2018年新人教A版高中数学必修4全册同步检测含答案解析

合集下载

2018秋新版高中数学人教A版必修4习题:模块综合检测 Word版含解析

2018秋新版高中数学人教A版必修4习题:模块综合检测 Word版含解析

模块综合检测(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1若sinα2=√33,则cos α=()A.−23B.−13C.13D.23解析:cosα=1-2sin2α2=1−2×(√33)2=13.故选C.答案:C2若tan(α-3π)>0,sin(-α+π)<0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:由已知得tanα>0,sinα<0,∴α是第三象限角.答案:C3函数f(x)=si n(2x+π3)的图象的对称轴方程可以为()A.x=π12B.x=5π12C.x=π3D.x=π6解析:由2x+π3=kπ+π2(k∈Z),得x=kπ2+π12(k∈Z).当k=0时,x=π12 .答案:A4已知非零向量a,b满足|b|=4|a|,且a⊥(2a+b),则a与b的夹角为()A.π3B.π2C.2π3D.5π6解析:因为a⊥(2a+b),所以a·(2a+b)=0, 即2|a|2+a·b=0.设a与b的夹角为θ,则有2|a |2+|a ||b |cos θ=0.又|b |=4|a |,所以2|a |2+4|a |2cos θ=0,则cos θ=−12,从而θ=2π3. 答案:C5已知a =(1,12),b =(1,-12),c=a +k b ,d=a-b ,c 与d 的夹角是π4,则k 的值为( ) A.−13B.−3C.-3或−13D.−1解析:c =(1,12)+(k ,-12k)=(1+k ,12-12k),d =(0,1). co s π4=12-12k √(1+k )+14(1-k ),解得k=-3或−13.答案:C6将函数y =√3cos x +sin x(x ∈R )的图象向左平移m (m>0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A .π12B.π6C .π3D.5π6解析:y =√3cos x+sin x=2co s (x -π6),向左平移m (m>0)个单位长度后得到函数y=2co s (x +m -π6)的图象.由于该图象关于y 轴对称,所以m −π6=kπ(k ∈Z ),即m=k π+π6,故当k=0时,m 取得最小值π6.答案:B7对任意平面向量a ,b ,下列关系式中不恒成立的是( )A.|a ·b|≤|a||b|B.|a-b|≤||a|-|b||C.(a+b )2=|a+b|2D.(a+b )·(a-b )=a 2-b 2。

人教版高中数学必修4课后习题答案详解

人教版高中数学必修4课后习题答案详解

第二章平面向量2.1 平面向量的实质背景及基本观点练习(P77)1、略.uuur uuur这两个向量的长度相等,但它们不等 .2、AB,BA .uuur uuur uuur uuur3、 AB2, CD 2.5 , EF3,GH 2 2.4、( 1)它们的终点同样;(2)它们的终点不一样 .习题 A 组(P77)1、( 2 )B45°O30°CAD.CA Buuur uuur uuuruuur uuur uuur3、与 DE 相等的向量有:AF , FC ;与 EF 相等的向量有: BD , DA ;uuur uuur uuur与 FD 相等的向量有: CE , EB .r uuur uuur uurr uuuur uuur4、与 a 相等的向量有:CO , QP, SR;与 b 相等的向量有: PM , DO ;r uuur uuur uuur与 c 相等的向量有: DC , RQ, STuuur 3 36、(1)×;(2)√;(3)√;(4)× .5、 AD.2习题 B 组(P78)1、海拔和高度都不是向量 .uuuur2、相等的向量共有24 对.模为 1的向量有 18对 . 此中与 AM 同向的共有 6uuuur uuur uuur对,与 AM 反向的也有 6 对;与 AD 同向的共有 3 对,与 AD 反向的也有 6 对;模为 2 的向量共有 4 对;模为 2 的向量有 2 对2.2 平面向量的线性运算 练习(P84)1、图略 .2、图略 .uuur uuur3、(1) DA ; (2) CB .r ururur 4、( 1) c ; ( 2) f ; (3) f ;( 4) g . 练习(P87) uuuruuur uuur1、图略 . uuur uuur3、图略 .2、DB ,CA , AC ,AD ,BA.练习(P90)1、图略 .5 uuur uuur 2 uuuruuur2、 ACAB ,BCAB .7 7uuur说明:此题可先画一个表示图,依据图形简单得出正确答案. 值得注意的是BCuuur与 AB 反向.rrr7rr1rr8r3、( 1) b2a ;(2) b4 a ;(3) ba ;(4) ba .294、( 1)共线;( 2)共线 .r r( 2)11r1rr6、图略 .5、( 1) 3a2b ;12 ab ;( 3) 2 ya .习题 A 组(P91)31、( 1)向东走 20 km ; (2)向东走 5 km ; (3)向东北走 10 2 km ;( 4)向西南走 5 2 km ;( 5)向西北走 10 2 km ;(6)向东南走 10 2 km.2、飞机飞翔的行程为 700 km ;两次位移的合成是向北偏西53°方向飞翔 500 km.uuur uuur3、解:如右图所示: AB 表示船速, AD 表示河水的流速,以 AB 、 AD 为邻边作 □ ABCD ,则uuurAC 表示船实质航行的速度 .uuur uuur在 Rt △ABC 中, AB 8 , AD 2 ,uuuruuur 2uuur 2222 17所以 ACAB AD82 因为 tan CAD4 ,由计算器得 CAD 76BCAD水流方向所以,实质航行的速度是 2 17 km/h ,船航行的方向与河岸的夹角约为 76°.r uuur uuur r r uuur4、(1) 0; (2) AB ; (3) BA ; (4)0 ; (5)0 ; (6)CB ; (7) r0 .5、略6、不必定组成三角形 . 说明:联合向量加法的三角形法例,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段必定能组成三角形 .7、略. 8、(1)略; r r r r r r(2)当 a b 时, a b a b9、(1) r r rr r ;r 1 r( 4)2( xr2a2b ; ( 2)10a 22b 10c (3)3a b ; y)b .r r ur r rur uur r r uruur 210、 a b 4e 1 , a be 1 4e 2 , 3a 2b3e 1 10e 2 .uuurr uuur r 11、如下图, OCa , ODb ,uuur r r uuur r rDCb a , BCa b .(第 11 题)uuur1ruuurr r uuur 1 r r uuur 3 r12、 AEb , BCb a , DE (b a) , DBa ,44 1 uuuur4uuur3ruuur1 r r uuur 1 r rEC b , DN8 (b a) , AN 4 AM (ab) .4813、证明:在ABC 中, E, F 分别是 AB, BC 的中点,所以 EF //AC 且EF 1AC ,(第 12 题)Guuur 1 uuur2D即 EF 2 AC ;1 uuuruuur同理, HG AC ,H2 uuur uuur所以 EFHG .E习题 B 组(P92) A(第 13 题)1、丙地在甲地的北偏东45°方向,距甲地 1400 km.