浙江省金华市婺城区2019-2020学年九年级上学期期末数学试题(word无答案)
(金华)2019-2020学年第一学期九年级期末测试-数学试题卷

2019-2020学年第一学期九年级期末测试数学试题卷一、选择题(每题3分,共30分)1.把抛物线y=x2+4先向下平移3个单位,再向左平移1个单位,所得抛物线的表达式为()A.y=(x+1)2+7 B.y=(x-1)2+7 C.y=(x-1)2+1 D.y=(x+1)2+1 2.若一个不透明的袋子中装有2个白球,3个黄球和1个红球,它们除颜色外都相同,则从袋子中随机摸出一个球是白球的概率为()A.16B.14C.13D.123.下列阴影三角形分别在小正方形组成的网格中,则与图中的三角形相似的是()A.B.C.D.第3题图第6题图4.在Rt△ABC中,∠C=90°,AC=3,AB=5,那么sin A的值是()A.34B.45C.35D.435.下列四个立体图形中,左视图为矩形的是()① ② ③ ④A.①③B.①④C.②③D.③④6.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于()A.32° B.116° C.58° D.64°1.2.3.7.小红在周末到某小镇去旅游,欣赏伟大祖国的大好河山,拍了一张照片如图,某桥桥身为一巨型单孔圆弧,全部由石块砌成,犹如一道彩虹横卧河面上,经测算,桥拱拱高为CD,河面宽AB为6 m,△ABC为等边三角形,则桥拱直径..为()A m B. m C.D. m第7题图第9题图第10题图8.已知二次函数y=ax2+bx+3(a≠0),当x=1和x=2019时函数的值相等,则当x=2020时,函数的值等于()A.32B.3 C.32D.-39.如图,已知点A、B、C、D、E、F是半径为r的⊙O的六等分点,分别以点A、D为圆心,AE和DF长为半径画圆弧交于点P.以下说法正确的是()①∠P AD=∠PDA=60°;②△P AO≌△ADE;③PO;④AO∶OP∶P A=1.A.①④B.②③C.③④D.①③④10.二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc>0;②2a+b=0;③当m≠1时,a+b>am2+bm;④a-b+c>0;⑤若点A(0.5,y1),B,y2)在此抛物线上,则y1<y2,其中正确的有().A.2个B.3个C.4个D.5个二、填空题(每题4分,共24分)11.已知扇形的圆心角为30°,面积为3π,则该扇形的半径为.12.如图,点P为⊙O外一点,P A,PB为⊙O的切线,A,B为切点,PO交⊙O于点D,∠APO =30°,OD=5,则线段BP的长为.第12题图第13题图13.如图,在△ABC中,AB=AC,∠A=36°,CE平分∠ACB交AB于点E.若AB=4,则BC 的长为.14.已知一个三角形的三边长分别为3、4、5,则该三角形的内切圆的半径为 . 15.如图,在△ABC 中,∠A =90°,CB =10,sin B =0.6,D 是BC 边上异于B ,C 两点的一个动点,过点D 分别作AB ,AC 边的垂线,垂足分别为E ,F ,则EF 的最小值为 .16.抛物线y =x 2+2x -3与x 轴交于A ,B 两点(点B 在点A 的左侧),与y 轴交于点C .(1)抛物线的对称轴为 .(2)若抛物线上存在点P ,使得锐角∠PCO >∠OCA ,则点P 的横坐标x P 的取值范围为 .三、解答题(17~19每题6分,20~21每题8分,22~23每题10分,24题12分,共66分)17.(6分)计算:21()4sin 602tan 453---︒+︒+.18.(6分)“建设美丽的新农村”正在如火如荼建设当中,其中某村的标志性雕塑如图,某中学九年级数学兴趣小组想测量雕塑AB 的高度,小敏在雕塑前C 、D 两点处用测角仪测得顶端A 的仰角分别为45°和30°,测角仪高EC =FD =1 m ,EF =4 m ,求该雕塑的高度.(结果保留根号)19.(6分)在如图所示的正方形网格中(每个小正方形的边长都为1)建立平面直角坐标系,△ABC的三个顶点分别为(2,-4),B(4,-4),C(1,-1).(1)请在图中画出△ABC的外接圆.(2)画出△ABC绕原点O逆时针旋转90°后得到的△A1B1C1,并求出点B旋转所经过的路径长.(结果保留π)20.(8分)某中学九(1)班调查了全班同学的兴趣爱好,根据调查的结果组建了4个兴趣小组,分别是足球、乒乓球、篮球、排球,并将统计结果绘制成如图所示的两幅不完整的统计图(要求每位同学只能选择一种自己喜欢的球类).①②请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)图②中的m= ,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组的4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.21.(8分)如图,在△ABC中,AB=AC,AD为BC边上的中线,DE⊥AB于点E.(1)求证:△BDE∽△CAD.(2)若AB=13,BC=10,求线段DE的长.22.(10分)如图,已知AB为⊙O的直径,AC是⊙O的切线,连结BC交⊙O于点F,取弧BF的中点D,连结AD交BC于点E,过点E作EH⊥AB于点H.(1)求证:△HBE∽△ABC.(2)若CF=4,BF=5,求AC及EH的长.23.(10分)设二次函数y1、y2的图象顶点分别为(a,b)、(c,d),当a+c=0,bd=-1时,则称y1是y2的“顶好二次函数”.(1)理解:通过计算判断二次函数y1=x2-2x-1是否是y2=2x2+4x+2.5的“顶好二次函数”.(2)应用:请写出一个与二次函数y=2x2+8x+7开口方向相反的“顶好二次函数”.(3)拓展:已知关于x的二次函数y1=x2+nx和二次函数y2=nx2+x,函数y1+y2恰好是函数y1-y2的“顶好二次函数”,求n的值.24.(12分)定义:若抛物线y=ax2+bx+c(a≠0)满足a-b+c=0,则称该抛物线为“智慧抛物线”.如图1,“智慧抛物线”y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,若OB=3OA,点D为y轴上的一个动点.探究:(1)若“智慧抛物线”必过一点,求该点的坐标及此抛物线的解析式.(2)当△BCD的面积为6时,求点D的坐标.(3)在抛物线上是否存在点Q,使△BCQ是以BC为直角边的直角三角形?(4)如图2,过点C作CE⊥BD于点E,连结AE,直接写出线段AE的最小值.。
2019-2020学年浙教版九年级上期末考试数学试卷及答案解析

2019-2020学年浙教版九年级上期末考试数学试卷一.选择题(共10小题,满分40分,每小题4分)1.下列抛物线中,与y轴交点坐标为(0,3)的是()A.y=(x﹣3)2B.y=x2﹣3C.y=2x2﹣3x D.y=x2﹣2x+3 2.如图所示是一个旋转对称图形,若将它绕自身中心旋转一定角度之后不能与原图重合,则这个角度可能是()A.60°B.90°C.120°D.180°3.已知一个扇形的弧长为3π,所含的圆心角为120°,则半径为()A.9B.3C.D.4.把抛物线y=﹣x2先向左平移1个单位,再向下平移2个单位,得到的抛物线的表达式是()A.y=﹣(x+1)2+2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2﹣2D.y=(x+1)2﹣25.有两辆车按1,2编号,方方和成成两人可以任意选坐一辆车.则两人同坐1号车的概率为()A.B.C.D.6.已知点(﹣2,y1),(,y2),(,y3)在函数y=﹣(x﹣1)2的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,已知在△ABC中,AB=14,BC=12,AC=10,D是AC上一点,过点D画一条直线l,把△ABC分成两部分,使其中的一个三角形与△ABC相似,这样的直线有几条()A.2B.3C.3或4D.48.甲、乙两人同时从A地出发,步行15km到B地,甲比乙每小时多走1km,结果甲比乙早到半小时,两人每小时各走几千米?设甲每小时走xkm,则可列出的方程为()A.B.C.D.9.已知反比例函数的图象经过点P(4,﹣1),则该反比例函数的图象所在的象限是()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限10.如图,在矩形ABCD中,AB=3,BC=5,点E在对角线AC上,连接BE,作EF⊥BE,垂足为E,直线EF交线段DC于点F,则=()A.B.C.D.二.填空题(共6小题,满分30分,每小题5分)11.(5分)醴陵市农科站在相同条件下经试验发现蚕豆种子的发芽率为97.5%,请估计醴陵地区1000斤蚕豆种子中不能发芽的大约有斤.12.(5分)若△ABC∽△A′B′C′,∠A=50°,∠C=110°,则∠B′的度数为.13.(5分)如图,隧道的截面是抛物线型,抛物线的解析式为y=﹣2+4.隧道是单行道(车从正中间通过),为安全考虑,车顶与隧道顶部的垂直距离不少于0.5m,若货运汽车的宽为2米,则车安全通过隧道的限高为米.。
2019-2020学年浙教版九年级数学上册期末综合检测试卷(有答案)

(2)盒子里蓝色卡片的个数是:50﹣12﹣16﹣4=18.
27.【答案】解:(1)每次游戏可能出现的所有结果列表如下:
表格中共有9种等可能的结果,
则数字之积为3的倍数的有五种,
其概率为 ;数字之积为5的倍数的有三种,
其概率为 = .
(2)这个游戏对双方不公平.
A.∠ABD=∠C B.∠ADB=∠ABC C. D.
3.抛物线y=3x2, y=-3x2, y= x2+3共有的性质是()
A.开口向上 B.对称轴是y轴 C.都有最高点 D.y随x值的增大而增大
4.已知二次函数y=kx2-7x-7的图象与x轴有两个交点,则k的取值范围为()
A.k>- B.k>- 且k≠0 C.k≥- D.k≥- 且k≠0
∴∠CFD=∠AED,
∵∠A=∠CDF,
∴△AED∽△DFC,
∴ ,即 = .
(2)当∠B+∠EGC=180°时, = 成立.
证明:∵四边形ABCD是平行四边形,
∴∠B=∠ADC,AD∥BC,
∴∠B+∠A=180°,
∵∠B+∠EGC=180°,
∴∠A=∠EGC=∠FGD,
∵∠FDG=∠EDA,
∴△DFG∽△DEA,
13.如图,△AOB三个顶点的坐标分别为A(8,0),O(0,0),B(8,﹣6),点M为OB的中点.以点O为位似中心,把△AOB缩小为原来的 ,得到△A′O′B′,点M′为O′B′的中点,则MM′的长为________.
14.已知二次函数y=ax2+bx+c的部分图像如图所示,则关于x的方程ax2+bx+c=0的两个根的和等于________.
