置的c 位置沿弹簧中轴线自由下落,弹簧被重球压缩到最低位置d.以下关于重球运动过程的正确说法应是( ). (A)重球下落压缩弹簧由a 至d 的过程中,重球作减速运动 (B)重球下落至b 处获得最大速度(C)由a 至d 过程中重球克服弹簧弹力做的功等于小球由c 下落至d 处时重力势能减少量 (D)重球在b 位置处具有的动能等于小球由c 下落到b 处减少的重力势能11_如图所示,长度相同的三根轻杆构成一个正三角形支架,在A 处固定质量为2m 的小球,B 处固定质量为m 的小球,支架悬挂在O 点,可绕过O 点并与支架所在平面相垂直的同定轴转动.开始时OB 与地面相垂直,放手后支架开始运动,在不计任何阻力的情况下,下列说法中正确的是( (A)A 球到达最低点时速度为零(B)A 球机械能减少量等于B 球机械能增加量(C)B 球向左摆动所能达到的最高位置应高于A 球开始运动时的高度 (D)当支架从左向右返回摆动时,A 球一定能回到起始高度12.如图所示,粗细均匀、全长为h 的铁链,对称地挂在轻小光滑的定滑轮上.受到微小扰动后,铁链从静止开始运动,当铁链脱离滑轮的瞬间,其速度大小为( ). (A)gh(B)gh 21(C)2gh 21(D)2gh13.长l 的线的一端系住质量为,的小球,另一端固定,使小球在竖直平面内以绳的固定点为圆心恰能作完整的圆周运动,卜列说法中正确的是( ). (A)小球、地球组成的系统机械能守恒 (B)小球作匀速圆周运动(C)小球对绳拉力的最大值与最小值相差6mg(D)以最低点为参考平面,小球机械能的最小值为2mgl14.质量m=5㎏的小球系于弹簧的一端,套在光滑竖直圆环上,弹簧的另一端固定在环上的A 点,环半径R=0.5m,弹簧原长l 0=R=0.5m.当球从图中位置C 滑至最低点B 时,测得v A =3m/s,则在B 点时弹簧的弹性势能E P =____J.15.质量为m 的物体由半圆形轨道顶端从静止开始释放,如图4所示,A为轨道最低点,A 与圆心0在同一竖直线上,已知圆弧轨道半径为R ,运动到A 点时,物体对轨道的压力大小为2.5m g ,求此过程中物体克服摩擦力做的功。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、动能定理: W 合= 强调:
2、求合力做的功时,注意哪个力做正功哪个力做负功。
1、对动能定理的理解
例题1、 物体A 和B 质量相等,A 置于光滑的水平面上,B 置于粗糙水平面上,开始时都处于静止状态,在相同的水平力F 作用下移动相同的位移,则( )
A. 力F 对A 做功较多,A 的动能较大
B. 力F 对B 做功较多,B 的动能较大
C 。
力F 对A 和B 做功相同,A 和B 的动能相同 D. 力F 对A 和B 做功相同,但A 的动能较大
练习1。
一个质量为1kg 的物体被人用手由静止向上提升1m,这时物体的速度是2m/s ,则下列说法中错误的是(g 取2/10s m )( )
A 。
手对物体做功12J B. 合外力对物体做功2J C. 合外力对物体做功10J
D. 物体克服重力做功10J
练习2、某人从离地面10m 高处的平台上抛出一个质量为1kg 的球,球落地速度为15m/s ,不计空气阻力,求人对球所做的功,g 取10m/s 2.