乙2、不必定相等,能够考证在 r ra,b 不共线时它们不相等 .uuuur uuur uuuuruuur 1 uuur uuuur 1 uuur3、证明:因为 MN AN AM ,而 AN3 AC , AMAB ,1 uuur1 uuur1 uuur 3uuuur1 uuur uuur所以 MN3 AC3 AB 3 ( AC AB) 3 BC .甲4、( 1)四边形 ABCD 为平行四边形,证略(第 1 题)( 2)四边形 ABCD 为梯形 .Cuuur 1 uuur证明:∵ AD BC ,3∴ AD//BC 且 AD BC∴四边形 ABCD 为梯形 .DCFB丙BA( 3)四边形 ABCD 为菱形 .(第 4 题 (2))uuur uuurB证明:∵ AB DC ,∴ AB/ /DC 且 AB DC C A∴四边形 ABCD 为平行四边形uuur uuurD又 AB AD(第 4题 (3))∴四边形 ABCD 为菱形.M5、( 1)经过作图能够发现四边形ABCD 为平行四边形.uuur uuur uuur uuur uuur uuur证明:因为 OA OB BA,OD OC CDuuur uuur uuur uuur A D而OA OC OB ODuuur uuur uuur uuur B C 所以 OA OB OD OCuuur uuurO所以 BA CD ,即AB∥CD.所以,四边形 ABCD 为平行四边形.(第 5题)2.3 平面向量的基本定理及坐标表示练习(P100)r r r r r r r r1、( 1) a b(3,6) , a b(7,2) ;( 2) a b(1,11), a b(7,5);r r r r(4,6) ;r r r r(3,4) .( 3) a b(0,0) , a b(4) a b(3, 4) , a b r r r r(12,5) .2、 2a 4b( 6,8) , 4a3buuur(3, 4)uuur( 3,4) ;uuur(9,1)uuur(9,1)3、( 1) AB, BA(2) AB, BA;uuur(0, 2)uuur(0,2)uuur uuur(5,0)(3) AB, BA;(4) AB(5,0) , BA4、AB∥CD .uuur uuur(1,uuur uuur证明: AB(1, 1) , CD1) ,所以 ABCD.所以AB∥CD .5、(1)(3, 2);( 2) (1,4) ;(3)(4,5) .6、(10,1)或(14,1)33uuur3uuur uuur3 uuur7、解:设 P( x, y) ,由点P在线段AB的延伸线上,且AP2PB ,得 AP2PBuuur uuur( x, y) (2,3)( x(4,3)(x, y)(4x,3y) AP2, y 3) , PB3x23(4x)∴ ( x2, y3)x, 3 y)∴2(43( 32y3y)2x 8 ∴,所以点 P 的坐标为 (8, 15) .y15习题A 组(P101)1、( 1) ( 2,1) ;( 2) (0,8) ;( 3) (1,2) .说明:解题时可设 B(x, y) ,利用向量坐标的定义解题 .uur uur uur 2、 F 1 F 2 F 3(8,0)uuur ( 1, uuur (53,6 (1)) (2,7)3、解法一: OA 2),BCuuuruuur uuur uuuruuur uuur uuur (1,5) .所以点 D 的坐而 ADBC ,ODOAADOA BC标为 (1,5) .uuur ( x( 1), y ( 2)) ( x 1, y2) ,解法二:设 D( x, y) ,则 AD uuur (5 3,6 ( 1)) (2,7)BCuuur uuur1 2,解得点 D 的坐标为 (1,5) .由 ADBC 可得, xy 2 7uuur uuur2,4) .4、解: OA (1,1), AB (uuur 1 uuuruuuruuuruuur1 uuur(1, 2) .ACAB ( 1,2) , AD2 AB( 4,8) , AE2AB2uuur uuur uuur(0,3) ,所以,点 C 的坐标为 (0,3) ; OC OA ACuuur uuur uuur ( 3,9) ,所以,点 D 的坐标为 (3,9)OD OA AD;uuur uuur uuur(2, 1) ,所以,点 E 的坐标为 (2,1) .OE OA AE r r (2,3)(x,6),所以23,解得 x 4 .5、由向量 a,b 共线得x 6uuur (4, 4) uuur ( 8,uuur uuur uuuruuur 6、 AB , CD 8),CD 2AB ,所以 AB 与CD 共线 .uuuruuur(2, 4) ,所以点 A 的坐标为 (2, 4) ;7、 OA2OAuuur uuur ( 3,9)B 的坐标为( 3,9)OB 3OB ,所以点;故uuuur( 3,9) (2, 4) ( 5,5)A B 习题B 组(P101)uuur (1,2)uuur (3,3) . 1、 OA , AB当 tuuur uuur uuur uuur(4,5) ,所以 P(4,5) ; 1时, OP OA AB OB当 t1 uuur uuur1 uuur(1,2) 3 35 7 ) ,所以 5 , 7时, OPOAAB( , ) ( , P( ) ;222 2 2 2 2 2uuur uuuruuur( 5, 4) ,所以 P( 5, 4);当 t2时, OP OA 2AB(1,2) (6,6) 当 tuuur uuur uuur (7,8) ,所以 P(7,8) .2时, OP OA 2 AB (1,2) (6,6)uuur ( 4, 6) uuur uuur uuur2、(1)因为 AB , AC (1,1.5) ,所以 AB4AC ,所以 A 、B 、C 三 点共线;uuuruuuruuur uuur( 2)因为 PQ(1.5,2),PR(6, 8) ,所以 PR 4PQ ,所以 P 、Q 、R 三点共线;uuuruuur( 8,( 1, uuur uuur( 3)因为 EF4) ,EG 0.5) ,所以 EF 8EG ,所以 E 、F 、G三点共线 .uruur r ur uur3、证明:假定10 ,则由 1 e 12 e 2 0 ,得 e 12e 2 .1ur uurur uur 是平面内的一组基底矛盾 ,所以 e 1 ,e 2 是共线向量,与已知 e 1,e 2 所以假定错误,10 .同理 2 0 .综上 120 .uuuruuur ur uur4、(1) OP19 .( 2)关于随意愿量 OP xe 1 ye 2 , x, y 都是独一确定的,所以向量的坐标表示的规定合理 .2.4 平面向量的数目积 练习(P106)ur rur r ur r 8 6124 .1、 p q p q cos p, q2r rr rABC 为直角三角形 .2、当 a b 0 时,ABC 为钝角三角形;当 a b 0 时,3、投影分别为 3 2 , 0, 3 2 . 图略 练习(P107)r( 3)2 42r 52 22r r35427 .1、 a 5 , b29 , a br rr r rrr r rr r49 .2、 a b8 , (a b)(a b)7 , a (b c) 0 , (a b)2r r rr74,88 . 3、 a b 1, a13 , b习题 A 组(P108)r r r rr 2 r r r 2r r25 12 3.1、 a b6 3 , (a b)2 a2a b b25 12 3 , a buuur uuuruuur uuur 20 .2、 BC 与 CA 的夹角为 120°, BC CAr rr 2 r r r 2r rr 2 r r r 2 35 .3、 a ba 2ab b23 , a ba 2ab br r4、证法一:设 a 与 b 的夹角为 .