小学数学容斥原理知识点
容斥原理公式大全

容斥原理公式大全容斥原理是组合数学中的一种重要方法,常常用于求解集合的并、交、差等问题。
它的应用范围非常广泛,涉及到概率论、数论、组合数学等多个领域。
在实际问题中,我们经常需要利用容斥原理来解决一些复杂的计数问题。
下面,我们将介绍容斥原理的相关公式,希望能够对大家有所帮助。
1. 两个集合的容斥原理公式。
对于两个集合A和B,它们的元素个数分别为|A|和|B|,那么它们的并集元素个数为|A∪B|,则有:|A∪B| = |A| + |B| |A∩B|。
这个公式非常直观,它的意义在于,我们先把A和B的元素个数加起来,然后减去A和B的交集元素个数,这样得到的结果就是A和B的并集元素个数。
2. 三个集合的容斥原理公式。
对于三个集合A、B和C,它们的元素个数分别为|A|、|B|和|C|,那么它们的并集元素个数为|A∪B∪C|,则有:|A∪B∪C| = |A| + |B| + |C| |A∩B| |A∩C| |B∩C| + |A∩B∩C|。
这个公式是两个集合容斥原理的推广,它的推导过程可以通过画Venn图来理解。
在实际问题中,我们经常会遇到三个集合的容斥原理的应用,比如在概率论中的概率计算问题。
3. n个集合的容斥原理公式。
对于n个集合A1、A2、...An,它们的并集元素个数为|A1∪A2∪...∪An|,则有:|A1∪A2∪...∪An| = Σ|Ai| Σ|Ai∩Aj| + Σ|Ai∩Aj∩Ak| ... + (-1)^(n-1)|A1∩A2∩...∩An|。
这个公式是容斥原理的一般形式,它适用于任意个集合的情况。
在实际问题中,当我们需要求解多个集合的并集元素个数时,可以利用这个公式来进行计算。
4. 容斥原理的应用举例。
下面通过一个具体的例子来说明容斥原理的应用。
假设有一个集合A,它包含了1到100之间所有能被2、3或5整除的整数,我们需要求集合A的元素个数。
这个问题可以通过容斥原理来解决。
首先,分别求出能被2、3和5整除的整数的个数,然后分别两两求交集的个数,最后再求三者的交集的个数,然后代入容斥原理的公式,即可得到集合A的元素个数。
容斥原理公式大全

容斥原理公式大全容斥原理是组合数学中常用的一种计数方法,可以用于解决涉及多个集合的计数问题。
它的基本思想是通过求解包含或排除一些元素的方式来计算所需的数量。
1. 容斥原理的基本形式:如果A₁,A₂,...,Aₙ是有限集合,并且S表示它们的并集,则有:|S| = |A₁∪A₂∪...∪Aₙ| = Σ|Aᵢ| - Σ|Aᵢ∩Aₙ| + Σ|Aᵢ∩Aₙ∩Aₙ| - ... + (-1)ⁿ⁻¹|A₁∩A₂∩...∩Aₙ|,其中|X|表示集合X中元素的个数。
2. 两个集合的容斥原理:如果A和B是两个有限集合,则有:|A∪B| = |A| + |B| - |A∩B|。
3. 三个集合的容斥原理:如果A,B和C是三个有限集合,则有:|A∪B∪C| = |A| + |B| + |C| - |A∩B| - |A∩C| - |B∩C| + |A∩B∩C|。
4. 四个集合的容斥原理:如果A,B,C和D是四个有限集合,则有:|A∪B∪C∪D| = |A| + |B| + |C| + |D| - |A∩B| - |A∩C| - |A∩D| -|B∩C| - |B∩D| - |C∩D| + |A∩B∩C| + |A∩B∩D| + |A∩C∩D| +|B∩C∩D| - |A∩B∩C∩D|。
5. n个集合的容斥原理:如果A₁,A₂,...,Aₙ是n个有限集合,则有:|A₁∪A₂∪...∪Aₙ| = Σ|Aᵢ| - Σ|Aᵢ∩Aₙ| + Σ|Aᵢ∩Aₙ∩Aₙ| - ... + (-1)ⁿ⁻¹|A₁∩A₂∩...∩Aₙ|。
容斥原理的思想可以扩展到更多个集合的情况,通过求解交集和补集的方式来计算复杂集合的数量。
它在组合数学中具有广泛的应用,特别是在计数问题中常常能够提供简洁有效的解决方案。
小学数学精讲(21)容斥原理