浙江省金华市婺城区2019届九年级上学期数学期末考试试卷

,中,无理数的是(,则答案第2页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A.B. C. D.6.一组数据:,a ,a ,,若添加一个数据a ,下列说法错误的是A.平均数不变B.中位数不变C.众数不变D.方差不变7.一条排水管的截面如图所示,已知排水管的截面圆的半径,水面宽AB 是16dm ,则截面水深CD 是A.3dmB.4dmC.5dmD.6dm8.据金华海关统计,2018年月金华市共实现外贸进出口总值亿元人民币,同比增长数据亿元用科学记数法表示正确的是A.元B.元C.元D.元9.如图1,已知,,点P 为AB 边上的一个动点,点E 、F 分别是CA ,CB 边的中点,过点P 作于D ,设,图中某条线段的长为y ,如果表示y 与x 的函数关系的大致图象如图2所示,那么这条线段可能是A.PDB.PEC.PCD.PF10.若直线与函数的图象仅有一个公共点,则整数c 的值为A.3B.4C.3或4D.3或4或5含、的大的半径为上的一点,点答案第4页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人得分二、计算题(共1题)6.计算:.评卷人得分三、作图题(共1题)7.如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.①在图中画出以线段AB 为一边的矩形ABCD (不是正方形),且点C 和点D 均在小正方形的顶点上;②在图中画出以线段AB 为一腰,底边长为2的等腰三角形ABE ,点E 在小正方形的顶点上,连接CE ,请直接写出线段CE 的长.评卷人得分四、综合题(共7题)8.如图1,AB 是⊙O 的直径,P 为⊙O 外一点,C ,D 为⊙O 上两点,连结OP ,CD ,PD =PC.已知AB =8.中,,,,得到答案第6页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)若产销甲、乙两种产品的年利润分别为y 1万元、y 2万元,直接写出y 1、y 2与x 的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.11.小明在研究“利用木板余料裁出最大面积的矩形”时发现:如图1,是一块直角三角形形状的木板余料,以为内角裁一个矩形当DE ,EF 是中位线时,所裁矩形的面积最大若木板余料的形状改变,请你探究:(1)如图2,现有一块五边形的木板余料ABCDE ,,,,,现从中裁出一个以为内角且面积最大的矩形,则该矩形的面积为.(2)如图3,现有一块四边形的木板余料ABCD ,经测量,,,且,从中裁出顶点M ,N 在边BC 上且面积最大的矩形PQMN ,则该矩形的面积为.12.某校兴趣小组就“最想去的金华最美村落”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的最美乡村下面是根据调查结果绘制出的不完整的统计图,,,答案第8页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)求抛物线的解析式;(2)如图2,D 点坐标为,连结若点H 是线段DC 上的一个动点,求的最小值.(3)如图3,连结AC ,过点B 作x 轴的垂线l ,在第三象限中的抛物线上取点P ,过点P 作直线AC 的垂线交直线l 于点E ,过点E 作x 轴的平行线交AC 于点F ,已知.求点P 的坐标;在抛物线上是否存在一点Q ,使得成立?若存在,求出Q 点坐标;若不存在,请说明理由.参数答案1.【答案】:第9页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:2.【答案】:【解释】:3.【答案】:【解释】:4.【答案】:【解释】:5.【答案】:【解释】:答案第10页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………6.【答案】:【解释】:7.【答案】:【解释】:第11页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………8.【答案】:【解释】:9.【答案】:【解释】:10.【答案】:答案第12页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:【解释】:第13页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:【解释】:【答案】:【解释】:【答案】:答案第14页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:【解释】:第15页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【答案】:答案第16页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:【答案】:【解释】:(1)【答案】:(2)【答案】:第17页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:(1)【答案】:答案第18页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:第19页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)【答案】:答案第20页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:(1)【答案】:(2)【答案】:第21页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)【答案】:【解释】:(1)【答案】:(2)【答案】:【解释】:答案第22页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第23页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(1)【答案】:(2)【答案】:(3)【答案】:【解释】:(1)【答案】:答案第24页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(2)【答案】:【解释】:(1)【答案】:(2)【答案】:第25页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(3)【答案】:答案第26页,总27页………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第27页,总27页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………【解释】:。
2019-2020学年浙江省金华市婺城区九年级(上)期末数学试卷 (解析版)

2019-2020学年浙江省金华市婺城区九年级(上)期末数学试卷一、选择题(共10小题).1.(3分)下列各数中,属于无理数的是( ) A .2B.4C .0D .12.(3分)根据国家外汇管理局公布的数据,截止2019年9月末,我国外汇储备规模为30924亿美元,较年初上升197亿美元,升幅0.6%,数据30924亿用科学记数法表示为( ) A .83092410⨯B .123.092410⨯C .113.092410⨯D .133.092410⨯3.(3分)计算97(a a ab b b++⋯+=⋅⋅⋯⋅个个)A .97a bB .97a bC .79a bD .97a b4.(3分)下列几何图形中,既是轴对称图形,又是中心对称图形的是( ) A .等腰三角形B .正三角形C .平行四边形D .正方形5.(3分)下列函数中,y 的值随着x 逐渐增大而减小的是( ) A .2y x =B .2y x =C .2y x=-D .1y x =-6.(3分)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的( )A .众数是6吨B .平均数是5吨C .中位数是5吨D .方差是437.(3分)把多项式241a -分解因式,结果正确的是( ) A .(41)(41)a a +-B .(21)(21)a a +-C .2(21)a -D .2(21)a +8.(3分)通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+9.(3分)把边长相等的正六边形ABCDEF 和正五边形GHCDL 的CD 边重合,按照如图所示的方式叠放在一起,延长LG 交AF 于点P ,则(APG ∠= )A .141︒B .144︒C .147︒D .150︒10.(3分)使用家用燃气灶烧开同一壶水所需的燃气量y (单位:3)m 与旋钮的旋转角度x (单位:度)(090)x ︒<︒近似满足函数关系2(0)y ax bx c a =++≠.如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )A .18︒B .36︒C .41︒D .58︒二、填空题(本大题有6小题,每小题4分,共24分) 11.(4分)在函数21y x =-中,自变量x 的取值范围是 .12.(4分)在数1-、1、2中任取两个数(不重复)作为点的坐标,则该点刚好在一次函数2y x =-图象上的概率是 .13.(4分)如图,点A是反比例函数kyx=的图象上的一点,过点A作AB x⊥轴,垂足为B.点C为y轴上的一点,连接AC,BC.若ABC∆的面积为4,则k的值是.14.(4分)如图,网格中的四个格点组成菱形ABCD,则tan DBC∠的值为.15.(4分)如图1表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,当钟面显示3点30分时,分针垂直与桌面,A点距离桌面的高度为10公分,若此钟面显示3点45分时,A点距桌面的高度为16公分,如图2,钟面显示3点50分时,A点距桌面的高度.16.(4分)如图①,是一建筑物造型的纵截面,曲线OBA是抛物线的一部分,该抛物线开口向右、对称轴正好是水平线OH,AC,BD是与水平线OH垂直的两根支柱,4AC=米,2BD=米,2OD=米.(1)如图②,为了安全美观,准备拆除支柱AC、BD,在水平线OH上另找一点P作为地面上的支撑点,用固定材料连接PA、PB,对抛物线造型进行支撑加固,用料最省时点O,P之间的距离是.(2)如图③,在水平线OH上增添一张2米长的椅子(EF E在F右侧),用固定材料连接AE、BF,对抛物线造型进行支撑加固,用料最省时点O,E之间的距离是.三、解答题(本大题有8小题,共66分) 17.计算:203(1)tan60(3)3π---+︒--.18.解不等式组213122x x x +<⎧⎪⎨<⎪⎩并求出最大整数解.19.如图,在锐角ABC ∆中,小明进行了如下的尺规作图: ①分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧分别相交于点P 、Q ; ②作直线PQ 分别交边AB 、BC 于点E 、D . (1)小明所求作的直线DE 是线段AB 的 ; (2)联结AD ,7AD =,1sin 7DAC ∠=,9BC =,求AC 的长.20.某学校为了了解600名初中毕业生体育考试成绩的情况(满分30分,得分为整数),从中随机抽取了部分学生的体育考试成绩,制成如下图所示的频数分布直方图.已知成绩在15.5~18.5这一组的频率为0.05.请回答下列问题:(1)在这个调查中,样本容量是 ;平均成绩是 ; (2)请补全成绩在21.5~24.5这一组的频数分布直方图;(3)若经过两年的练习,该校的体育平均成绩提高到了29.403分,求该校学生体育成绩的年平均增长率.21.如图,AB是O的直径,AE是弦,C是弧AE的中点,过点C作O的切线交BA的延长线于点G,过点C作CD AB⊥于点D,交AE于点F.(1)求证://GC AE;(2)若3sin5EAB∠=,3OD=,求AE的长.22.小儒在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考:(1)他认为该定理有逆定理,即“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立,你能帮小儒证明一下吗?如图①,在ABC∆中,AD是BC边上的中线,若AD BD CD==,求证:90BAC∠=︒.(2)接下来,小儒又遇到一个问题:如图②,已知矩形ABCD,如果在矩形外存在一点E,使得AE CE⊥,求证:BE DE⊥,请你作出证明,可以直接用到第(1)问的结论.(3)在第(2)问的条件下,如果AED∆恰好是等边三角形,直接用等式表示出此时矩形的两条邻边AB与BC的数量关系.23.如图1,在Rt ABC∆中,90ACB∠=︒,5AB=,3BC=,点O是边AC上一个动点(不与A 、C 重合),点D 为射线AB 上一点,且OA OD =,以点C 为圆心,CD 为半径作C ,设OA x =.(1)如图2,当点D 与点B 重合时,求x 的值;(2)当点D 在线段AB 上,如果C 与AB 的另一个交点E 在线段AD 上时,设AE y =,试求y 与x 之间的函数解析式,并写出x 的取值范围;(3)在点O 的运动过程中,如果C 与线段AB 只有一个公共点,请直接写出x 的取值范围. 