( 1)当 0 时,等式明显建立;( 2)当r r rr时, a 与 b , a 与 b 的夹角都为 ,所以( r r r r r ra) b a b cosa b cos r rr r( a b)a b cosr r r r r r a ( b)ab cosa b cosr rr r r r所以 ( a) b(a b) a ( b) ;( 3)当r r r r180时, a 与 b , a 与 b 的夹角都为 ,则 (r r r r ) r r a) b a b cos(180 a b cosr r r r r r ( a b)a b cosa b cosr r r r )r r a ( b)ab cos(180a b cosr rr r r r 所以 ( a) b(a b) a ( b) ;综上所述,等式建立 .r r证法二:设 a (x 1, y 1 ) , b ( x 2 , y 2 ) ,r r那么 ( a) b ( x 1 , y 1 ) ( x 2 , y 2 ) x 1 x 2 y 1 y 2 r r( a b) ( x 1 , y 1 ) ( x 2, y 2 ) ( x 1 x 2 y 1 y 2 ) x 1x 2 y 1 y 2r r a ( b) (x 1, y 1 ) ( x 2 , y 2 ) x 1x 2 y 1 y 2所以 (r rr r r ra) b (a b)a ( b) ;5、( 1)直角三角形, B 为直角 .uuur( 1, 4)(5, 2) ( 6, 6)uuur(3, 4)(5, 2) ( 2, 2)证明:∵ BA , BCuuur uuur 6 ( 2) ( 6)2 0∴ BA BCuuur uuur B 为直角,ABC 为直角三角形∴ BABC , ( 2)直角三角形, A 为直角uuur (19,4) ( 2, 3) (21,7)uuur ( 1, 6) ( 2,3) (1, 3)证明:∵ AB , ACuuur uuur21 1 7 ( 3) 0∴ AB ACuuur uuur A 为直角,ABC 为直角三角形∴ ABAC ,( 3)直角三角形, B 为直角uuuruuur证明:∵ BA (2,5) (5, 2)( 3,3) , BC(10,7) (5, 2) (5,5)uuur uuur 3 5 3 5 0∴BA BCuuur uuur B 为直角,ABC 为直角三角形∴ BABC , 6、 135 . 7、120 .r r r r r 2 r r r 2 r r 6 ,(2a 3b)(2 a b)4a 4a b 3b 61 ,于是可得 a br r 1cosa b,所以 120 .r r2a b8、 cos23 , 55 .40uuuruuur9、证明:∵ AB(5, 2) (1,0) (4, 2) , BC(8, 4)(5, 2) (3,6) ,uuur(8, 4) (4,6) (4, 2)DCuuur uuur uuur uuur 4 3 ( 2) 6 0∴ AB DC ,AB BC∴ A, B,C , D 为极点的四边形是矩形 .r( x, y) ,10、解:设 ax 2y 2 9x 3 5x 3 5则y ,解得6 5 ,或 5 .x2y5 y6 55 5rr 3 5 , 6 5).于是 a (3 5 , 6 5) 或 a (5 55 5r r11、解:设与 a 垂直的单位向量 e (x, y) ,则 x2y 21x5或 x5,解得 5 5 . 4x2 y 0 y2 5 2 55 y 5r 5 ,r 5,2 5). 于是 e (2 5) 或 e (5555习题 B 组(P108)r r r r r rr rr r rr r r 1、证法一: a b a ca b a ca (b c)a(b c)rr r证法二:设 a( x 1 , y 1) , b (x 2 , y 2 ) , c ( x 3 , y 3 ) .r r r rr r r 先证 a b a ca(b c)r rr ra b x 1 x 2y 1 y 2 , a c x 1 x 3 y 1 y 3r r r r由a b a c得x 1 x 2 y 1 y 2 x 1 x 3 y 1 y 3,即x 1( x 2 x 3 ) y 1 ( y 2y 3 ) 0r rr r r而 b c ( x 2 x 3 , y 2y 3 ) ,所以 a (b c) 0rr r r r r r 再证 a(b c)a b a cr r r由 a (b c)0 得 x 1 (x 2x 3 ) y 1 ( y 2 y 3 )0 ,r rr r 即 x 1 x 2 y 1 y 2 x 1 x 3 y 1 y 3 ,所以 a ba cuuur uuur2、 cos AOBOA OB cos cos sinsin .uuur uuurOA OBr r (c, d) .3、证明:结构向量 u (a,b) , vr r r r r r,所以 acbda 2b 2c 2d 2 cos r ru v u v cos u,vu, v∴ (ac bd )2 (a 2 b 2 )(c 2d 2 ) cos 2 r r ( a 2 b 2 )( c 2 d 2 )u, vuuur uuur 4、 AB AC 的值只与弦 AB 的长相关,与圆的半径没关 .C证明:取 AB 的中点 M ,连结 CM ,则 CMuuuur 1 uuurAB,AM AB2uuuuruuur uuur uuur uuurBAC AM又AB AC AB AC cos BAC ,而uuurAC uuur uuur uuur uuuur1uuur 2所以 AB AC AB AM2ABuuur uuur 2uuur 25、( 1)勾股定理:Rt ABC中,C902,则 CA CB ABuuur uuur uuur证明:∵ AB CB CAuuur 2uuur uuur uuur 2uuur uuur uuur 2∴ AB(CB CA)2CB2CA CB CA .uuur uuur由 C 90 ,有 CA CB,于是CA CB 0uuur 2uuur2uuur2∴ CA CB AB(2)菱形ABCD中,求证:AC BDuuur uuur uuur uuur uuur uuur证明:∵ AC AB AD, DB AB AD ,uuur uuur uuur uuur uuur uuur uuur 2uuur 2∴ AC DB (AB AD) (AB AD)AB AD .∵四边形 ABCD 为菱形,∴ ABuuur 2uuur 2 AD ,所以AB AD0uuur uuurBD∴ AC DB 0,所以AC(3)长方形ABCD中,求证:AC BDuuur uuur 证明:∵ 四边形 ABCD 为长方形,所以 AB0AD ,所以AB ADuuur 2uuur uuur uuur 2uuur 2uuur uuur uuur 2.∴ AB2AB AD AD AB2AB AD ADuuur uuur uuur uuur uuur2uuur2BD ∴ (AB AD )2 (AB AD )2,所以 AC BD,所以 AC (4)正方形的对角线垂直均分. 综合以上( 2)( 3)的证明即可 .2.5 平面向量应用举例习题 A 组(P113)1、解:设 P(x, y) , R( x1 , y1)uuur uuur则 RA(1,0)(x1, y1 )(1x1,y1 ) ,AP(x, y)(1,0)( x1,0)uuur uuurx1,y1)2( x1, y) ,即x12x3由 RA2AP 得(1y12y代入直线 l 的方程得 y 2x . 