练习3. 人在高h 米的地方,斜向上抛出一质量为m 的物体,物体最高点的速度为1v ,落地速度为2v ,人对这个物体做的功为(不计空气阻力)( )
A 。
21222121mv mv -
B 。
2221mv
C 。
mgh mv -2221 D. mgh mv -212
1
2、全程用动能定理
例2、一小球从高出地面Hm 处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h 米后停止,
练习1. 拉其运动练习2、
练习3:一物体质量为2kg,以4m/s 的速度在光滑水平面上向左滑行.从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s,在这段时间内,水平力做功为( )
A. 0
B. 8J C 。
16J D. 32J 3、多个力的动定理应用
例3:物体质量为10kg ,在平行于斜面的拉力F 作用下沿斜面向上运动,斜面与物体间的动摩擦因数为1.0=μ,当物体运动到斜面中点时,去掉拉力F,物体刚好能运动到斜面顶端停下,斜面倾角为30°,求拉力F 多大?(2/10s m g =)
练习1、质量为4t 的汽车,以恒定功率沿平直公路行驶,在一段时间内前进了100m ,其速度从36km/h 增加到54km/h.若车受到的阻力恒定,且阻力因数为0。
02,求这段时间内汽车所做的功。
(2/10s m g =)
4、重力及摩擦力的合力做功
例4. 一个物体以初速度v 竖直向上抛出,它落回原处时的速度为2
v
,设运动过程中阻力大小保持不变,则重力与阻力之比为( )
A 。
3:5
B 。
3:4
C 。
1:2
D 。
1:1
练习1. 人从地面上,以一定的初速度0v 将一个质量为m 的物体竖直向上抛出,上升的最大高度为h,空中受的空气阻力大小恒力为f ,则人在此过程中对球所做的功为( )
A 。
2021mv
B 。
fh mgh -
C 。
fh mgh mv -+2
021 D. fh mgh +
5、斜面类型
例题5。
一个物体从高为h 的斜面顶端以初速度0v 下滑到斜面底端时的速度恰好为0,则使该物体由这个斜面底端至少以初速=v 上滑,才能到达斜面顶端。
练习1. 一块木块以s m v /100=初速度沿平行斜面方向冲上一段长m L 5=,倾角为︒=30α的斜面,见图所示木块与斜面间的动摩擦因数2.0=μ,求木块冲出斜面后落地时的速率(空气阻力
不计,
/
10s
m g=
6
练习1。
子弹的初速度为0v 时,打穿一块木块后速度变为0,设木板对子弹的阻力是恒定的,那么当子弹射入木板的深度等于木板厚度一半时子弹的速度是 .
练习2:子弹以某速度击中静止在光滑水平面上的木块,当子弹进入木块深度为x 时,木块相对水平面移动距离2
x
,求木块获得的动能1k E ∆和子弹损失的动能2k E ∆之比.
机械能守恒定律 内容:
机械能守恒条件:只有重力和系统内相互作用弹力做功。
(1)只受重力和弹力作用;
(2)物体受几个力的作用,但只有重力和弹力做功; (3)其它的力也做功,但其它力的总功为零; (4)没有任何力做功,物体的能量不会发生变化.
公式:21E E =或P k E E ∆-=∆ 机械能守恒定律的常见两种表达式:
(1)2211p k p k E E E E +=+ (意义:前后状态机械能不变)
(2)1221k k p p E E E E -=- (意义:势能的减少量等于动能的增加量)
1、对机械能守恒定律条件的理解 例题1、下列说法正确的是:( )
A 、物体机械能守恒时,一定只受重力和弹力的作用.
B 、物体处于平衡状态时机械能一定守恒.
C、在重力势能和动能的相互转化过程中,若物体除受重力外,还受到其他力作用时,物体的机械能也可能守恒.
D、物体的动能和重力势能之和增大,必定有重力以外的其他力对物体做功。
练习1. 下列物体的运动过程中,物体的机械能守恒的是( )
A。
沿斜面匀速下滑的物体B。
在粗糙的水平面上做加速运动的物体C. 沿一定的椭圆轨道运动的人造地球卫星 D. 在平衡力作用下使一物体匀速竖直上升
练习2、从地面竖直上抛两个质量不同而动能相同的物体(不计空气阻力),当上升到同一高度时,它们()
A。
所具有的重力势能相等 B.所具有的动能相等
C。
所具有的机械能相等 D。
所具有的机械能不等
2、单个物体的机械能守恒
例题1、一根长L的轻绳,绳一端固定在O点,另一端系一质量为m 的小球。
起初将轻绳水平拉直使小球至A点。
求小球从A点由静止释放后到达最低点C时绳子的拉力?