24.如图①,在平面直角坐标系中,抛物线2y x =的对称轴为直线l ,将直线l 绕着点(0,2)P 顺时针旋转α∠的度数后与该抛物线交于AB 两点(点A 在点B 的左侧),点Q 是该抛物线上一点(1)若45α∠=︒,求直线AB 的函数表达式; (2)若点p 将线段分成2:3的两部分,求点A 的坐标(3)如图②,在(1)的条件下,若点Q 在y 轴左侧,过点p 作直线//l x 轴,点M 是直线l 上一点,且位于y 轴左侧,当以P ,B ,Q 为顶点的三角形与PAM ∆相似时,求M 的坐标.参考答案一、选择题(本大题有10小题,每小题3分,共30分) 1.(3分)下列各数中,属于无理数的是( ) ABC .0D .1解:2B =,是整数,属于有理数; .0C 是整数,属于有理数; .1D 是整数,属于有理数.故选:A .2.(3分)根据国家外汇管理局公布的数据,截止2019年9月末,我国外汇储备规模为30924亿美元,较年初上升197亿美元,升幅0.6%,数据30924亿用科学记数法表示为( ) A .83092410⨯B .123.092410⨯C .113.092410⨯D .133.092410⨯解:30924亿123092400000000 3.092410==⨯. 故选:B .3.(3分)计算97(a a ab b b++⋯+=⋅⋅⋯⋅个个)A .97a bB .97a bC .79a bD .97a b解:9779a a a ab b b b++⋯+=⋅⋅⋯⋅个个,故选:C .4.(3分)下列几何图形中,既是轴对称图形,又是中心对称图形的是( ) A .等腰三角形B .正三角形C .平行四边形D .正方形解:A 、是轴对称图形,不是中心对称图形.故错误; B 、是轴对称图形,不是中心对称图形.故错误; C 、不是轴对称图形,是中心对称图形.故错误;D 、既是轴对称图形,又是中心对称图形.故正确.故选:D .5.(3分)下列函数中,y 的值随着x 逐渐增大而减小的是( ) A .2y x =B .2y x =C .2y x=-D .1y x =-解:A 、函数2y x =的图象是y 随着x 增大而增大,故本选项错误;B 、函数2y x =的对称轴为0x =,当0x 时y 随x 增大而减小故本选项错误;C 、函数2y x=-,当0x <或0x >,y 随着x 增大而增大故本选项错误; D 、函数1y x =-的图象是y 随着x 增大而减小,故本选项正确;故选:D .6.(3分)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的( )A .众数是6吨B .平均数是5吨C .中位数是5吨D .方差是43解:这组数据的众数为6吨,平均数为5吨,中位数为5.5吨,方差为43. 故选:C .7.(3分)把多项式241a -分解因式,结果正确的是( ) A .(41)(41)a a +-B .(21)(21)a a +-C .2(21)a -D .2(21)a +解:241(21)(21)a a a -=+-, 故选:B .8.(3分)通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+解:图1中阴影部分的面积为:22a b -, 图2中的面积为:()()a b a b +-, 则22()()a b a b a b +-=- 故选:A .9.(3分)把边长相等的正六边形ABCDEF 和正五边形GHCDL 的CD 边重合,按照如图所示的方式叠放在一起,延长LG 交AF 于点P ,则(APG ∠= )A .141︒B .144︒C .147︒D .150︒解:(62)1806120-⨯︒÷=︒, (52)1805108-⨯︒÷=︒,(62)180********APG ∠=-⨯︒-︒⨯-︒⨯ 720360216=︒-︒-︒144=︒.故选:B .10.(3分)使用家用燃气灶烧开同一壶水所需的燃气量y (单位:3)m 与旋钮的旋转角度x (单位:度)(090)x ︒<︒近似满足函数关系2(0)y ax bx c a =++≠.如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x 与燃气量y 的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为( )A .18︒B .36︒C .41︒D .58︒解:由图象可得, 该函数的对称轴18542x +>且54x <, 3654x ∴<<,故选:C .二、填空题(本大题有6小题,每小题4分,共24分) 11.(4分)在函数21y x =-中,自变量x 的取值范围是 2x . 解:根据题意得:210x -, 解得,12x. 12.(4分)在数1-、1、2中任取两个数(不重复)作为点的坐标,则该点刚好在一次函数2y x =-图象上的概率是6. 解:列表得: 1- 1 2 1----(1,1)- (2,1)- 1 (1,1)- ---(2,1) 2(1,2)-(1,2)---所有等可能的情况有6种,其中该点刚好在一次函数2y x =-图象上的情况有:(1,1)-共1种, 则16P =. 故答案为:16. 13.(4分)如图,点A 是反比例函数ky x=的图象上的一点,过点A 作AB x ⊥轴,垂足为B .点C 为y 轴上的一点,连接AC ,BC .若ABC ∆的面积为4,则k 的值是 8- .解:连结OA ,如图,AB x ⊥轴,//OC AB ∴,4OAB ABC S S ∆∆∴==,而1||2OAB S k ∆=, ∴1||42k =, 0k <,8k ∴=-.故答案为:8-.14.(4分)如图,网格中的四个格点组成菱形ABCD ,则tan DBC ∠的值为 3 .解:如图,连接AC 与BD 相交于点O ,四边形ABCD 是菱形,AC BD ∴⊥,12BO BD =,12CO AC =,由勾股定理得,223332 AC=+=,22112BD=+=,所以,12222BO=⨯=,1323222CO=⨯=,所以,322tan322CODBCBO∠===.故答案为:3.15.(4分)如图1表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,当钟面显示3点30分时,分针垂直与桌面,A点距离桌面的高度为10公分,若此钟面显示3点45分时,A点距桌面的高度为16公分,如图2,钟面显示3点50分时,A点距桌面的高度19公分.解:连接A A''',当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分.10AD∴=,钟面显示3点45分时,A点距桌面的高度为16公分,16A C∴'=,6AO A O∴=''=,则钟面显示3点50分时,30A OA∠'''=︒,3A A∴'''=,A ∴点距桌面的高度为:16319+=公分.故答案是:19公分.16.(4分)如图①,是一建筑物造型的纵截面,曲线OBA 是抛物线的一部分,该抛物线开口向右、对称轴正好是水平线OH ,AC ,BD 是与水平线OH 垂直的两根支柱,4AC =米,2BD =米,2OD =米.(1)如图②,为了安全美观,准备拆除支柱AC 、BD ,在水平线OH 上另找一点P 作为地面上的支撑点,用固定材料连接PA 、PB ,对抛物线造型进行支撑加固,用料最省时点O ,P 之间的距离是 4 .(2)如图③,在水平线OH 上增添一张2米长的椅子(EF E 在F 右侧),用固定材料连接AE 、BF ,对抛物线造型进行支撑加固,用料最省时点O ,E 之间的距离是 .解:(1)如图建立平面直角坐标系(以点O 为原点,OC 所在直线为y 轴,垂直于OC 的直线为x 轴),过点B '作B D y ''⊥轴于点D ',延长B D ''到M '使M D B D ''''=,连接A M ''交OC '于点P ',则点P '即为所求.设抛物线的函数解析式为2y ax =,由题意知旋转后点B '的坐标为(2,2)-. 代入解析式得12a = ∴抛物线的函数解析式为:212y x =, 当4x =-时,8y =,∴点A '的坐标为(4,8)-,2B D ''=∴点M '的坐标为(2,2)把点(2,2)M ',(4,8)A '-代入直线y kx b =+中,得直线M A ''的函数解析式为4y x =-+,把0x =代入4y x =-+,得4y =,∴点P '的坐标为(0,4),∴用料最省时,点O 、P 之间的距离是4米.故答案为:4;(2)过点B '作B P '平行于y 轴且2B P '=,作P 点关于y 轴的对称点P ',连接A P ''交y 轴于点E ,则点E 即为所求.2B P '=∴点P 的坐标为(2,4)-,P '∴点坐标为(2,4)代入(2,4)P ',(4,8)A '-,解得直线A P ''的函数解析式为21633y x =-+, 把0x =代入21633y x =-+,得163y =, ∴点E 的坐标为16(0,)3, ∴用料最省时,点O 、E 之间的距离是163米. 故答案为:163. 三、解答题(本大题有8小题,共66分)17.计算:20(1)tan 60(3)3π--+︒--. 解:20(1)tan 60(3)3π---+︒--213331(1)=-+- 1331=-0=18.解不等式组213122x x x +<⎧⎪⎨<⎪⎩并求出最大整数解. 解:213122x x x +<⎧⎪⎨<⎪⎩①② 由①得:1x >由②得:4x <不等式组的解为:14x <<所以满足范围的最大整数解为3.19.如图,在锐角ABC ∆中,小明进行了如下的尺规作图:①分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧分别相交于点P 、Q ; ②作直线PQ 分别交边AB 、BC 于点E 、D .(1)小明所求作的直线DE 是线段AB 的 线段AB 的垂直平分线(或中垂线) ;(2)联结AD ,7AD =,1sin 7DAC ∠=,9BC =,求AC 的长.解:(1)小明所求作的直线DE 是线段AB 的垂直平分线(或中垂线);故答案为线段AB 的垂直平分线(或中垂线);(2)过点D 作DF AC ⊥,垂足为点F ,如图,DE 是线段AB 的垂直平分线,7AD BD ∴==2CD BC BD ∴=-=,在Rt ADF ∆中,1sin 7DF DAC AD ∠==, 1DF ∴=, 在Rt ADF ∆中,227143AF =-=,在Rt CDF ∆中,22213CF =-=,43353AC AF CF ∴=+=+=.20.某学校为了了解600名初中毕业生体育考试成绩的情况(满分30分,得分为整数),从中随机抽取了部分学生的体育考试成绩,制成如下图所示的频数分布直方图.已知成绩在15.5~18.5这一组的频率为0.05.请回答下列问题:(1)在这个调查中,样本容量是 60 ;平均成绩是 ;(2)请补全成绩在21.5~24.5这一组的频数分布直方图;(3)若经过两年的练习,该校的体育平均成绩提高到了29.403分,求该校学生体育成绩的年平均增长率.解:(1)样本容量:30.0560÷=; 21.5~24.5∴组别人数6036101427=----=人,总成绩(15.518.5)(18.521.5)(21.524.5)(24.527.5)(27.530.5)36271014145822222+++++=⨯+⨯+⨯+⨯+⨯=,平均成绩14586024.3=÷=,故答案为:60,24.3;(2)补全频数分布直方图如下(3)设年平均增长率为x,由题意得224.3(1)29.403x+=解方程得10%x=,∴两年的年平均增长率为10%21.如图,AB是O的直径,AE是弦,C是弧AE的中点,过点C作O的切线交BA的延长线于点G,过点C作CD AB⊥于点D,交AE于点F.(1)求证://GC AE;(2)若3sin5EAB∠=,3OD=,求AE的长.【解答】(1)证明:连接OC,交AE于点H.C是弧AE的中点,OC AE∴⊥.GC是O的切线,OC GC∴⊥,90OHA OCG∴∠=∠=︒,//GC AE∴;(2)解:OC AE ⊥,CD AB ⊥,OCD EAB ∴∠=∠. ∴3sin sin 5OCD EAB ∠=∠=. 在Rt CDO ∆中,3OD =,5OC ∴=,10AB ∴=,连接BE AB 是O 的直径,90AEB ∴∠=︒.在Rt AEB ∆中,3sin 5BE EAB AB ∠==, 6BE ∴=,8AE ∴=.22.小儒在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考:(1)他认为该定理有逆定理,即“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立,你能帮小儒证明一下吗?如图①,在ABC ∆中,AD 是BC 边上的中线,若AD BD CD ==,求证:90BAC ∠=︒.(2)接下来,小儒又遇到一个问题:如图②,已知矩形ABCD ,如果在矩形外存在一点E ,使得AE CE ⊥,求证:BE DE ⊥,请你作出证明,可以直接用到第(1)问的结论.(3)在第(2)问的条件下,如果AED ∆恰好是等边三角形,直接用等式表示出此时矩形的两条邻边AB 与BC 的数量关系.