所以,点 P 的轨迹方程为 y2x .A2、解:(1)易知, OFD ∽ OBC , DF1BC ,2BF .2DF所以 BOuuur uuur 32 uuurr 2 1 r rr1rrOuuurAOBOBABF a3 ( ba)a(a b)uuurr323BCr E(2)因为 AE1(ab)2(第 2 题) uuur 2 uuurAO 所以 AOAE ,所以 A,O, E 三点共线,并且23OE同理可知:BO2,CO2 ,所以AOBO CO 2r uur uurOFODOEOFOD3、解:(1) v v B v A( 2,7) ;uurr uurrv v A 13 . (2) v 在 v A 方向上的投影为uurv A5(第 4题)uuruur ur ur uur4、解:设 F 1 , F 2 的协力为 F , F 与 F 1 的夹角为 ,ur uur uur uur则 F 3 1, 30 ; F 3 3 1 , F 3 与 F 1 的夹角为 150°. 习题 B 组(P113)uuruuruur1、解:设 v 0 在水平方向的速度大小为v x ,竖直方向的速度的大小为v y ,uur uur uur uursin .则 v x v 0 cos , v y v 0设 在 时 刻 t时 的 上 升 高 度 为 h , 抛 掷 距 离 为 s, 则uur1gt,( g 为重力加快度 )hv 0 t sinuur2sv 0 t cosuur 2 uur 2v 0 sin2v 0 sin 2所以,最大高度为,最大扔掷距离为g.2guruur r uur r,行驶距离为 d .2、解:设 v 1 与 v 2 的夹角为 ,合速度为 v , v 2 与 v 的夹角为 ur r则 sin v 1 sin 10sin , d 0.5 v . d 1 .r r sin20sin ∴ r 20sinv v v所以当90 ,即船垂直于对岸行驶时所用时间最短 .3、( 1) (0, 1)uuur( x 1, y 2) . uuur2 2) .解:设 P( x, y) ,则 APAB(2,uuuruuur 7 将 AB 绕点 A 沿顺时针方向旋转到 AP ,相当于沿逆时针方向旋转到44uuur AP ,uuur7 2 7 7 2 7 (1,3)于是 AP( 2 cos2 sin, 2 sin2 cos )4444所以x1 1,解得 x0, y1y233( 2) y2 xuuur后,点 P 的坐解:设曲线 C 上任一点 P 的坐标为 ( x, y) , OP 绕 O 逆时针旋转4标为 (x , y )x x cosysin x2( x y)则44,即2yx siny cosy2y)4( x42又因为 x2y23,所以1( xy) 21( xy) 2 3 ,化简得 y32 22x第二章复习参照题 A 组( P118)1、( 1)√; (2)√;(3)×; (4)× .2、(1) D ;(2) B ;(3) D ;(4)C ;(5)D ;(6) B.uuur1rruuur 1 r r3、 AB(a b) , AD 2( a b)2uuur uuur uuur uuur2 r 1r4、略解: DEBAMA MBab3 3uuur 2 r2 ruuur1 r1 rAD ab , BC a b333 3uuur 1r1ruuuruuur 1 r 2rEFab , FA DC ab3333uuur 1r2ruuur 2r1rCDab , ABab33 3 3uuur r r CE abuuur (8, 8) uuur8 2 ;5、( 1) AB , AB(第 4题)uuur uuur( 8,8) ;uuur uuur(2) OC (2, 16) , OD (3) OA OB 33.uuur uuur6、AB与CD共线.uuur uuur uuur uuur uuur uuur 证明:因为 AB(1, 1) , CD(1, 1) ,所以 AB CD.所以 AB与CD 共线.7、D(2,0) .8、n 2 .9、1,0.30,cos C 410、cos A ,cos B55r ur ur r ur ur 21r ur ur11、证明:(2 n m) m2n m m 2cos600 ,所以 (2n m)m .12、 1 .r r r r1.14、cos5,cos19 13、a b13 , a b820第二章复习参照题B组(P119)1、(1) A;(2)D;(3)B;(4)C;(5)C;(6)C;(7)D .r r r r r r2、证明:先证a b a b a b .r r r r r 2r 2r ra b(a b)2a b2a b,r r r r r2r2r ra b( a b)2a b2ab .r r r r r r r 2r 2r r因为 a b ,所以 a b0 ,于是 a b a b a b .r r r r r r再证 a b a b a b .r r r 2r r r 2r r r 2r r r 2因为 a b a2a b b, a b a2a b br r r r r r r r由 a b a b 可得 a b0 ,于是 a br r r r r r所以 a b a b a b .【几何意义是矩形的两条对角线相等】r r r ur3、证明:先证a b c dr ur r r r r r2r 2c d(a b) (a b)a br r r ur r ur又 a b,所以 c d0 ,所以 c dr ur r r再证 c d a b .r ur r ur r r r r r 2r 20(第 3题)由 c d 得 c d0,即 ( a b) (a b) a br r所以 a b【几何意义为菱形的对角线相互垂直,如图所示】uuur uuur uuuruuur 1rr uuur1r1r4、 AD AB BCCDa b , AEa b P 3242uuur 3ruuuur 1 ruuuur uuuruuuur 1 r1 r1 r1 r r 而 EF4 a , EM4 a ,所以 AM AEEMa b a (a b)4 2 4 25、证明:如下图,uuur uuur uuuuruuur uuuur uuur rOD OP OP ,因为 OP OPOP0 ,12 1 23 Ouuuruuuruuur所以 OP 3 OD ,OD 1uuuruuur uuurP 1P 2所以 ODOP PD11所以 OPP 1 2 30 ,同理可得OPP 1330D(第 5题)所以3 1 260 ,同理可得1 2360, 23 160 ,所以123为P PPPP PP P PPP P正三角形 .6、连结 AB.uuuur uuur r rN.由对称性可知, AB 是 SMN 的中位线, MN 2AB 2b 2a7、( 1)实质行进速度大小为 42 (4 3) 2 8(千米/时),沿与水流方向成 60°的方向行进;( 2)实质行进速度大小为 4 2 千米/时,MBA沿与水流方向成 90arccos 6的方向行进 .OSuuur uuuruuur uuur 3uuur uuur uuur uuur uuur (第 6题)8、解:因为 OA OBOB OC ,所以 OB (OA OC ) 0 ,所以 OB CA uuur uuur0 , uuur uuur0 ,所以点 O 是 ABC 的垂心 .