小学数学精讲(21)容斥原理一, 知识地图⎧⎧⎨⎪⎩⎪⎨⎧⎪⎨⎪⎩⎩⎧⎧⎪⎨⎩⎪⎪⎨⎪⎪⎪⎩⎧⎪⎨⎪⎩⎧⎪⎪⎨⎪⎪⎩⎧⎨⎩二者关系分类三者关系容斥原理内容韦恩图内容公式算术法求总数,三项都参加,三项都不参加的方程法基本计算题型求一项参加,两项参加的--方程法求多项未知--方程法求只参加一项,只参加二项的--间接计算正方形与图形结合圆形整除最简真分数与数论知识结合与其他知识相结合平方数,立方数奇偶数三次都会最大最小最值问题会两次最大最小⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎪⎧⎪⎨⎪⎩⎪⎪⎩与排列组合结合电灯开关应用题型报数转身图形法其他题型表格法二,基础知识趣题导引:有一次,学而思小升初培训部进行数学和英语模拟测试,全体学员的考试成绩统计出来后,周老师在班上向同学报告所有学员的考试情况。
周老师说:“这次考试成绩比上一次有了很大的提高,说明同学们在这一段时间内非常认真地学习了学而思的课程,有我们老师的功劳,但更重要的是你们的努力,希望下一次考试可以更上一层楼。
我们全体六年级学员有1106人,其中数学成绩90分以上的有542人,英语成绩90分以上的有479人,数学和英语成绩都考90分以上的有256人,数学和英语成绩都在90分以下的有350人,希望这部分同学可以奋起直追,加倍努力,争取在下一次考试中也都可以拿到90分以上的好成绩。
”周老师的话刚说完,其中一个同学小明就举手说:“老师,您的统计数据有问题,至少有一个人数是不对的。
”周老师很从容的回答说:“没错,小明同学说得很对,确实有一个数据我故意说错的,就看大家能不能反应出来,你们知道是为什么吗?”于是大家都热烈讨论了起来,同学们,你们知道小明是如何很快又肯定的说有一个数据老师说错了吗?要想知道答案,先学好下面的内容了!(一)容斥原理介绍本章节的主要内容是解决涉及包含与排除关系的计算题与应用题,运用到的一个基本原理称为容斥原理,下面我们将容斥原理的内容介绍给大家,由于容斥原理中涉及的各部分之间的关系非常的微妙,希望同学可以仔细学习,细心体会。
容斥原理的三个公式

容斥原理的三个公式容斥原理是数学中一个挺有意思的概念,它有三个重要的公式,今天咱们就来好好聊聊这三个公式。
我先跟您说啊,这容斥原理在解决集合相关的问题时,那可真是大显身手。
就拿咱们生活中的例子来说吧,比如说学校组织活动,有参加书法比赛的同学,有参加绘画比赛的同学,还有既参加书法又参加绘画比赛的同学。
那怎么算总共有多少同学参加了这两类比赛呢?这时候容斥原理就派上用场啦!咱们先来说说容斥原理的第一个公式。
这个公式可以表述为:两个集合 A 和 B 的并集的元素个数,等于 A 的元素个数加上 B 的元素个数,再减去 A 和 B 的交集的元素个数。
简单来说就是:|A∪B| = |A| + |B| -|A∩B| 。
举个例子哈,一个班级里,喜欢语文的有 20 个同学,喜欢数学的有 30 个同学,既喜欢语文又喜欢数学的有 10 个同学。
那喜欢语文或者喜欢数学的同学一共有多少个呢?咱们就可以用这个公式来算。
|A|就是喜欢语文的 20 个同学,|B|就是喜欢数学的 30 个同学,|A∩B|就是既喜欢语文又喜欢数学的 10 个同学。
把数字带进去,那就是 |A∪B| = 20 + 30 - 10 = 40 个同学。
您瞧,是不是很清楚明了?再来说说第二个公式。
如果是三个集合 A、B、C ,那它们的并集的元素个数就是:|A∪B∪C| = |A| + |B| + |C| - |A∩B| - |B∩C| - |C∩A| +|A∩B∩C| 。
咱们还是拿例子来说事儿。
比如说在一个班级里,喜欢体育的有 25 个同学,喜欢音乐的有 15 个同学,喜欢美术的有 20 个同学,既喜欢体育又喜欢音乐的有8 个同学,既喜欢音乐又喜欢美术的有6 个同学,既喜欢体育又喜欢美术的有 9 个同学,三个都喜欢的有 3 个同学。
那喜欢体育或者音乐或者美术的同学一共有多少个呢?咱们就把数字往公式里带:|A|是 25 ,|B|是 15 ,|C|是 20 ,|A∩B|是 8 ,|B∩C|是 6 ,|C∩A|是 9 ,|A∩B∩C|是 3 。
容斥原理三个公式小学