解:(1)AD BD =,B BAD ∴∠=∠,AD CD =,C CAD ∴∠=∠,在ABC ∆中,180B C BAC ∠+∠+∠=︒,180B C BAD CAD B C B C ∴∠+∠+∠+∠=∠+∠+∠+∠=︒ 90B C ∴∠+∠=︒,90BAC ∴∠=︒,(2)如图②,连接AC ,BD ,OE ,四边形ABCD 是矩形,1122OA OB OC OD AC BD ∴=====, AE CE ⊥,90AEC ∴∠=︒, 12OE AC ∴=, 12OE BD ∴=, 90BED ∴∠=︒,BE DE ∴⊥;(3)如图3,四边形ABCD 是矩形,AD BC ∴=,90BAD ∠=︒,ADE ∆是等边三角形,AE AD BC ∴==,60DAE AED ∠=∠=︒,由(2)知,90BED ∠=︒,30BAE BEA ∴∠=∠=︒,过点B 作BF AE ⊥于F ,2AE AF ∴=,在Rt ABF ∆中,30BAE ∠=︒,2AB BF ∴=,3AF BF =,23AE BF ∴=,3AE AB ∴=,3BC AB ∴=.23.如图1,在Rt ABC ∆中,90ACB ∠=︒,5AB =,3BC =,点O 是边AC 上一个动点(不与A 、C 重合),点D 为射线AB 上一点,且OA OD =,以点C 为圆心,CD 为半径作C ,设OA x =.(1)如图2,当点D 与点B 重合时,求x 的值;(2)当点D 在线段AB 上,如果C 与AB 的另一个交点E 在线段AD 上时,设AE y =,试求y 与x 之间的函数解析式,并写出x 的取值范围;(3)在点O 的运动过程中,如果C 与线段AB 只有一个公共点,请直接写出x 的取值范围. 解:(1)如图1中,在Rt ABC ∆中,90ACB ∠=︒,5AB =,3BC =, 2222534AC AB BC ∴=-=-=,OA OB x ==,4OC x ∴=-,在Rt BOC ∆中,222OB BC OC =+,2223(4)x x ∴=+-,∴258x =. (2)如图2,过点O ,C 分别作OH AB ⊥,CG AB ⊥,垂足为点H ,G .OH AD ⊥,CG AB ⊥,AH DH ∴=,DG EG =,又在Rt ABC ∆中4cos 5A ∠=; ∴在Rt OHA ∆中45AH x =, ∴85AD x =, 又90AGC ACB ∠=∠=︒,A A ∠=∠,AGC ACB ∴∆∆∽,∴AG AC AC AB=, ∴165AG =, 又AE y =,∴165GE y =-, ∴165DG GE y ==-, 又DG GE EA AD ++-, 即16168555y y y x -+-+=. 化简得83228(2)555y x x =-+<. (3)①如图3中,当C 经过点B 时,易知:95BH DH ==∴185BD =, ∴187555AD =-=,∴8755x =, ∴78x =. 观察图象可知:当708x <<时,C 与线段AB 只有一个公共点. ②如图4中,当C 与AB 相切时,CD AB ⊥,易知2OA =,此时2x =.③如图5中,当2548x <<时,C 与线段AB 只有一个公共点.综上所述,当708x <<或2x =或2548x <<时,C 与线段AB 只有一个公共点. 24.如图①,在平面直角坐标系中,抛物线2y x =的对称轴为直线l ,将直线l 绕着点(0,2)P 顺时针旋转α∠的度数后与该抛物线交于AB 两点(点A 在点B 的左侧),点Q 是该抛物线上一点(1)若45α∠=︒,求直线AB 的函数表达式;(2)若点p 将线段分成2:3的两部分,求点A 的坐标 (3)如图②,在(1)的条件下,若点Q 在y 轴左侧,过点p 作直线//l x 轴,点M 是直线l 上一点,且位于y 轴左侧,当以P ,B ,Q 为顶点的三角形与PAM ∆相似时,求M 的坐标.解:(1)45α∠=︒,则直线的表达式为:y x b =+, 将(0,2)代入上式并解得:2b =,故直线AB 的表达式为:2y x =+;(2)①:2:3AP PB =,设(2A a -,24)(3a B a ,29)a ,22429223a a a a--=-, 解得:13a =,23a =, ∴234()3A ; ②:3:2AP PB =,设2(3,9)A a a -,2(2,4)B a a ,22924232a a a a--=-, 解得:13a =,23a =, ∴(3,3)A -, 综上234()3或(3,3);(3)45MPA ∠=︒,45(1,1)QPB A ∠≠︒-,(2,4)B , ①45QBP ∠=︒时,此时B ,Q 关于y 轴对称,PBQ ∆为等腰直角三角形,1(1M ∴-,22)(2,2)M -,②45BQP ∠=︒时,此时(2,4)Q -满足,左侧还有Q '也满足,BQP BQ P '=∠,Q '∴,B ,P ,Q 四点共圆,则圆心为BQ 中点(0,4)D ; 设2(,)Q x x ',(0)x <,Q D BD '=,222222(0)(4)2(4)(3)0x x x x ∴-+-=--=, 0x <且不与Q 重合, ∴3x =-, ∴(3,3)Q '-,2Q P '=,2Q P DQ DP ''===,DPQ '∴∆为正三角形, 则160302PBQ '∠=⨯︒=︒, 过P 作PE BQ '⊥, 则2PE Q E '==,2BE =∴26Q B '=+,当△~Q BP PMA '∆时,PQ Q B PA PM ''=262+=, 则13PM =+ 故点(13,2)M --; 当△~Q PB PMA '∆时, PQ Q B PM PA ''=,2262PM +=,则31PM =-, 故点(13,2)M -; 综上点M 的坐标:(1,2)-,(2,2)-,(13,2)-,(13,2).。
2019-2020学年度第一学期浙教版九年级数学期末考试题(附答案)

2019-2020学年度第一学期浙教版九年级数学期末考试题(附答案)姓名:__________ 班级:__________考号:__________一、单选题(共10题;共30分)1.在﹣1,0,,3.010010001…,中任取一个数,取到无理数的概率是()A. B. C. D.2.如图,四边形ABCD是边长为1的正方形,E,F为BD所在直线上的两点.若AE= ,∠EAF=135°,则以下结论正确的是()A. DE=1B. tan∠AFO=C. AF=D. 四边形AFCE的面积为3.如图,⊙O 中,弦AB、CD 相交于点P,∠A=40°,∠APD=75°,则∠B=()A. 15°B. 40°C. 75°D. 35°4.二次函数y=ax²+bx+2(a≠0)的图像经过点(-1,1)则代数1-a+b的值为()A. -3B. -1C. 2D. 55.以下说法正确的是()A. 在同一年出生的400人中至少有两人的生日相同B. 一个游戏的中奖率是1%,买100张奖券,一定会中奖C. 一副扑克牌中,随意抽取一张是红桃K,这是必然事件D. 一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是6.如图,在平面直角坐标系中,点A(-1,m)在直线y=2x+3上,连接OA,将线段OA绕点O顺时针旋转90°,点A的对应点B恰好落在直线y=-x+b上,则b的值为( )A. -2B. 1C.D. 27.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF 的长为()A. 5B. 6C. 7D. 88.如图,半径为1的圆中,圆心角为120°的扇形面积为()A. B. C. π D.9.如图,分别是边上的点,,若,则的长是().A. 1B. 2C. 3D. 410.已知过点、和的抛物线的图象大致为A. B. C. D.二、填空题(共6题;共24分)11.Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(如图).把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=________.12.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是________.13.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,若OA2﹣AB2=8,则k的值为________.14.如图,在平面直角坐标系中,抛物线y= 与直线交于A、B,直线AB交于y轴于点C,点P为线段OB上一个动点(不与点O、B重合),当△OPC为等腰三角形时,点P的坐标:________.15.如图,直线l1、l2、…l6是一组等距的平行线,过直线l1上的点A作两条射线,分别与直线l3、l6相交于点B、E、C、F.若BC=2,则EF的长是________.16.如图,已知△ABO顶点A(-3,6),以原点O为位似中心,把△ABO缩小到原来的,则与点A对应的点A'的坐标是________.三、解答题(共8题;共66分)17.小丽和小明将在下周的星期一到星期三这三天中各自任选一天担任值日工作,请用画树状图或列表格的方法,求小丽和小明在同一天值日的概率.18.如图,在6×8网格图中,每个小正方形边长均为1,点O和△ABC的顶点均在小正方形的顶点上.(1)以点O为位似中心,在网格图中作△A′B′C′(在位似中心的同侧)和△ABC位似,且位似比为1 2;(2)连结(1)中的AA′,求四边形AA′C′C的周长(结果保留根号).19.如图, 是的边的中点,过延长线上的点作的垂线, 为垂足, 与的延长线相交于点,点在上, , ∥.(1)证明:;(2)证明:点是的外接圆的圆心;20.如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.21.商场某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件,据此规律,请回答:(1)当每件商品售价定为140元时,每天可销售多少件商品?商场获得的日盈利是多少?(2)在上述条件不变,商品销售正常的情况下,每件商品的销售价定为多少元,商场日盈利可达1500元?(3)商家应把商品的单价定为多少元时,可获得最大利润,并求出此时的利润为多少?22.如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(-1,2),AB⊥x轴于点E,正比例函数y=mx的图像与反比例函数的图像相交于A,P两点。
浙江省金华市九年级(上)期末数学试卷

浙江省⾦华市九年级(上)期末数学试卷九年级(上)期末数学试卷⼀、选择题(本⼤题共10⼩题,共30.0分)1.四个数0,1,2,12中,⽆理数的是()A. 2B. 1C. 12D. 02.下⾯四个⼿机APP图标中为轴对称图形的是()A. B. C. D.3.据⾦华海关统计,2018年1~11⽉⾦华市共实现外贸进出⼝总值3485.5亿元⼈民币,同⽐增长13.1%.数据3485.5亿元⽤科学记数法表⽰正确的是()A. 3.4855×1010元B. 3.4855×1011元C. 3.4855×1012元D. 3485.5×108元4.不等式组x?1≥04?2x>0的解集在数轴上表⽰为()A. B.C. D.5.⼀组数据:a-1,a,a,a+1,若添加⼀个数据a,下列说法错误的是()A. 平均数不变B. 中位数不变C. 众数不变D. ⽅差不变6.⼀条排⽔管的截⾯如图所⽰,已知排⽔管的截⾯圆的半径OB=10dm,⽔⾯宽AB是16dm,则截⾯⽔深CD是()A. 3 dmB. 4 dmC. 5 dmD. 6 dm7.可以⽤来说明命题“x>-4,则x2>16”是假命题的反例是()A. x=8B. x=6C. x=0D. x=?58.已知关于x的⼀元⼆次⽅程2x2-kx+3=0有两个相等的实根,则k的值为()A. ±26B. ±6C. 2或3D. 2或39.如图1,已知Rt△ABC,CA=CB,点P为AB边上的⼀个动点,点E、F分别是CA,CB边的中点,过点P作PD⊥CA于D,设AP=x,图中某条线段的长为y,如果表⽰y与x的函数关系的⼤致图象如图2所⽰,那么这条线段可能是()A. PDB. PEC. PCD. PF10.若直线y=-x-1与函数y=1x?c(12≤x≤4)的图象仅有⼀个公共点,则整数c的值为()A. 3B. 4C. 3或4D. 3或4或5⼆、填空题(本⼤题共6⼩题,共24.0分)11.函数y=x?3中,⾃变量x的取值范围是______.12.⼀个三⾓板(含30°、60°⾓)和⼀把直尺摆放位置如图所⽰,直尺与三⾓板的⼀⾓相交于点A,⼀边与三⾓板的两条直⾓边分别相交于点D、点E,且CD=CE,点F 在直尺的另⼀边上,那么∠BAF的⼤⼩为______°.13.如图,由6个⼩正⽅形组成的2×3⽹格中,任意选取5个⼩正⽅形并涂⿊,则⿊⾊部分的图形是轴对称图形的概率是______.14.若正六边形ABCDEF的⾯积是6平⽅厘⽶,连结AC、CE、E、BD、DF、FB,则阴影部分⼩正六边形的⾯积为______平⽅厘⽶.15.如图,在平⾯直⾓坐标系xOy中,⊙O的半径为1,A、B两点坐标分别为(3,4)、(3,-3).已知点P是⊙O上的⼀点,点Q是线段AB上的⼀点,设△OPQ的⾯积为S,当△OPQ为直⾓三⾓形时,S的取值范围为______.16.⼩明在研究“利⽤⽊板余料裁出最⼤⾯积的矩形”时发现:如图1,Rt△ABC是⼀块直⾓三⾓形形状的⽊板余料(∠B=90°),以∠B为内⾓裁⼀个矩形当DE,EF是中位线时,所裁矩形的⾯积最⼤.若⽊板余料的形状改变,请你探究:(1)如图2,现有⼀块五边形的⽊板余料ABCDE,∠A=∠B=∠C=90°,AB=20cm,BC=30cm,AE=20cm,CD=10cm.现从中裁出⼀个以∠B为内⾓且⾯积最⼤的矩形,则该矩形的⾯积为______cm2.