同理, OA BCOC AB9、( 1) a 2 x a 1 y a 1 y 0 a 2 x 0 0 ; (2)垂直;( 3)当 A 1B 2 A 2B 1 0时, l 1 ∥ l 2 ;当 A 1 A 2 B 1B 2 0时, l 1 l 2 ,夹角 的余弦 cosA 1A 2B 1B 2;A 1 2B 12A 22B 22Ax 0 By 0 C( 4) dA 2B 2第三章 三角恒等变换3.1 两角和与差的正弦、余弦和正切公式 练习(P127)1、 cos()coscossin sin0 cos1 sinsin .222cos(2) cos2 cossin2 sin 1 cos 0 sincos.2、解:由 cos3 , ( , ) ,得 sin 1cos 21 ( 3)24 ;525 5所以 cos()cos cossin sin 2 ( 3 ) 2 42 .4442 5 25 103、解:由 sin15 , 是第二象限角,得 cos 1 sin 21(15 )28 ;171717所以 cos() cos cossin sin8 1 153 8 15 3 .33317 2 172344、解:由 sin2 , ( ,3) ,得 cos1 sin 21 (2 )25 ;3 23 3 又由 cos3 , (3,2 ) ,得 sin1 cos21 (3)27 .4244所以cos()cos cossin sin3 (5 ) ( 7) ( 2) 3 5 2 7 .43 4 312练习(P131)1、( 1)6 2; (2)6 2; (3)62; (4)2 3.4442、解:由 cos3 , ( , ) ,得 sin 1 cos 21 ( 3)24 ;525 5所以 sin() sin coscos sin4 1 ( 3 ) 3 4 3 3 .3335 2 5 210 3、解:由 sin12 , 是第三象限角,得 cos 1 sin 21( 12) 25 ;131313所以cos()cos cossinsin 3 ( 5 ) 1 (12) 5 3 12 .666213 2 1326tantan3 14、解: tan()4 2 .41 tantan 1 3 145、( 1)1;(2)1;(3)1;(4)3 ;22( 5)原式 = (cos34 cos26sin34 sin 26 )cos(3426 )cos601 ;2(6)原式= sin20cos70 cos20 sin70 (sin 20 cos70 cos20 sin70 ) sin901 .6、( 1)原式 = cos cosx sinsin x cos( x) ;333( 2)原式 = 2(3sin x1cosx)2(sin x coscosxsin) 2sin( x) ;22666( 3)原式 = 2(2sin x2cos x) 2(sin x cos cos xsin 4) 2sin( x ) ;22 44( 4)原式 = 2 2( 1cos x3sin x)2 2(cos3 cosx sin sin x)2 2 cos(x) .22337、解:由已知得 sin()cos cos()sin3 ,5即 sin[()]3, sin()355所以 sin3. 又 是第三象限角,5于是 cos1 sin 21 (3) 2 4 .55因此sin(5 ) sin cos 5cos sin 5( 3 )( 2 ) ( 4 )(2 ) 7 2 .444 52 5 210练习(P135)31、解:因为 812 ,所以82443sin 335 又由 cos,得 sin1 (2, tan85)5 84 4 885cos85所以 sinsin(2) 2sin cos2 (3) ( 4)24 488 85525 coscos(2) cos 2 sin 28( 4 )2 ( 3 )2 7 48 85 5 252tan82 3 3 16 24tantan(2)432 774821 (21 tan8 )42、解:由 sin()3,得 sin3,所以 cos 21 sin 21 ( 3)2 16555 25所以 cos2cos 2sin 216 ( 3) 2 725 5 253、解:由 sin2sin 且 sin0 可得 cos1 ,2又 由( 2 , ),得sin1 cos 21 ( 1 )23, 所以2 2tansin 3 ( 2) 3 .cos24、解:由tan21 , 得 2tan1.所 以 tan 26tan1 0,所以3 1 tan 23tan3 105、(1)1sin30 1 ;(2)cos2sin2cos2 ;sin15 cos1582484 2( 3)原式 = 1 2tan 22.51 tan45 1 ;( 4)原式 = cos452 .2 1 tan 2 22.5 222习题A 组(P137)1、( 1) cos(3)cos3cossin3sin0 cos( 1) sinsin;222( 2) sin(3) sin3coscos3sin1 cos0 sincos ;222( 3) cos() cos cos sin sin1 cos 0 sincos ;( 4) sin( ) sin coscos sin0 cos( 1) sinsin .2、解:由 cos3,0,得 sin1 cos21 (3)24 ,55 5所以 cos() cos cos 6sinsin6 4 3 3 1 4 3 3 .65 25 2 103、解:由 sin2 , ( , ) ,得 cos1 sin 21( 2)25 ,3 233又由 cos3 , ( ,3) ,得 sin1 cos 21 ( 3) 27 ,4244所以cos() cos cossin sin5 ( 3 ) 2 ( 7 ) 3 5 2 7 .34 3 4 124、解:由 cos1 , 是锐角,得 sin1 cos21 (1)24 3777因为 , 是锐角,所以 (0, ) ,又因 为sin( )1 cos2 ()1 (所以 coscos[( )( 11) 1 5 314 7 14 5、解:由 60150 ,得 90cos()11 ,所以1411)25 3 1414] cos()cossin()sin4 3 17230 180又由 sin(30)3,得 cos(30)1 sin 2(30)1 (3)2455 5所以 coscos[(30 ) 30 ] cos(30)cos30 sin(30)sin304 3 3 1 4 3 35 252106、( 1)6 2 ;(2)24 6 ;(3) 2 3 .47、解:由 sin2 , (, ) ,得 cos 1 sin21 (2)25 .3233又由cos 3 ,是第三 象限角, 得4sin1cos 21 ( 3) 27 .4 4所以 cos() cos cossin sin5 ( 3 ) 2 ( 7 )3 4 3 4 3 52 712 sin() sincos cos sin2 ( 3) (5 ) ( 7 )3 4 3 46 35128、解:∵ sin A5 ,cos B3且 A, B 为 ABC 的内角13 5∴ 0 A,0 B, cos A12,sin B42135当 cos A12 时, sin( A B) sin AcosB cos Asin B 135 3 ( 12) 4 33 013 5 13565A B,不合题意,舍去∴ cos A12,sin B4135∴ cosCcos( A B)(cos AcosB sin Asin B)(123 5 4) 1613 5 13 5659、解:由 sin3 , ( , ) ,得 cos 1 sin21 (3)24 . 5255∴ tansin 3 ( 5 ) 3 . cos 5 44tantan 3 1 2∴ tan()43 21.1 tan tan1 ( )114 2tantan3 1tan()43 212 .1 tantan1 ( )4 210、解:∵ tan ,tan 是 2x 23x 7 0 的两个实数根 .