练习1、将小球自水平稍向下移,使轻绳拉直与水平方向成θ角,求小球从A点由静止释放后到达最低点C绳子的拉力?
练习2、如图所示,AB 为一长为L 的光滑水平轨道,小球从A 点开始做匀速直线运动,然后冲上竖直平面内半径为R 的光滑半圆环,到达最高点C 后抛出,最后落回到原来的出发点A 处,如图所示,试求小球在A 点运动的速度为多大?
练习3、均匀铁链长L ,平放在距地面为2L 的光滑水平桌面上,其长度的1/5 悬垂于桌面下,从静止开始释放铁链,求铁链的下端刚要着地时的速度.
若改为铁链刚好全部脱离桌面时速度?
3、系统机械能守恒
例题3、A 、B 两物体质量分别为4m 和m ,一切摩擦不计,开始时用手按住B 物体,释放后,当B 物体上升s 后,绳突然断裂,求物体B 上升的最大高度(斜面倾角为30°)
2L
L /5
B
A
θ
练习1、如图所示,在光滑水平桌面上有一质量为M 的小车,小车跟绳一端相连,绳子另一端通过滑轮吊一个质量为m 的砖码,则当砝码着地的瞬间(小车未离开桌子)小车的速度大小为______在这过程中,绳的拉力对小车所做的功为________。
练习2、如图所示,一根长为m 1,可绕O 轴在竖直平面内无摩擦转动的细杆AB ,已知
m OB m OA 4.0;6.0==,质量相等的两个球分别固定在杆的B A 、端,由水平位置自由释放,求
轻杆转到竖直位置时两球的速度?
练习3、已知m A =2m B =2m ,忽略一切摩擦,此时物体A 、B 距地面高度均为H ,释放A ,求当物体A 刚到达地面时的速度多大(设物体B 到滑轮的距离大于H )
B A
s h
s
θ
A /
B /
A B
H
2、综合类题型
例题2、两物体的质量分别为M和m(M 〉m),用细绳连接后跨接在半径为R的固定光滑半圆柱上(离地面有足够高的距离),两物体刚好位于其水平直径的两端,释放后它们由静止开始运动,求:
(1)m在最高点时的速度大小?
(2)当m和M的比值为多大时,m对圆柱体顶端的压力为零.
M
m
练习1、质量为m和M的物块A和B用不可伸长的轻绳连接,A放在倾角为θ的固定斜面上,而B能沿杆在竖直方向上滑动,杆和滑轮中心间的距离为L,求当B由静止开始下落h时的速度多大?(轮、绳质量及各种摩擦均不计)
例题3、质量不计的长绳,沿水平方向跨放在相距2L 的两个小滑轮A 和B 上,绳的两端各挂一质量为m 的物体,若将质量也为m 的物体Q 挂在AB 的中点C 处,并由静止释放,不计摩擦和滑轮质量
问题1:Q 下落过程中速度最大时离C 点的距离h (合外力等于0)
问题2:Q 下落过程中的最大速度.
v B
2
L
问题3:Q下落过程中离C点的最大距离H
练习1、半径R=0.8m的光滑1/4圆弧轨道固定水平面上,质量m =1kg的小物块从轨道上方的A点静止下落并打在圆弧轨道上的B点但未反弹,碰撞瞬间,小物块沿半径方向的分速度即刻减为零,而沿切线方向的分速度不变, 已知AO=R,且AO连线与水平方向的夹角为30°,C 点为圆弧轨道的末端。
求:小物块到达C点时对轨道的压力大小.。