(2)如图3,现有⼀块四边形的⽊板余料ABCD,经测量AB=25cm,BC=54cm,CD=30cm,且tan B=tan C=43,从中裁出顶点M,N在边BC上且⾯积最⼤的矩形PQMN,则该矩形的⾯积为______cm2.三、解答题(本⼤题共8⼩题,共66.0分)17.计算4sin45°+(π-2)0-18+|-1|18.某校兴趣⼩组就“最想去的⾦华最美村落”随机调查了本校部分学⽣,要求每位同学选择且只能选择⼀个最想去的最美乡村.下⾯是根据调查结果绘制出的不完整的统计图请根据图中提供的信息,解答下列问题:(1)被调查的学⽣总⼈数为______⼈;(2)扇形统计图中“最想去乡村D”的扇形圆⼼⾓的度数为______;(3)若该校共有800名学⽣,请估计“最想去乡村B”的学⽣⼈数.19.如图,⽅格纸中每个⼩正⽅形的边长均为1,线段AB的两个端点均在⼩正⽅形的顶点上.(1)在图中画出以线段AB为⼀边的矩形ABCD(不是正⽅形),且点C和点D均在⼩正⽅形的顶点上;(2)在图中画出以线段AB为⼀腰,底边长为22的等腰三⾓形ABE,点E在⼩正⽅形的顶点上,连接CE,请直接写出线段CE 的长.20.如图,为测量瀑布AB的⾼度,测量⼈员在瀑布对⾯⼭上的D点处测得瀑布顶端A点的仰⾓是30°,测得瀑布底端B点的俯⾓是10°,AB与⽔平⾯垂直.⼜在瀑布下的⽔平⾯测得CG=27.0m,GF=17.6m(注:C、G、F三点在同⼀直线上,CF⊥AB 于点F),斜坡CD=20.0m,坡⾓∠ECD=40°.求:(1)测量点D距瀑布AB的距离(精确到0.1m);(2)瀑布AB的⾼度(精确到0.1m)参考数据:3≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin l0°≈0.17,cos l0°≈0.98,tan l0°≈0.1821.如图1,AB是⊙O的直径,P为⊙O外⼀点,C,D为⊙O上两点,连结OP,CD,PD=PC.已知AB=8.(1)若OP=5,PD=3,求证:PD是⊙O的切线;(2)若PD、PC是⊙O的切线;①求证:OP⊥CD;②连结AD,BC,如图2,若∠DAB=50°,∠CBA=70°,求弧CD的长.22.某名贵树⽊种植公司计划从甲、⼄两个品种中选择⼀个种植并销售,市场预测每年产销x棵.已知两个品种的有关信息如下表:12(1)y1与x的函数关系式为______;y2与x的函数关系式为______.(2)分别求出销售这两个品种的最⼤年利润;(3)为获得最⼤年利润,该公司应该选择种植哪个品种?请说明理由.23.如图1,在Rt△ACB中,∠ACB=90°,∠ABC=30°,AC=2,CD⊥AB于点D,将△BCD绕点B顺时针旋转α得到△BFE(1)如图2,当α=60°时,求点C、E之间的距离;(2)在旋转过程中,当点A、E、F三点共线时,求AF的长;(3)连结AF,记AF的中点为P,请直接写出线段CP长度的最⼩值.24.如图1,抛物线y=x2+bx+c交x轴于点A(-3,0),B(2,0),交y轴于点C.(1)求抛物线的解析式;(2)如图2,D点坐标为(23,0),连结DC.若点H是线段DC上的⼀个动点,求OH+12HC的最⼩值.(3)如图3,连结AC,过点B作x轴的垂线l,在第三象限中的抛物线上取点P,过点P作直线AC的垂线交直线l于点E,过点E 作x轴的平⾏线交AC于点F,已知PE=CF.①求点P的坐标;②在抛物线y=x2+bx+c上是否存在⼀点Q,使得∠QPC=∠BPE成⽴?若存在,求出Q点坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:0,1,是有理数,是⽆理数,故选:A.分别根据⽆理数、有理数的定义即可判定选择项.此题主要考查了⽆理数的定义,注意带根号的要开不尽⽅才是⽆理数,⽆限不循环⼩数为⽆理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.【答案】C【解析】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,是中⼼对称图形,不符合题意;C、是轴对称图形,符合题意;D、不是轴对称图形,不符合题意.故选:C.根据轴对称图形与中⼼对称图形的概念求解.此题主要考查了中⼼对称图形和轴对称图形的定义,掌握中⼼对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中⼼对称图形是要寻找对称中⼼,图形旋转180度后与原图重合.3.【答案】B【解析】解:数据3485.5亿元⽤科学记数法表⽰为3.4855×1011元,故选:B.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数,表⽰时关键要正确确定a的值以及n的值.4.【答案】D【解析】解:由x-1≥0,得x≥1,由4-2x>0,得x<2,不等式组的解集是1≤x<2,故选:D.先求出不等式组中每⼀个不等式的解集,再求出它们的公共部分,然后把不等式的解集表⽰在数轴上即可考查了解⼀元⼀次不等式组,在数轴上表⽰不等式的解集,把每个不等式的解集在数轴上表⽰出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若⼲段,如果数轴的某⼀段上⾯表⽰解集的线的条数与不等式的个数⼀样,那么这段就是不等式组的解集.有⼏个就要⼏个.在表⽰解集时“≥”,“≤”要⽤实⼼圆点表⽰;“<”,“>”要⽤空⼼圆点表⽰.5.【答案】D【解析】解:⼀组数据:a-1,a,a,a+1,平均数为a,中位数为a,众数为a,若添加⼀个数据a后,平均数为a,中位数为a,众数为a,但⽅差改变,故选:D.根据⽅差、众数、平均数、中位数的概念求解.本题考查了⽅差、众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.6.【答案】B【解析】解:由题意知OD⊥AB,交AB于点E,∴BC=AB=×16=8,在Rt△OBC中,∵OB=10,BC=8,∴OC==6,∴CD=OD-OC=10-6=4.故选:B.由题意知OD⊥AB,交AB于点C,由垂径定理可得出BC的长,在Rt△OBC 中,根据勾股定理求出OC的长,由CD=OD-OC即可得出结论.本题考查的是垂径定理的应⽤,根据题意在直⾓三⾓形运⽤勾股定理列出⽅程是解答此题的关键.7.【答案】C【解析】解:当x=0时,满⾜x>-4,但不能得到x2>16,故选:C.当x=0时,满⾜x>-4,但不能得到x2>16,于是x=0可作为说明命题“x>-4,则x2>16”是假命题的⼀个反例.本题考查了命题与定理:判断⼀件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,⼀个命题可以写成“如果…那么…”形式.有些命题的正确性是⽤推理证实的,这样的真命题叫做定理.任何⼀个命题⾮真即假.要说明⼀个命题的正确性,8.【答案】A【解析】解:∵a=2,b=-k,c=3,∴△=b2-4ac=k2-4×2×3=k2-24,∵⽅程有两个相等的实数根,∴△=0,∴k2-24=0,解得k=±2,把a=2,b=-k,c=3代⼊△=b2-4ac进⾏计算,然后根据⽅程有两个相等的实数根,可得△=0,再计算出关于k的⽅程即可.本题考查了⼀元⼆次⽅程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,⽅程有两个不相等的实数根;当△=0时,⽅程有两个相等的实数根;当△<0时,⽅程没有实数根.9.【答案】B【解析】解:由题意可得,如果是线段PD,则y随x的增⼤⽽增⼤,与图2不符,故选项A错误,如果是线段PE,则y随x的增⼤先减⼩再增⼤,且后来的最⼤值⼤于开始时的最⼤值,与图2相符,故选项B正确,如果是线段PC,则y随x的增⼤先减⼩再增⼤,函数图象对称,与图2不符,故选项C错误,如果是线段PF,则y随x的增⼤先减⼩再增⼤,且后来的最⼤值⼩于开始时的最⼤值,与图2不符,故选项D错误,根据题意和函数图象可以判断各个选项中的哪条线段符合要求,从⽽可以解答本题.本题考查动点问题的函数图象,解答本题的关键是明确题意,利⽤数形结合的思想和函数的思想解答.10.【答案】A【解析】解:把y=-x-1代⼊y=()整理得x2+(1-c)x+1=0,根据题意△=(1-c)2-4=0,解得c=-1或c=3,当c=-1,x=-1(舍去);当c=3时,x=2.故选:A.设直线解析式为为y=kx+b,把A(-1,6)求得b的值,得出y=kx+k+6,利⽤直线与反⽐例函数y=-y=的图象仅有⼀个交点,由根的判别式求出k的值,即可求得直线的解析式.本题主要考查了⼀次函数和反⽐例函数的交点坐标.11.【答案】x≥3【解析】解:根据题意得:x-3≥0,解得:x≥3.故答案是:x≥3.根据⼆次根式有意义的条件是a≥0,即可求解.本题考查了函数⾃变量的取值范围的求法,求函数⾃变量的范围⼀般从三个⽅⾯考虑:(1)当函数表达式是整式时,⾃变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是⼆次根式时,被开⽅数⾮负.12.【答案】15【解析】解:由图可得,CD=CE,∠C=90°,∴△CDE是等腰直⾓三⾓形,∴∠CED=45°,⼜∵DE∥AF,∴∠CAF=45°,∵∠BAC=60°,∴∠BAF=60°-45°=15°,故答案为:15.先根据△CDE是等腰直⾓三⾓形,得出∠CED=45°,再根据DE∥AF,即可得到∠CAF=45°,最后根据∠BAC=60°,即可得出∠BAF的⼤⼩.本题主要考查了平⾏线的性质以及等腰直⾓三⾓形的性质,解题时注意:两直线平⾏,同位⾓相等.本题也可以根据∠CFA是三⾓形ABF的外⾓进⾏求解.13.【答案】13【解析】解:由题意可得:空⽩部分⼀共有6个位置,⽩⾊部分只有在1或2处时,⿊⾊部分的图形是轴对称图形,故⿊⾊部分的图形是轴对称图形的概率是:=.故答案为:.直接利⽤已知得出涂⿊后是轴对称图形的位置,进⽽得出答案.此题主要考查了利⽤轴对称设计图案,正确得出符合题意的位置是解题关键.14.【答案】2【解析】解:由正六边形的性质得:△ACE的⾯积=正六边形的⾯积=×6=3平⽅厘⽶,△ALM的⾯积+△CHI的⾯积+△EKJ的⾯积=△ACE的⾯积=1平⽅厘⽶,∴正六边形HUKML的⾯积=3-1=2平⽅厘⽶;故答案为:2.由正六边形的性质得出△ACE的⾯积=正六边形的⾯积,△ALM的⾯积+△CHI的⾯积+△EKJ的⾯积=△ACE的⾯积,即可得出结果.本题考查了正六边形的性质;利⽤正六边形可分成6个全等的等边三⾓形,由正六边形的性质得出三⾓形和正六边形的⾯积关系是解决问题的关键.15.【答案】2≤S≤52;【解析】解:①当P为直⾓顶点时,当OQ最长时,如图1,OQ=5,Q与A重合,PQ==2=×1×2=,,S⼤当OQ最短时,OQ=3,此时OQ⊥AB,PQ==2,S==;⼩②当Q为直⾓顶点时,如图2,当Q与A重合时,OA最⼤,此时S=×1×5=>,当OQ⊥AB时,S最⼩,S==,综上,当△OPQ为直⾓三⾓形时,S的取值范围为≤S≤;故答案为:≤S≤.根据△OPQ为直⾓三⾓形时,∠OQP不可能为90°,所以分两种情况:分别以O 和P为直⾓顶点,根据直径所对的圆周⾓为直⾓,通过画辅助圆确定P和Q,画图,根据直⾓三⾓形⾯积公式计算可得结论.本题考查了圆的有关性质,直⾓三⾓形的判定和性质,勾股定理的应⽤,⽤直径所对的圆周⾓为直⾓,分情况作图是关键.16.【答案】400 486【解析】解:(1)如图2中,延长AE交CD的延长线于F.则四边形ABCF是矩形.∴AF=BC=30cm,AB=CF=20cm,∵AE=20c,CD=10cm,∴EF=DF=10cm,∵∠F=90°,∴∠AEM=∠FED=∠FDE=∠CDN=45°,∴AM=AE=20cm,CD=CN=10cm,∴BM=40cm,BN=40cm,∴△BMN的内接矩形的⾯积的最⼤值=20×20=400(cm2).(2)如图3中,∵四边形MNPQ是矩形,tanB=tanC=,∴可以假设QM=PN=4k,BM=CN=3k,∴MN=54-6x,∴S=4k(54-6k)=-24(k-)2+486,矩形MNPQ∵-24<0,∴k=时,矩形MNPQ的⾯积最⼤,最⼤值为486,此时BQ=PC=5k=,符合题意,∴矩形MNPQ的⾯积的最⼤值为486cm2.故答案为400,486.(1)如图2中,延长AE交CD的延长线于F.则四边形ABCF是矩形,把问题转化为三⾓形内接矩形即可解决问题.(2)构建⼆次函数,利⽤⼆次函数的性质解决问题即可.本题考查解直⾓三⾓形的应⽤,矩形的性质,三⾓形的中位线定理,⼆次函数的性质等知识,解题的关键是学会⽤转化的思想思考问题,属于中考常考题型.17.【答案】解:原式=4×22+1-32+1=-2+2.【解析】直接利⽤特殊⾓的三⾓函数值以及零指数幂的性质和⼆次根式的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.18.【答案】40 72°【解析】解:(1)被调查的学⽣总⼈数为:8÷20%=40(⼈);故答案为:40;(2)最想去乡村D的⼈数为:40-8-14-4-6=8(⼈),“最想去乡村D”的扇形圆⼼⾓的度数为×360°=72°;故答案为:72°;(3)根据题意得:800×=280(⼈),答:估计“最想去乡村B”的学⽣⼈数为280⼈.(1)⽤最想去A乡村的⼈数除以它所占的百分⽐即可得到被调查的学⽣总⼈数;(2)先计算出最想去D乡村的⼈数,然后⽤360°乘以最想去D乡村的⼈数所占的百分⽐即可得到扇形统计图中表⽰“最想去乡村D”的扇形圆⼼⾓的度数;(3)⽤800乘以样本中最想去B乡村的⼈数所占的百分⽐即可.