∴ tantan3, tantan7 .22tantan3 1 ∴ tan( )21 tantan7.1 () 3211、解:∵ tan() 3,tan( ) 5∴ tan2tan[( )()]tan( ) tan()3 5 41 tan() tan( ) 1 3 57tan 2tan[()( )]tan() tan( ) 3511 tan() tan()1 3 5812、解:∵ BD : DC : AD2:3:6B∴ tanBD 1,tanDC 1AD3AD2D1 1tan tan∴ tan BAC tan(3 21)tantan1 111α3 2 AβC又∵ 0BAC180 ,∴ BAC45(第 12 题)13、( 1)6 5 sin( x) ;(2) 3sin( x) ;(3) x) ;(4) 27 x) ;3 2sin(2sin(62612(5)2;( 6) 1;(7)sin() ;( 8) cos();(9) 3 ; (10)22tan() .14、解:由 sin0.8,(0,) ,得 cos1 sin 21 0.820.62∴ sin22sin cos 2 0.8 0.6 0.96cos2 cos 2sin 20.620.820.2815、解:由 cos3,180270 ,得 sin1 cos 21( 3 ) 26333∴ sin 22sincos2 ( 6 ) ( 3)2 2333cos2cos 2sin 2(3 )2 ( 6 ) 2 13 3 3tan 2sin 2 2 2 (3)2 2cos2 316、解:设 sin Bsin C5,且0B 90 ,所以 cosB12 .1313∴ sin A sin(1802B) sin2 B 2sin Bcos B25 12 12013 13169cos A cos(1802B)cos2B(cos 2 Bsin 2 B)(( 12 )2 ( 5 )2 ) 11913 13169sin Atan Acos Atan 22tan 17、解: 1 tan 2120(169) 169 1192131 (1)2 3120 1193 ,tantan 21 3 7 41 . tan(2 )tan2141 tan 314718、解: cos()cossin()sin1cos[()]1,即 cos1333又( 3 ,2 ) ,所以 sin1 cos21 (1)22 2 233∴ sin 22sin cos2 ( 2 2 ) 14 23 39cos2cos 2sin 2( 1 )2( 2 2 ) 2733 9∴cos(2) cos2 cossin 2 sin7 2 4 2272 892(9 )184 44219、(1) 1 sin2;(2) cos2 ;(3) 1sin 4x ;(4) tan2 .4习题 B 组(P138)1、略.2、解:∵ tan A,tan B 是 x 的方程 x 2 p(x 1) 1 0 ,即 x 2px p 1 0 的两个实根∴ tan A tan B p , tan A tan B p 1∴ tan C tan[(A B)]tan(A B)tan A tan B p 1 tan A tan B11 ( p 1)因为 0 C,所以 C3 .43、反响一般的规律的等式是(表述形式不独一)sin 2cos 2 (30 )sincos(30 )3 (证明略)4 此题是开放型问题,反应一般规律的等式的表述形式还能够是:sin 2 (30 ) cos 2sin(30 )cos34sin 2 (15 ) cos 2 (15 ) sin( 15 )cos(15 ) 34 sin2cos2sincos3,此中30 ,等等4思虑过程要求从角,三角函数种类,式子结构形式三个方面找寻共同特色,进而作出概括 . 对认识三角函数式特色有帮助,证明过程也会促使推理能力、运算能力的提升 .4、因为 PAPP ,则 (cos() 1)2 sin 2 ()(coscos ) 2 (sinsin )21 2即 2 2cos() 2 2cos cos 2sin sin所以 cos() cos cossinsin3.2 简单的三角恒等变换 练习(P142)1、略.2、略 .3、略 .4、( 1) y1sin 4x . 最小正周期为,递加区间为 [8k , k ], k Z ,最222 82大值为 1;2( 2) y cosx 2 . 最小正周期为 2 ,递加区间为 [2k ,22k ], k Z ,最大值为 3;( 3) y 2sin(4 x) . 最小正周期 , 增区 [5k , k ], k Z ,最32242 24 2大 2.A ( P143)1、( 1)略;(2)提示:左式通分后分子分母同乘以2;( 3)略; ( 4)提示:用 sin 2 cos 2 取代 1,用 2sincos 取代 sin 2;( 5)略;( 6)提示:用 2cos 2 取代 1 cos2 ;( 7)提示:用 2sin 2 取代 1 cos2 ,用 2cos 2 取代 1 cos2 ; (8)略.2、由已知可有 sincoscos sin1⋯⋯①, sincoscos sin1⋯⋯②23(1)②× 3-①× 2 可得 sin cos 5cos sin(2)把( 1)所得的两 同除以 cos cos 得 tan5tan注意: 里 coscos0 含与①、②之中1. 于是 tan22tan2 (1) 4 3、由已知可解得tan221 tan 21 ( 1 ) 232tan tan1 11tan()42 141 tantan 1 ( ) 1 342∴ tan24tan()44、由已知可解得 x sin , ycos ,于是 x 2 y 2 sin 2cos 21.5、 f ( x) 2sin(4 x) ,最小正周期是 , 减区 [k , 7 k ], k Z .2 2423224B (P143)1、略.2、因为 76 2790 ,所以 sin76 sin(9014 ) cos14 m即 2cos 2 71 m ,得 cos7m 123、 存在 角,使22,所以23, tan(2)3 ,3tan tan又 tan tan23 ,又因 tan(2 ) 2,21 tan tan2所以 tantan tan()(1 tantan ) 33222由此可解得 tan1 ,4 ,所以.6经查验6 ,是切合题意的两锐角 .41(cos cos ), 1(sin sin)). 过M 作MM 1 垂4、线段 AB 的中点 M 的坐标为 (22直于 x 轴,交 x 轴于 M 1 , MOM 1 1 ()1 () .y22B在 Rt OMA 中, OMOA cos2 cos2.CMA在 Rt OM 1 M 中, OM 1 OM cos MOM 1cos 2 cos ,2M 1 M OM sin MOM 1sincos .OM 1x22于是有1cos ) coscos,(cos2 221(sinsin ) sin2cos2(第 4题)25、当 x2 时, f ( ) sin 2 cos 2 1 ;当 x 4 时, f ( ) sin 4cos 4(sin 2cos 2 )2 2sin 2 cos 21 1 sin 22 ,此时有 1≤ f ( )≤1;2 2当x 6时,f ( ) sin 6cos 6(sin 2 cos 2 )33sin 2 cos 2 (sin 2 cos 2 )1 3 sin 22 ,此时有 1≤ f ( )≤1;4 4 由此猜想,当 x2k,k N 时,k11 ≤ f ( ) ≤ 126、( 1) y 5( 3sin x4cosx) 5sin( x) ,此中 cos3,sin45 555所以, y 的最大值为 5,最小值为﹣ 5;( 2) ya 2b 2 sin( x) ,此中 cosa ,sin a 2ba 2b 2b 2所以, y 的最大值为a 2b 2 ,最小值为a 2b 2 ;第三章复习参照题 A 组( P146)。

人教版高中数学必修4课后习题答案详解

人教版高中数学必修4课后习题答案详解