容斥原理三个公式小学
三集合容斥问题公式:
(1)A+B+C-A∩B-A∩C-B∩C+A∩B∩C=总数-三者都不满足的个数
解释:把ABC想象成三个圆形纸片,ABC叠加在一起的面积等于ABC 面积之和减去两两重叠的部分,但是中间三者重叠的部分减去了三次,相当于被挖空了,所以还得加上它。
(2)A+B+C-只满足两个条件的个数-2倍满足三个条件的个数=总数-三者都不满足的个数
解释:把ABC想象成三个圆形纸片,ABC叠加在一起的面积等于ABC 面积之和减去重叠两层的面积,再减去重叠三层的面积的两倍。
重叠2层,只用减去1层,重叠3层,得减掉2层。
(3)只满足一个条件的个数+只满足两个条件的个数+满足三个条件的个数=总数-三者都不满足的个数。
解释:把ABC想象成三个圆形纸片,ABC叠加在一起的面积等于只有一层的面积+重叠两层的面积+重叠三层的面积。
容斥原理常识型公式

容斥原理常识型公式摘要:1.容斥原理的概念和基本公式2.容斥原理的推导过程3.容斥原理的应用示例正文:一、容斥原理的概念和基本公式容斥原理,又称为加法原理与减法原理,是一种在集合论中常用的原理。
它的基本思想是:对于任意两个集合A 和B,有以下三种关系:A 包含B,A 与B 相交,A 与B 相离。
通过这三种关系,我们可以得到容斥原理的基本公式。
基本公式如下:|A∪B| = |A| + |B| - |A∩B|其中,|A∪B|表示A 和B 的并集,|A|表示A 的元素个数,|B|表示B 的元素个数,|A∩B|表示A 和B 的交集。
二、容斥原理的推导过程为了更好地理解容斥原理,我们可以从集合的元素个数入手,推导出容斥原理的基本公式。
假设集合A 有a 个元素,集合B 有b 个元素。
那么,A 与B 的并集中的元素个数可以分为三类:1.属于A 且属于B 的元素,有c 个。
2.属于A 但不属于B 的元素,有a-c 个。
3.属于B 但不属于A 的元素,有b-c 个。
根据集合的定义,A 与B 的并集中的元素个数为a+b 个。
因此,我们可以得到以下等式:a +b =c + (a-c) + (b-c)化简得:a +b = a + b - c即:c = |A∩B|将c 的值代入基本公式,得到:|A∪B| = |A| + |B| - |A∩B|这就是容斥原理的基本公式。
三、容斥原理的应用示例容斥原理在实际问题中有广泛的应用。
下面我们通过一个简单的例子来说明如何使用容斥原理求解问题。
例:某班有男生20 人,女生25 人。
现在需要组成一个学习小组,要求小组中男生和女生的人数相同。
请问最多可以组成几个这样的小组?解:根据容斥原理,我们可以得到男生和女生的总人数为20+25=45 人。
由于小组中男生和女生的人数相同,所以每个小组中男生和女生的人数都是45/2=22.5 人。
容斥原理知识点

容斥原理知识点
容斥原理是一种计数方法,主要用于解决重叠问题。
其基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。
例如,有3个集合A、B和C,它们的并集是{1,2,3,4,5},而集合A是{1,2,3}、集合B是{3,4}、集合C是{4,5}。
虽然数字3在两个集合中出现,但在求并集时只计算一次;数字4在集合B和集合C中出现,但在求并集时也只计算一次。
这样,求出的并集既无遗漏又无重复。
以上内容仅供参考,建议查阅数学书籍或咨询数学老师获取更准确的信息。
小学数学应用题之容斥问题