本题考查了条形统计图:条形统计图是⽤线段长度表⽰数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的⼤⼩,便于⽐较.也考查了扇形统计图和利⽤样本估计总体.19.【答案】解:(1)如图所⽰,矩形ABCD即为所求;(2)如图△ABE即为所求,CE=4.【解析】(1)利⽤数形结合的思想解决问题即可;(2)利⽤数形结合的思想解决问题即可;本题考查作图-应⽤与设计、等腰三⾓形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利⽤思想结合的思想解决问题,属于中考常考题型.20.【答案】解:(1)如图,作DM⊥AB于M,DN⊥EF于N.在Rt△DCN中,CN=CD?cos40°=20.0×0.77=15.4(⽶),∵CF=CG+GF=44.6(⽶),∴FN=CN+CF=60.0(⽶),∵四边形DMFN是矩形,∴DM=FN=60.0(⽶).(2)在Rt△ADM中,AM=DM?tan30°=60.0×1.73=103.8(⽶),在Rt△DMB中,BM=DM?tan10°=60.0×0.18=10.8(⽶),∴AB=AM+BM=114.6(⽶).【解析】(1)如图,作DM⊥AB于M,DN⊥EF于N.在Rt△DCN中,求出CN即可解决问题.(2)分别求出AM,BM即可解决问题.本题考查解直⾓三⾓形的应⽤-仰⾓俯⾓问题,坡度坡⾓问题等知识,解题的关键是灵活运⽤所学知识解决问题,属于中考常考题型.21.【答案】(1)证明:∵直径AB=8,∴OD=4,∵OP=5,PD=3,∴OP2=PD2+OD2,∴∠ODP=90°,∴OD⊥DP,∴PD是⊙O的切线.(2)①证明:如图1中,连接OC.∵PD,PC是⊙O的切线,∴PD=PC,∵OD=OC,∴OP垂直平分线段CD,∴OP⊥CD.②解:如图2中,连接OD,OC.∵OA=OD,OB=OC,∴∠A=∠ODA=50°,∠B=∠OCB=70°,∴∠AOD=180°-100°=80°,∠BOC=180°-140°=40°,∴∠DOC=180°-80°-40°=60°,∴CD的长=60?π?4180=4π3.【解析】(1)利⽤勾股定理的逆定理证明∠DOP=90°即可.(2)①如图1中,连接OC.由切线长定理可知PD=PC,因为OD=OC,所以OP 垂直平分线段CD,由此即可解决问题.②求出圆⼼⾓∠DOC的度数即可解决问题.本题属于圆综合题,考查了切线的判定和性质,线段的垂直平分线的判定和性质,弧长公式等知识,解题的关键是熟练掌握基本知识,学会添加常⽤辅助线,属于中考常考题型.22.【答案】y1=(6-a)x-20,(0<x≤200)y2=-0.05x2+10x-40.(0<x≤80).【解析】解:(1)y1=(6-a)x-20,(0<x≤200)y2=10x-40-0.05x2=-0.05x2+10x-40.(0<x≤80).故答案为:y1=(6-a)x-20,(0<x≤200);y2=-0.05x2+10x-40.(0<x≤80);(2)对于y1=(6-a)x-20,∵6-a>0,∴x=200时,y1的值最⼤=(1180-200a)万元.对于y2=-0.05(x-100)2+460,∵0<x≤80,∴x=80时,y2最⼤值=440万元.(3)①1180-200a=440,解得a=3.7,②1180-200a>440,解得a<3.7,③1180-200a<440,解得a>3.7,∵3≤a≤5,∴当a=3.7时,⽣产甲⼄两种产品的利润相同.当3≤a<3.7时,⽣产甲产品利润⽐较⾼.当3.7<a≤5时,⽣产⼄产品利润⽐较⾼.(1)根据利润=销售数量×每件的利润即可解决问题.(2)根据⼀次函数的增减性,⼆次函数的增减性即可解决问题.(3)根据题意分三种情形分别求解即可:)①(1180-200a)=440,②(1180-200a)>440,③(1180-200a)<440.本题考查⼆次函数、⼀次函数的应⽤,解题的关键是构建函数解决实际问题中的⽅案问题,属于中考常考题型.23.【答案】解:(1)如图1中,在Rt△ABC中,∵∠ACB=90°,∠ABC=30°,AC=2,∴AB=2AC=4,BC=42?22=23,∵CD⊥AB,∴12?AB?CD=12?AC?BC,∴CD=AC?BCAB=2×234=3,∴BD=BE=BC2?CD2=3,∵∠ABE=α=60°,∴∠CBE=30°+60°=90°,∴CE=BC2+BE2=(23)2+32=21.(2)如图2-1中,∵A,F,E三点共线,∴∠AEB=90°,AE=AB2?BE2=42?32=7,∴AF=AE-EF=7-3.如图2-2中,当Q,E,F共线时,∠AEB=90°,AE=AB2?BE2=42?32=7,∴AF=AE+EF=7+3.综上所述,AF的长为7+3或7-3.(3)如图3中,取AB的中点O,连接OP,CO.。
2019—2020年最新浙教版九年级数学上学期期末考试检测题及答案解析.doc

第一学期九年级期末模拟检测数学试题卷一、选择题(共10小题,每小题4分,满分40分)1.若,则的值为()A.B.C.D.2.已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y13.⊙O的弦AB的长为8cm,弦AB的弦心距为3cm,则⊙O的半径为()A.4cm B.5cm C.8cm D.10cm4.如图,⊙O是△ABC的外接圆,∠A=50°,则∠BOC的度数为()A.50° B.80° C.90° D.100°5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD 的长为()A.1 B.C.2 D.6.设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M 的坐标可能是()A.(1,0)B.(3,0)C.(﹣3,0)D.(0,﹣4)7.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.8.如图,⊙O是△ABC的外接圆,BC的中垂线与相交于D点,若∠B=74°,∠C=46°,则的度数为()A.23° B.28° C.30° D.37°9.如图1,一个电子蜘蛛从点A出发匀速爬行,它先沿线段AB爬到点B,再沿半圆经过点M爬到点C.如果准备在M、N、P、Q四点中选定一点安装一台记录仪,记录电子蜘蛛爬行的全过程.设电子蜘蛛爬行的时间为x,电子蜘蛛与记录仪之间的距离为y,表示y与x函数关系的图象如图2所示,那么记录仪可能位于图1中的()A.点M B.点N C.点P D.点Q10.甲,乙,丙三位先生是同一家公司的职员,他们的夫人,M,N,P也都是这家公司的职员,知情者介绍说:“M的丈夫是乙的好友,并在三位先生中最年轻;丙的年龄比P的丈夫大”.根据该知情者提供的信息,我们可以推出三对夫妇分别是()A.甲﹣M,乙﹣N,丙﹣P B.甲﹣M,乙﹣P,丙﹣NC.甲﹣N,乙﹣P,丙﹣M D.甲﹣P,乙﹣N,丙﹣M二、填空题(共6小题,每小题5分,满分30分)11.(5分)已知线段a=3,b=27,则a,b的比例中项线段长等于.12.(5分)在A地与B地之间共有4条行走的道路,甲、乙两人分别从A,B 两地同时出发,相向而行.如果他们都任意选择一条道路行走,那么他们在途中相遇的概率是.13.(5分)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为.14.(5分)如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为m.15.(5分)九(3)班同学作了关于私家车乘坐人数的统计,在100辆私家车中,统计结果如表:根据以上结果,估计调查一辆私家车而它载有超过2名乘客的概率为.16.(5分)如图,把数字1,2,3,…,9分别填入图中的9个圈内,要求△ABC和△DEF的每条边上三个圈内的数字之和等于18,给出符合要求的填法.三、解答题(共8小题,满分80分)17.(8分)计算:3tan30°+cos245°﹣2sin60°.18.(8分)如图,在离铁塔150m的A处,用测倾仪测得塔顶的仰角为30°12′,测倾仪高AD为1.52m,求铁塔高BC(精确到0.1m).(参考数据:sin30°12′=0.5030,cos30°12′=0.8643,tan30°12′=0.5820)19.(8分)一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,求n的值;(2)在一个摸球游戏中,若有2个白球,小明用画树状图的方法寻求他两次摸球(摸出一球后,不放回,再摸出一球)的所有可能结果,如图是小明所画的正确树状图的一部分,补全小明所画的树状图,并求两次摸出的球颜色不同的概率.20.(8分)如图,A,P,B,C是⊙O上的四点,且满足∠BAC=∠APC=60°.(1)问△ABC是否为等边三角形?为什么?(2)若⊙O的半径OD⊥BC于点E,BC=8,求⊙O的半径长.21.(10分)某书店销售儿童书刊,一天可售出20套,每套盈利40元,为了扩大销售,增加盈利,尽快减少库存,书店决定采取降价措施,若一套书每降价1元,平均每天可多售出2套.设每套书降价x元时,书店一天可获利润y元.(1)求y关于x的函数解析式(化为一般形式);(2)当每套书降价多少元时,书店可获最大利润?最大利润为多少?22.(12分)如图1,有两个分别涂有黄色和蓝色的Rt△ABC和Rt△A′B′C′,其中∠C=∠C′=90°,∠A=60°,∠A′=45°.思考:能否分别作一条直线分割这两个三角形,使△ABC所分割成的两个黄色三角形与△A′B′C′所分割成的两个蓝色三角形分别对应相似.(1)如图2,作直线CD,C′D,分别交AB于点D,交A′B′于点D′,∠BCD=45°,∠B′C′D′=30°,问△BCD与△B′C′D′、△ACD与△A′C′D′是否相似?并选择其中相似的一对三角形,说明理由.(2)如图3,作直线AD,B′D′,分别交BC于点D,交A′C′于点D′,若△ACD 与△B′C′D′、△ABD与△A′B′D′均相似,求∠CAD,∠C′B′D′的度数(直接写出答案)23.(12分)如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么,我们称抛物线C1与C2关联.(1)已知抛物线①:y=﹣2x2+4x+3与②:y=2x2+4x﹣1,请判断抛物线①与抛物线②是否关联,并说明理由;(2)将抛物线C1:y=﹣2x2+4x+3沿x轴翻折,再向右平移m(m>0)个单位,得到抛物线C2,若抛物线C1与C2关联,求m的值;(3)点A为抛物线C1:y=﹣2x2+4x+3的顶点,点B为抛物线C1关联的抛物线的顶点(点B位于x轴的下方),是否存在以AB为斜边的等腰直角三角形ABC,使其直角顶点C在x轴上?若存在,求出C点的坐标;若不存在,请说明理由.24.(14分)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,点D为边BC 的中点,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)当DP⊥AB时,求CQ的长;(2)当BP=2,求CQ的长;(3)连结AD,若AD平分∠PDQ,求DP,DQ的长.参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.若,则的值为()A.B.C.D.【考点】比例的性质.【分析】用b表示a,代入求解即可.【解答】解:∵=,∴a=b,即==.故选A.【点评】本题主要考查了简单的比例问题,能够熟练掌握.2.已知(﹣1,y1),(﹣2,y2),(﹣4,y3)是抛物线y=﹣2x2﹣8x+m上的点,则()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y1【考点】二次函数图象上点的坐标特征.【分析】求出抛物线的对称轴,结合开口方向画出草图,根据对称性解答问题.【解答】解:抛物线y=﹣2x2﹣8x+m的对称轴为x=﹣2,且开口向下,x=﹣2时取得最大值.∵﹣4<﹣1,且﹣4到﹣2的距离大于﹣1到﹣2的距离,根据二次函数的对称性,y3<y1.∴y3<y1<y2.∴故选C.【点评】此题考查了二次函数的性质,通常根据开口方向、对称轴,结合草图即可判断函数值的大小.3.⊙O的弦AB的长为8cm,弦AB的弦心距为3cm,则⊙O的半径为()A.4cm B.5cm C.8cm D.10cm【考点】垂径定理.【分析】根据垂径定理,先求出弦长的一半,再利用勾股定理即可求出.【解答】解:如图∵AE=AB=4cm∴OA===5cm.故选B.【点评】本题主要考查半弦、半径、弦心距所构成直角三角形的计算,利用勾股定理求解.4.如图,⊙O是△ABC的外接圆,∠A=50°,则∠BOC的度数为()A.50° B.80° C.90° D.100°【考点】三角形的外接圆与外心;三角形内角和定理;圆周角定理.【分析】由⊙O是△ABC的外接圆,∠A=50°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC的度数.【解答】解:∵⊙O是△ABC的外接圆,∠A=50°,∴∠BOC=2∠A=100°.故选D.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD 的长为()A.1 B.C.2 D.【考点】相似三角形的判定与性质.