第二章平面向量2.1平面向量的实际背景及基本概念练习(P77)1、略. 2、AB ,BA . 这两个向量的长度相等,但它们不等.3、2AB, 2.5CD,3EF ,22GH .4、(1)它们的终点相同;(2)它们的终点不同.习题2.1 A 组(P77)1、30°45°CAOB(2)D CBA. 3、与DE 相等的向量有:,AF FC ;与EF 相等的向量有:,BD DA ;与FD 相等的向量有:,CE EB .4、与a 相等的向量有:,,CO QP SR ;与b 相等的向量有:,PM DO ;与c 相等的向量有:,,DC RQ ST5、332AD. 6、(1)×;(2)√;(3)√;(4)×.习题2.1 B 组(P78)1、海拔和高度都不是向量. 2、相等的向量共有24对.模为1的向量有18对. 其中与AM 同向的共有6对,与AM 反向的也有6对;与AD 同向的共有3对,与AD 反向的也有6对;模为2的向量共有4对;模为2的向量有2对水流方向CDAB2.2平面向量的线性运算练习(P84)1、图略. 2、图略. 3、(1)DA ;(2)CB .4、(1)c ;(2)f ;(3)f ;(4)g .练习(P87)1、图略. 2、DB ,CA ,AC ,AD ,BA .3、图略.练习(P90)1、图略. 2、57ACAB ,27BC AB . 说明:本题可先画一个示意图,根据图形容易得出正确答案. 值得注意的是BC与AB 反向. 3、(1)2ba ;(2)74b a ;(3)12ba ;(4)89ba . 4、(1)共线;(2)共线.5、(1)32a b ;(2)111123a b ;(3)2ya .6、图略.习题2.2 A 组(P91)1、(1)向东走20 km ;(2)向东走 5 km ;(3)向东北走102km ;(4)向西南走52km ;(5)向西北走102km ;(6)向东南走102km. 2、飞机飞行的路程为700 km ;两次位移的合成是向北偏西53°方向飞行500 km.3、解:如右图所示:AB 表示船速,AD 表示河水的流速,以AB 、AD 为邻边作□ABCD ,则AC 表示船实际航行的速度.在Rt △ABC 中,8AB ,2AD,所以222282217ACABAD 因为tan 4CAD ,由计算器得76CAD 所以,实际航行的速度是217km/h ,船航行的方向与河岸的夹角约为76°.4、(1)0;(2)AB ;(3)BA ;(4)0;(5)0;(6)CB ;(7)0.5、略6、不一定构成三角形. 说明:结合向量加法的三角形法则,让学生理解,若三个非零向量的和为零向量,且这三个向量不共线时,则表示这三个向量的有向线段一定能构成三角形.7、略.8、(1)略;(2)当ab 时,a ba b9、(1)22a b ;(2)102210a b c ;(3)132a b ;(4)2()xy b .10、14a be ,124a b e e ,1232310a b e e .11、如图所示,OCa ,ODb ,DCb a ,BCa b .12、14AEb ,BC b a ,1()4DE b a ,34DB a ,34ECb ,1()8DN b a ,11()48AN AM a b . 13、证明:在ABC 中,,E F 分别是,AB BC 的中点,所以EF AC //且12EFAC ,即12EF AC ;同理,12HG AC ,所以EFHG .习题2.2 B 组(P92)1、丙地在甲地的北偏东45°方向,距甲地1400 km.2、不一定相等,可以验证在,a b 不共线时它们不相等.3、证明:因为MN AN AM ,而13AN AC ,13AM AB ,所以1111()3333MN AC AB AC AB BC .4、(1)四边形ABCD 为平行四边形,证略(2)四边形ABCD 为梯形.证明:∵13AD BC ,∴AD BC //且AD BC ∴四边形ABCD 为梯形.(3)四边形ABCD 为菱形.(第11题)(第12题)(第13题)EHGFDCAB丙甲乙(第1题)(第4题(2))BACD证明:∵AB DC ,∴AB DC //且AB DC∴四边形ABCD 为平行四边形又ABAD∴四边形ABCD 为菱形.5、(1)通过作图可以发现四边形ABCD 为平行四边形.证明:因为OA OBBA ,OD OC CD 而OA OC OB OD 所以OA OBOD OC所以BA CD ,即AB ∥CD .因此,四边形ABCD 为平行四边形. 2.3平面向量的基本定理及坐标表示练习(P100)1、(1)(3,6)a b ,(7,2)a b ;(2)(1,11)a b ,(7,5)a b ;(3)(0,0)a b ,(4,6)a b ;(4)(3,4)a b,(3,4)a b .2、24(6,8)a b ,43(12,5)a b .3、(1)(3,4)AB ,(3,4)BA ;(2)(9,1)AB ,(9,1)BA ;(3)(0,2)AB,(0,2)BA ;(4)(5,0)AB,(5,0)BA 4、AB ∥CD .证明:(1,1)AB,(1,1)CD,所以AB CD .所以AB ∥CD .5、(1)(3,2);(2)(1,4);(3)(4,5).6、10(,1)3或14(,1)37、解:设(,)P x y ,由点P 在线段AB 的延长线上,且32APPB ,得32A P P B(,)(2,3)(2,A P x y x y,(4,3)(,)(4,3)PB x y x y ∴3(2,3)(4,3)2x y x y ∴32(4)233(3)2x x y y (第4题(3))AD CBADMOBC(第5题)∴815x y,所以点P 的坐标为(8,15).习题2.3 A 组(P101)1、(1)(2,1);(2)(0,8);(3)(1,2).说明:解题时可设(,)B x y ,利用向量坐标的定义解题.2、123(8,0)F F F 3、解法一:(1,2)OA ,(53,6(1))(2,7)BC而ADBC ,(1,5)OD OA AD OA BC . 所以点D 的坐标为(1,5).解法二:设(,)D x y ,则((1),(2))(1,2)ADx y x y ,(53,6(1))(2,7)BC 由ADBC 可得,1227x y ,解得点D 的坐标为(1,5).4、解:(1,1)OA,(2,4)AB .1(1,2)2A C A B ,2(4,8)ADAB ,1(1,2)2AEAB . (0,3)O C O A A C ,所以,点C 的坐标为(0,3);(3,9)O D O A A D ,所以,点D 的坐标为(3,9);(2,1)O EO AA E ,所以,点E 的坐标为(2,1). 5、由向量,a b 共线得(2,3)(,6)x ,所以236x ,解得4x .6、(4,4)AB ,(8,8)CD,2CD AB ,所以AB 与CD 共线.7、2(2,4)OAOA ,所以点A 的坐标为(2,4);3(3,9)O B O B ,所以点B 的坐标为(3,9;故(3,9)(2,4)(5,5)A B习题2.3 B 组(P101)1、(1,2)OA ,(3,3)AB .当1t 时,(4,5)OP OA AB OB ,所以(4,5)P ;当12t 时,13357(1,2)(,)(,)22222OP OA AB ,所以57(,)22P ;当2t 时,2(1,2)(6,6)(5,4)OP OA AB ,所以(5,4)P ;当2t时,2(1,2)(6,6)(7,8)OP OA AB ,所以(7,8)P .2、(1)因为(4,6)AB ,(1,1.5)AC ,所以4AB AC ,所以A 、B 、C 三点共线;(2)因为(1.5,2)PQ ,(6,8)PR ,所以4PR PQ ,所以P 、Q 、R 三点共线;(3)因为(8,4)EF ,(1,0.5)EG ,所以8EFEG ,所以E 、F 、G三点共线. 