小学数学应用题之容斥问题【含义】容斥原理是解决计数问题的重要方法,在计数时要求注意无一重复无一遗漏,为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。
常见的容斥问题有两者容斥、三者容斥两种。
【数量关系】A∪B = A+B - A∩BA∪B∪C = A+B+C - A∩B - B∩C - C∩A + A∩B∩C【解题思路和方法】先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。
可画文氏(韦恩)图来解题。
例1:有两块木板各长50厘米,把两块木板钉成一块长木板,中间钉在一起的重叠部分长8厘米。
钉成的木板长厘米。
解:1、本题考查了学生的运算能力、应用能力。
解决重叠问题时,要注意重叠的部分不能重复计算。
2、两块木板一共长50+50=100(厘米),如果钉在一起,说明原来的两个8厘米变成了一个8厘米,这样钉成的木板比100厘米少了8厘米,所以钉成的木板长100-8=92(厘米)。
例2:有两张各长20厘米的纸条,粘贴在一起后的总长是36厘米,那么重叠部分长()厘米。
A、2B、4C、8D、16解:1、此题考查孩子的应用能力、运算能力。
孩子没有进行画图理解,只是凭自己的主观想象进行思考,没有找到总长度与重复部分长度之间的关系,在后面计算时出现错误。
2、两张纸条如果没有重叠,那么一共长20+20=40(厘米),而重叠后的长度是36厘米,短了40-36=4(厘米),说明重叠部分的长度是4厘米。
选择B。
例3:某班在短跑、投掷和跳远三项检测中,有4人三项都未达到优秀,其他人至少有一项是优秀,下表是得优秀的情况,这个班共有多少人?解:根据题意画图2、我们可以先算出19+20+21=60(人),但是这里有被重复算的和漏算的,我们要注意减去重复的部分,加上漏算的部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学容斥原理知识点
容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。
即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b分类(如图),那么具有性质a或性质b的事物的个数=Na+Nb-Nab。
1、例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。
又问:“谁做完数学作业?请举手!”有42人举手。
最后问:“谁语文、数学作业都没有做完?”没有人举手。
求这个班语文、数学作业都完成的人数。
分析与解答:完成语文作业的有37人,完成数学作业的有42人,一共有37+42=79人,多于全班人数。
这是因为语文、数学作业都完成的人数在统计做完语文作业的人数时算过一次,在统计做完数学作业的人数时又算了一次,这样就多算了一次。
所以,这个班语文、数作业都完成的有:79-48=31人。
2、例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。
问多少个同学两题都答得不对?
分析与解答:已知答对第一题的有25人,两题都答对的有15人,可以求出只答对第一题的有25-15=10人。
又已知答对第二题的有23人,用只答对第一题的人数,加上答对第二题的人数就得到至少有一题答对的人数:10+23=33人。
所以,两题都答得不对的有36-33=3人。
3、例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?
分析与解答:要求两科竞赛同时参加的人数,应先求出至少参加一科竞赛的人数:56-25=31人,再求两科竞赛同时参加的人数:28+27-31=24人。
4、例4:在1到100的自然数中,既不是5的倍数也不是6的倍数的数有多少个?
分析与解答:从1到100的自然数中,减去5或6的倍数的个数。
从1到100的自然数中,5的倍数有100÷5=20个,6的倍数有16个(100÷6=16……4),其中既是5的倍数又是6的倍数(即5和6的公倍数)的数有3个(100÷30=3……10)。
因此,是6或5的倍数的个数是16+20-3=33个,既不是5的倍数又不是6的倍数的数的个数是:100-33=67个。
5、例5:光明小学举办学生书法展览。
学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22
幅不是六年级的,五、六年级参展的书法作品共有10幅,其他年级参展的书法作品共有多少幅?
分析与解答:由题意知,24幅作品是一、二、三、四、六年级参展作品的总数,22幅是一、二、三、四、五年级参展作品的总数。
24+22=46幅,这是一个五、六年级和两个一、二、三、四年级参展的作品数,从其中去掉五、六两个年级共参展的10幅作品,即得到两个一、二、三、四年级参展作品的总数,再除以2,即可求出其他年级参展作品的总数。
(24+22-10)÷2=18幅。