【分析】由条件可证明△CBD∽△CAB,可得到=,代入可求得CD.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.6.设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M 的坐标可能是()A.(1,0)B.(3,0)C.(﹣3,0)D.(0,﹣4)【考点】二次函数的性质.【分析】根据二次函数的解析式可得出直线l的方程为x=3,点M在直线l上则点M的横坐标一定为3,从而选出答案.【解答】解:∵二次函数y=(x﹣3)2﹣4图象的对称轴为直线x=3,∴直线l上所有点的横坐标都是3,∵点M在直线l上,∴点M的横坐标为3,故选B.【点评】本题考查了二次函数的性质,解答本题的关键是掌握二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴是x=h.7.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.【考点】平行线分线段成比例.【分析】根据AH=2,HB=1求出AB的长,根据平行线分线段成比例定理得到=,计算得到答案.【解答】解:∵AH=2,HB=1,∴AB=3,∵l1∥l2∥l3,∴==,故选:D.【点评】本题考查平行线分线段成比例定理,掌握定理的内容、找准对应关系列出比例式是解题的关键.8.如图,⊙O是△ABC的外接圆,BC的中垂线与相交于D点,若∠B=74°,∠C=46°,则的度数为()A.23° B.28° C.30° D.37°【考点】三角形的外接圆与外心;线段垂直平分线的性质;圆心角、弧、弦的关系.【分析】首先连接OB,OC,AO,设DO交BC于点E,由∠B=74°,∠C=46°,即可求得∠BAC的度数,又由△ABC的边BC的垂直平分线与△ABC的外接圆相交于点D,根据圆周角定理,即可求得∠AOB与∠BOE的度数,继而求得答案.【解答】解:如图,连接OB,OC,AO,设DO交BC于点E,∵OD是△ABC的边BC的垂直平分线,∴∠BOE=∠BOC,∵∠BAC=∠BOC,∴∠BOE=∠BAC,∵∠ABC=74°,∠ACB=46°,∴∠BOE=∠BAC=180°﹣∠ABC﹣∠ACB=60°,∴∠BOD=180°﹣∠BOE=180°﹣60°=120°,∵∠AOB=2∠ACB=92°,∴的度数为:92°,∴的度数为:120°﹣92°=28°.故选:B.【点评】此题考查了圆周角定理以及线段垂直平分线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.9.如图1,一个电子蜘蛛从点A出发匀速爬行,它先沿线段AB爬到点B,再沿半圆经过点M爬到点C.如果准备在M、N、P、Q四点中选定一点安装一台记录仪,记录电子蜘蛛爬行的全过程.设电子蜘蛛爬行的时间为x,电子蜘蛛与记录仪之间的距离为y,表示y与x函数关系的图象如图2所示,那么记录仪可能位于图1中的()A.点M B.点N C.点P D.点Q【考点】动点问题的函数图象.【分析】根据函数的增减性:不同的观察点获得的函数图象的增减性不同,可得答案.【解答】解:A、从A点到M点y随x而减小一直减小到0,故A不符合题意;B、从A到B点y随x的增大而减小,从B到C点y的值不变,故B不符合题意;C、从A到AB的中点y随x的增大而减小,从AB的中点到M点y随x的增大而增大,从M点到C点y随x的增大而减小,故C符合题意;D、从A到M点y随x的增大而增大,从M点到C点y随x的增大而减小,故D不符合题意;故选:C.【点评】本题考查了动点问题的函数图象,利用观察点与动点P之间距离的变化关系得出函数的增减性是解题关键.10.甲,乙,丙三位先生是同一家公司的职员,他们的夫人,M,N,P也都是这家公司的职员,知情者介绍说:“M的丈夫是乙的好友,并在三位先生中最年轻;丙的年龄比P的丈夫大”.根据该知情者提供的信息,我们可以推出三对夫妇分别是()A.甲﹣M,乙﹣N,丙﹣P B.甲﹣M,乙﹣P,丙﹣NC.甲﹣N,乙﹣P,丙﹣M D.甲﹣P,乙﹣N,丙﹣M【考点】推理与论证.【分析】根据已知M的丈夫是乙的好友,并在三位先生中最年轻;丙的年龄比P的丈夫大,即可得出M的丈夫一定不是乙,进而得出P的丈夫以及甲的丈夫进而求出即可.【解答】解:∵甲,乙,丙三位先生是同一家公司的职员,他们的夫人,M,N,P也都是这家公司的职员,且M的丈夫是乙的好友,并在三位先生中最年轻,∴M的丈夫一定不是乙,一定是甲或丙,∵丙的年龄比P的丈夫大,∴P与丙一定不是夫妻,且M的丈夫一定是甲,则P的丈夫是乙,N的丈夫是丙.故选:B.【点评】此题主要考查了推理与论证,根据题意得出M与P的丈夫是解题关键.二、填空题(共6小题,每小题5分,满分30分)11.已知线段a=3,b=27,则a,b的比例中项线段长等于9 .【考点】比例线段.【分析】根据比例中项的定义直接列式求值,问题即可解决.【解答】解:设a、b的比例中项为x,∵a=4,b=8,∴=,∴a,b的比例中项线段长等于9,故答案为:9.【点评】本题主要考查了比例线段.根据比例的性质列方程求解即可.解题的关键是掌握比例中项的定义,如果a:b=b:c,即b2=ac,那么b叫做a与c的比例中项.12.在A地与B地之间共有4条行走的道路,甲、乙两人分别从A,B两地同时出发,相向而行.如果他们都任意选择一条道路行走,那么他们在途中相遇的概率是.【考点】列表法与树状图法.【分析】画树状图展示所有16种等可能的结果数,再找出选择一条道路的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中选择一条道路的结果数为4,所以他们在途中相遇的概率==.故答案为.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.13.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B (1,1),则关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1 .【考点】二次函数的性质.【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.也考查了二次函数图象与一次函数图象的交点问题.14.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为 1.5 m.【考点】相似三角形的应用.【分析】因为光线是平行的,所以在题中有一组相似三角形,根据对应边成比例,列方程即可解答.【解答】解:∵BE∥AD,∴△CBE∽△CAD,∴EC:CD=BC:AC,∴1.2:3=1:AC,∴AC=2.5m,∴AB=AC﹣BC=1.5m.故答案为:1.5.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出窗户的高.15.九(3)班同学作了关于私家车乘坐人数的统计,在100辆私家车中,统计结果如表:根据以上结果,估计调查一辆私家车而它载有超过2名乘客的概率为.【考点】列表法与树状图法. 【分析】先利用表中数据计算出一辆私家车载有超过2名乘客的频率,然后利用频率估计概率求解.【解答】解: =,估计调查一辆私家车而它载有超过2名乘客的概率为. 故答案为.【点评】本题考查了列表法与树状图法,利用频率估计概率是求实际生活中某事件概率的常用方法.16.如图,把数字1,2,3,…,9分别填入图中的9个圈内,要求△ABC 和△DEF 的每条边上三个圈内的数字之和等于18,给出符合要求的填法.【考点】规律型:图形的变化类.【分析】把填入A ,B ,C 三处圈内的三个数之和记为x ;D ,E ,F 三处圈内的三个数之和记为y ;其余三个圈所填的数位之和为z .结合图形和已知条件得到方程组,进而求得y=24,再进一步分析即可.【解答】解:把填入A,B,C三处圈内的三个数之和记为x;D,E,F三处圈内的三个数之和记为y;其余三个圈所填的数位之和为z.显然有x+y+z=1+2+…+9=45①,图中六条边,每条边上三个圈中之数的和为18,所以有z+3y+2x=6×18=108②,②﹣①,得x+2y=108﹣45=63③,把AB,BC,CA每一边上三个圈中的数的和相加,则可得2x+y=3×18=54④,联立③,④,解得x=15,y=24,继而解之z=6.在1,2,3,…,9中三个数之和为24的仅为7,8,9,所以在D,E,F三处圈内,只能填7,8,9三个数,共有6种不同填法.显然,当这三个圈中的数一旦确定,根据题目要求,其余六个圈内的数也随之确定,符合要求的填法之一如图:.【点评】此题考查数字的变化类,解题要特别注意三角形的顶点的数字的重复使用,能够根据各边的数字之和列方程组求解.三、解答题(共8小题,满分80分)17.计算:3tan30°+cos 245°﹣2sin60°.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=3×+()2﹣2×=+﹣=.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.18.如图,在离铁塔150m 的A 处,用测倾仪测得塔顶的仰角为30°12′,测倾仪高AD 为1.52m ,求铁塔高BC (精确到0.1m ).(参考数据:sin30°12′=0.5030,cos30°12′=0.8643,tan30°12′=0.5820)【考点】解直角三角形的应用-仰角俯角问题.【分析】过点A 作AE ⊥BC ,E 为垂足,再由锐角三角函数的定义求出BE 的长,由BC=BE+CE 即可得出结论.【解答】解:过点A 作AE ⊥BC ,E 为垂足,在△ABE 中,∵tan30°12′==,∴BE=150×tan30°12′≈87.30,∴BC=BE+CE=87.30+1.52≈88.8(m).答:铁塔的高BC约为88.8m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.19.一个不透明袋子中有1个红球,1个绿球和n个白球,这些球除颜色外无其他差别.(1)从袋中随机摸出一个球,记录其颜色,然后放回.大量重复该实验,发现摸到绿球的频率稳定于0.25,求n的值;(2)在一个摸球游戏中,若有2个白球,小明用画树状图的方法寻求他两次摸球(摸出一球后,不放回,再摸出一球)的所有可能结果,如图是小明所画的正确树状图的一部分,补全小明所画的树状图,并求两次摸出的球颜色不同的概率.【考点】利用频率估计概率;列表法与树状图法.【分析】(1)利用频率估计概率,则摸到绿球的概率为0.25,根据概率公式得到=0.25,然后解方程即可;(2)先画树状图展示所有12种等可能的结果数,再找出两次摸出的球颜色不同的结果数,然后根据概率公式求解.【解答】解:(1)利用频率估计概率得到摸到绿球的概率为0.25,则=0.25,解得n=2,故答案为2;(2)画树状图为:共有12种等可能的结果数,其中两次摸出的球的颜色不同的结果共有10 种,所以两次摸出的球颜色不同的概率==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.20.如图,A,P,B,C是⊙O上的四点,且满足∠BAC=∠APC=60°.(1)问△ABC是否为等边三角形?为什么?(2)若⊙O的半径OD⊥BC于点E,BC=8,求⊙O的半径长.【考点】圆周角定理;等边三角形的判定与性质;垂径定理.【分析】(1)先根据圆周角定理得出∠ABC的度数,再直接根据三角形的内角和定理进行解答即可;(2)连接OB,由等边三角形的性质可知,∠OBD=30°,根据BC=8利用直角三角形的性质即可得出结论.【解答】解:(1)△ABC是等边三角形:理由:∵∠BAC=∠APC=60°,又∵∠APC=∠ABC,∴∠ABC=60°,∴∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣60°﹣60°=60°,∴△ABC是等边三角形;(2)解:如图,连接OB,∵△ABC为等边三角形,⊙O为其外接圆,∴O为△ABC的外心,∴BO平分∠ABC,∴∠OBD=30°,∴OE=,OB=,【点评】本题考查了圆周角定理、等边三角形的判定,垂径定理,解直角三角形等知识,将各知识点有机结合,旨在考查同学们的综合应用能力.21.(10分)(2015秋•绍兴期末)某书店销售儿童书刊,一天可售出20套,每套盈利40元,为了扩大销售,增加盈利,尽快减少库存,书店决定采取降价措施,若一套书每降价1元,平均每天可多售出2套.设每套书降价x元时,书店一天可获利润y元.(1)求y关于x的函数解析式(化为一般形式);(2)当每套书降价多少元时,书店可获最大利润?最大利润为多少?【考点】二次函数的应用.【分析】(1)根据题意设出每天降价x元以后,准确表示出每天书刊的销售量,列出利润y关于降价x的函数关系式(2)运用配方法求出二次函数最值.【解答】解:(1)设每套书降价x元时,所获利润为y元,则每天可出售(20+2x)套.由题意得:y=(40﹣x)(20+2x)=﹣2x2+80x﹣20x+800=﹣2x2+60x+800.(2)y=﹣2x2+60x+800=﹣2(x﹣15)2+1250,∵﹣2<0,∴当x=15时,y取得最大值1250;即当将价15元时,该书店可获得最大利润,最大利润为1250元.【点评】此题考查了二次函数及一元二次方程在现实生活中的应用问题;解题的关键是准确列出二次函数解析式,灵活运用函数的性质解题.22.(12分)(2015秋•绍兴期末)如图1,有两个分别涂有黄色和蓝色的Rt △ABC和Rt△A′B′C′,其中∠C=∠C′=90°,∠A=60°,∠A′=45°.思考:能否分别作一条直线分割这两个三角形,使△ABC所分割成的两个黄色三角形与△A′B′C′所分割成的两个蓝色三角形分别对应相似.(1)如图2,作直线CD,C′D,分别交AB于点D,交A′B′于点D′,∠BCD=45°,∠B′C′D′=30°,问△BCD与△B′C′D′、△ACD与△A′C′D′是否相似?并选择其中相似的一对三角形,说明理由.(2)如图3,作直线AD,B′D′,分别交BC于点D,交A′C′于点D′,若△ACD 与△B′C′D′、△ABD与△A′B′D′均相似,求∠CAD,∠C′B′D′的度数(直接写出答案)【考点】相似形综合题.【分析】思考:在图1中,可以分别作一条直线分割这两个三角形,使△ABC所分割成的两个黄色三角形与△A′B′C′所分割成的两个蓝色三角形分别对应相似.根据相似三角形的判定方法即可证明.(1)如图2中,△BCD与△B′C′D′、△ACD与△A′C′D′相似,理由同上.(2)如图3中,当∠CAD=∠C′B′D′=15°时,△ACD与△B′C′D′、△ABD与△A′B′D′均相似.【解答】解:思考:在图1中,可以分别作一条直线分割这两个三角形,使△ABC 所分割成的两个黄色三角形与△A′B′C′所分割成的两个蓝色三角形分别对应相似.作CD平分∠ACB交AB于D,作∠A′C′D′=60°JIAO A′B′于D′.则△ACD∽△C′A′D′,△BCD∽△C′B′D′.理由:∵∠A=∠A′C′D′=60°,∠ACD=∠A′=45°,∴△ACD∽△C′A′D′,∵∠B=∠B′C′D′,∠BCD=∠B′,∴△BCD∽△C′B′D′.(1)如图2中,△BCD与△B′C′D′、△ACD与△A′C′D′相似,理由同上.(2)如图3中,当∠CAD=∠C′B′D′=15°时,△ACD与△B′C′D′、△ABD与△A′B′D′均相似.理由:∵∠C=∠C′=90°,∠CAD=∠C′B′D′=15°,∴△ACD∽△B′C′D′,∵∠B=∠A′B′D′=30°,∠DAB=∠A′=45°,∴△BAD∽△B′A′D′.【点评】本题考查相似三角形的判定和性质、直角三角形的性质,解题的关键是灵活运用相似三角形的判定方法,学会取特殊角解决问题,属于中考常考题型.23.(12分)(2015秋•绍兴期末)如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么,我们称抛物线C1与C2关联.(1)已知抛物线①:y=﹣2x2+4x+3与②:y=2x2+4x﹣1,请判断抛物线①与抛物线②是否关联,并说明理由;(2)将抛物线C1:y=﹣2x2+4x+3沿x轴翻折,再向右平移m(m>0)个单位,得到抛物线C2,若抛物线C1与C2关联,求m的值;(3)点A为抛物线C1:y=﹣2x2+4x+3的顶点,点B为抛物线C1关联的抛物线的顶点(点B位于x轴的下方),是否存在以AB为斜边的等腰直角三角形ABC,使其直角顶点C在x轴上?若存在,求出C点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据两抛物线的关联依次判断即可;(2)根据两抛物线关联的定义直接列式得出结论;(3)分当点C位于AD左侧和当点C位于AD右侧,借助关联的意义设出点C坐标,表示出点B坐标代入抛物线解析式即可求出点C坐标.【解答】解:(1)由①知,y=﹣2(x﹣1)2+5,∴抛物线①:y=﹣2x2+4x+3的顶点坐标为(1,5),把x=1代入抛物线②:y=2x2+4x﹣1,得y=5,∴抛物线①的顶点在抛物线②上,又由②y=2(x+1)2﹣3,∴抛物线②的顶点坐标为(﹣1,﹣3),把x=﹣1代入抛物线①中,得,y=﹣3,∴抛物线②的顶点在抛物线①上,∴抛物线①与抛物线②关联.(2)抛物线y=﹣2x2+4x+3沿x轴翻折后抛物线为y=2x2﹣4x﹣3,即:y=2(x﹣1)2﹣5,设平移后的抛物线解析式为y=2(x﹣1﹣m)2﹣5,把x=1,y=5代入得2(1﹣1﹣m)2﹣5=5,∴m=±,∵m>0,∴m=,(3)①当点C位于AD左侧时,过点A作AD⊥x轴于D,过点B作BE⊥x轴于E,如图1,∴△ACD≌△CBE,∴CE=AD,BE=CD设C(c,0),∵点B在x轴下方,∴点B的纵坐标为c﹣1;Ⅰ、当点C在x轴负半轴上时,即:c<0,∴B(c+5,c﹣1),把B(c+5,c﹣1),代入y=﹣2(x﹣1)2+5中得,2c2+17c+26=0,∴c=﹣2或c=﹣,∴C(﹣2,0)或(﹣,0),Ⅱ、当点C在x轴正半轴上时,即:0<c<1把B(5﹣c,c﹣1),代入y=﹣2(x﹣1)2+5中得,2c2﹣15c+26=0,∴c=(不符合题意,舍),②当点C位于AD右侧时,设C(c,0),同①的方法得出B(c﹣5,1﹣c),将B(c﹣5,1﹣c)代入y=﹣2(x﹣1)2+5中得,2c2﹣25c+68=0,∴c=4或c=,∴C(4,0)或(,0),即:点C的坐标为:(﹣2,0)或(﹣,0)或(4,0)或(,0).【点评】此题是二次函数综合题,主要考查了新定义,全等三角形的判定和性质,解一元二次方程,分类讨论的思想,理解两抛物线关联是解本题的关键.24.(14分)(2015秋•绍兴期末)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,点D为边BC的中点,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)当DP⊥AB时,求CQ的长;(2)当BP=2,求CQ的长;(3)连结AD,若AD平分∠PDQ,求DP,DQ的长.【考点】相似形综合题.【分析】(1)首先证明DQ∥AB,根据平行线等分线段定理即可解决问题.(2)分两种情形①如图2中,当点P在线段AB上时,作DM⊥AB,DN⊥AC,垂足分别为M、N,由△PDM∽△QDN,得==,推出QN=PM,推出PM=BM﹣PB=3﹣2=1,推出QN=即可解决问题.②如图3中,当点P在AB的延长线上时,根据PM=5,QN=,CQ=QN+CN计算即可.(3)如图4中,作AM⊥DP于M,AN⊥DQ于N.首先证明四边形AMDN是正方形,由APM≌△AQN,推出PM=NQ,推出PD+DQ=(PM+MD)+(DN﹣QN)=2DM=AD=5,由(2)可知PD:QD=4:3,由此即可计算.【解答】解:(1)如图1中,∵DP⊥AB,DQ⊥DP,∴DQ∥AB,∵BD=DC,∴CQ=AQ=4.(2)①如图2中,当点P在线段AB上时,作DM⊥AB,DN⊥AC,垂足分别为M、N,则四边形AMDN是矩形,DM、DN分别是△ABC的中位线,DM=4,DN=3,∵∠PDQ=∠MDN=90°,∴∠PDM=∠QDN,∵∠DNQ∠DMP=90°,∴△PDM∽△QDN,∴==,∴QN=PM,∵PM=BM﹣PB=3﹣2=1,∴QN=,∴CQ=QN+CN=+4=.②如图3中,当点P在AB的延长线上时,PM=5,QN=,CQ=QN+CN=4+=,综上所述,当BP=2,求CQ的长为或.(3)如图4中,作AM⊥DP于M,AN⊥DQ于N.∵AD平分∠PDQ,∴AM=AN,∵∠AMD=∠AND=∠MDN=90°,∴四边形AMDN是矩形,∵AM=AN,∴四边形AMDN是正方形,∴∠MAN=90°,DM=DN,∵∠BAC=∠MAN=90°,∴∠PAM=∠NAQ,∴△APM≌△AQN,∴PM=NQ,∵AB=6,AC=8,∴BC===10,AD=5,∵PD+DQ=(PM+MD)+(DN﹣QN)=2DM=AD=5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省金华市婺城区2019-2020学年九年级上学期期末数学试题
(word无答案)
一、单选题
(★) 1 . 下列各数中,属于无理数的是()
A.B.C.D.
(★★) 2 . 根据国家外汇管理局公布的数据,截止年月末,我国外汇储备规模为
亿美元,较年初上升亿美元,升幅,数据亿用科学计数法表示为()A.B.C.D.
(★) 3 . 计算=( )
A.B.C.D.
(★★) 4 . 下列几何图形中,既是轴对称图形,又是中心对称图形的是( )
A.等腰三角形B.正三角形C.平行四边形D.正方形
(★★) 5 . 下列函数中,的值随着逐渐增大而减小的是()
A.B.C.D.
(★) 6 . 小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().
A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是
(★) 7 . 把多项式分解因式,结果正确的是()
A.B.
C.D.
(★★) 8 . 通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是()
A.B.
C.D.
(★★) 9 . 把边长相等的正六边形 ABCDEF和正五边形 GHCDL的 CD边重合,按照如图所示的方式叠放在一起,延长 LG交 AF于点 P,则∠ APG=()
A.141°B.144°C.147°D.150°
(★★) 10 . 使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax 2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()
A.B.C.D.
二、填空题
(★) 11 . 在函数中,自变量x的取值范围是 <u></u> .
(★★) 12 . 在数、、中任取两个数(不重复)作为点的坐标,则该点刚好在一次函数图象的概率是________________.
(★) 13 . 如图,点A是反比例函数的图象上的一点,过点A作AB⊥x轴,垂足为B,点
C为y轴上的一点,连接AC,BC,若△ABC的面积为4,则k的值是
_____ .
(★) 14 . 如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为 ___________ .
(★★) 15 . 如图1表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点,当钟面显示点分时,分针垂直与桌面,点距离桌面的高度为公分,若此钟面显示点
分时,点距桌面的高度为公分,如图2,钟面显示点分时,点距桌面的高度
_________________.
(★★) 16 . 如图1,是一建筑物造型的纵截面,曲线是抛物线的一部分,该抛物线开口向右、对称轴正好是水平线,,是与水平线垂直的两根支柱,米,米,米.
(1)如图1,为了安全美观,准备拆除支柱、,在水平线上另找一点作为地面上的支撑点,用固定材料连接、,对抛物线造型进行支撑加固,用料最省时点,
之间的距离是_________.
(2)如图2,在水平线上增添一张米长的椅子(在右侧),用固定材料连接、,对抛物线造型进行支撑加固,用料最省时点,之间的距离是_______________.
三、解答题
(★★) 17 . 计算:.
(★★) 18 . 解不等式组并求出最大整数解.
(★★) 19 . 如图,在锐角△ ABC中,小明进行了如下的尺规作图:
①分别以点 A、 B为圆心,以大于 AB的长为半径作弧,两弧分别相交于点 P、 Q;
②作直线 PQ分别交边 AB、 BC于点 E、 D.
(1)小明所求作的直线 DE是线段 AB的;
(2)联结 AD, AD=7,sin∠ DAC=, BC=9,求 AC的长.
(★★)20 . 某学校为了了解名初中毕业生体育考试成绩的情况(满分分,得分为整数),从中随机抽取了部分学生的体育考试成绩,制成如下图所示的频数分布直方图.已知成绩在这一组的频率为.请回答下列问题:
(1)在这个调查中,样本容量是______________;平均成绩是_________________;
(2)请补全成绩在这一组的频数分布直方图;
(3)若经过两年的练习,该校的体育平均成绩提高到了分,求该校学生体育成绩的年
平均增长率.
(★★) 21 . 如图,是的直径,是弦,是弧的中点,过点作的切线交的延长线于点,过点作于点,交于点.
(1)求证:;
(2)若,,求的长.
(★★) 22 . 小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,
请你帮他完成如下问题:
(1)他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在中,是边上的中线,若
,求证:.
(2)如图②,已知矩形,如果在矩形外存在一点,使得,求证:.(可以直接用第(1)问的结论)
(3)在第(2)问的条件下,如果恰好是等边三角形,请求出此时矩形的两条邻边
与的数量关系.
(★★) 23 . 如图1,在中,,,,点是边上一个动点(不与、重合),点为射线上一点,且,以点为圆心,为半径作,设.
(1)如图2,当点与点重合时,求的值;
(2)当点在线段上,如果与的另一个交点在线段上时,设,试求与之间的函数解析式,并写出的取值范围;
(3)在点的运动过程中,如果与线段只有一个公共点,请直接写出的取值范围. (★★★★) 24 . 如图①,在平面直角坐标系中,抛物线的对称轴为直线,将直线绕
着点顺时针旋转的度数后与该抛物线交于两点(点在点的左侧),点是
该抛物线上一点
(1)若,求直线的函数表达式
(2)若点将线段分成的两部分,求点的坐标
(3)如图②,在(1)的条件下,若点在轴左侧,过点作直线轴,点是直线上一点,且位于轴左侧,当以,,为顶点的三角形与相似时,求的坐标。