3、证明:假设10,则由11220e e ,得2121e e .所以12,e e 是共线向量,与已知12,e e 是平面内的一组基底矛盾,因此假设错误,10.同理20.综上120.4、(1)19OP .(2)对于任意向量12OPxe ye ,,x y 都是唯一确定的,所以向量的坐标表示的规定合理.2.4平面向量的数量积练习(P106)1、1cos ,86242p q p q p q.2、当0a b时,ABC 为钝角三角形;当0a b 时,ABC 为直角三角形.3、投影分别为32,0,32. 图略练习(P107)1、22(3)45a ,225229b ,35427a b .2、8a b,()()7a b a b ,()0a b c ,2()49a b .3、1a b,13a,74b ,88.习题2.4 A 组(P108)1、63a b,222()225123a b aa b b,25123a b .2、BC 与CA 的夹角为120°,20BC CA .3、22223a baa b b,22235a baa b b.4、证法一:设a 与b 的夹角为.(1)当0时,等式显然成立;(2)当0时,a 与b ,a 与b 的夹角都为,所以()cos cosa b a b a b ()c o sa b a b ()cos cosa b a b a b 所以()()()a b a b a b ;(3)当0时,a 与b ,a 与b 的夹角都为180,则()cos(180)cosa ba b a b ()cos cos a b a b a b ()cos(180)cosa b ab a b 所以()()()a ba b a b ;综上所述,等式成立.证法二:设11(,)ax y ,22(,)b x y ,那么11221212()(,)(,)a bx y x y x x y y 112212121212()(,)(,)()a b x y x y x x y y x x y y 11221212()(,)(,)a b x y x y x x y y 所以()()()a ba b a b ;5、(1)直角三角形,B 为直角.证明:∵(1,4)(5,2)(6,6)BA,(3,4)(5,2)(2,2)BC ∴6(2)(6)20BA BC ∴BABC ,B 为直角,ABC 为直角三角形(2)直角三角形,A 为直角证明:∵(19,4)(2,3)(21,7)AB,(1,6)(2,3)(1,3)AC ∴2117(3)0AB AC ∴ABAC ,A 为直角,ABC 为直角三角形(3)直角三角形,B 为直角证明:∵(2,5)(5,2)(3,3)BA,(10,7)(5,2)(5,5)BC ∴35350BA BC ∴BABC ,B 为直角,ABC 为直角三角形6、135. 7、120. 22(23)(2)44361a b a b aa b b,于是可得6a b,1cos2a b a b ,所以120.8、23cos40,55. 9、证明:∵(5,2)(1,0)(4,2)AB,(8,4)(5,2)(3,6)BC ,(8,4)(4,6)(4,2)DC∴ABDC ,43(2)60AB BC ∴,,,A B C D 为顶点的四边形是矩形.10、解:设(,)ax y ,则2292xy y x,解得355655x y,或355655xy.于是3565(,)55a或3565(,)55a .11、解:设与a 垂直的单位向量(,)e x y ,则221420xyx y ,解得55255xy或55255xy. 于是525(,)55e或525(,)55e . 习题2.4 B 组(P108)1、证法一:0()0()a b a c a b a c a b c a b c 证法二:设11(,)ax y ,22(,)b x y ,33(,)c x y .先证()a ba c ab c 1212a bx x y y ,1313a cx x y y 由a b a c 得12121313x x y y x x y y ,即1231()()x x x y y y 而2323(,)b c x x y y ,所以()a b c 再证()ab c a b a c由()0a b c 得123123()()0x x x y y y ,即12121313x x y y x x y y ,因此a b a c 2、cos cos cossin sin OA OB AOBOA OB.3、证明:构造向量(,)ua b ,(,)v c d .c o s,u v u v u v,所以2222cos ,ac bd a bcd u v∴2222222222()()()cos,()()ac bd a b cd u vab c d 4、AB AC 的值只与弦AB 的长有关,与圆的半径无关.证明:取AB 的中点M ,连接CM ,则CMAB ,12AMAB 又cos AB AC AB AC BAC ,而AM BACAC所以212AB ACAB AMAB 5、(1)勾股定理:Rt ABC 中,90C,则222CACBAB证明:∵ABCB CA ∴2222()2AB CB CA CBCA CB CA .由90C,有CA CB ,于是0CA CB ∴222CA CBAB(2)菱形ABCD 中,求证:AC BD 证明:∵ACAB AD ,,DBAB AD ∴22()()AC DB AB AD AB AD ABAD .∵四边形ABCD 为菱形,∴AB AD ,所以22ABAD∴0AC DB,所以AC BD (3)长方形ABCD 中,求证:ACBD证明:∵四边形ABCD 为长方形,所以ABAD ,所以0AB AD ∴222222ABAB AD ADABAB AD AD .∴22()()AB AD AB AD ,所以22ACBD ,所以ACBD(4)正方形的对角线垂直平分. 综合以上(2)(3)的证明即可.2.5平面向量应用举例习题2.5 A 组(P113)1、解:设(,)P x y ,11(,)R x y 则1111(1,0)(,)(1,)RA x y x y ,(,)(1,0)(1,0)AP x y x 由2RA AP 得11(1,)2(1,)x y x y ,即11232x x y y代入直线l 的方程得2yx .所以,点P 的轨迹方程为2yx .2、解:(1)易知,OFD ∽OBC ,12DFBC , 所以23BO BF .2211()()3323AO BO BA BF a b a a a b (2)因为1()2AE a b 所以23AO AE ,因此,,A O E 三点共线,而且2AOOE 同理可知:2,2BO CO OF OD ,所以2AO BO COOE OF OD3、解:(1)(2,7)B Avv v ;(2)v 在A v 方向上的投影为135A Av v v . 4、解:设1F ,2F 的合力为F ,F 与1F 的夹角为,则31F,30;331F ,3F 与1F 的夹角为150°.习题2.5 B 组(P113)1、解:设0v 在水平方向的速度大小为x v ,竖直方向的速度的大小为y v ,则0cos xv v ,0sin yv v .设在时刻t 时的上升高度为h ,抛掷距离为s ,则1s i n,()2c o sh v t g t gsv t 为重力加速度所以,最大高度为220sin 2v g,最大投掷距离为20sin2v g.2、解:设1v 与2v 的夹角为,合速度为v ,2v 与v 的夹角为,行驶距离为d . 则1sin 10sin sin v vv,0.5sin20sinv d.∴120sind v.所以当90,即船垂直于对岸行驶时所用时间最短.3、(1)(0,1)ODFEABC(第2题)(第4题)解:设(,)P x y ,则(1,2)AP x y . (2,22)AB .将AB 绕点A 沿顺时针方向旋转4到AP ,相当于沿逆时针方向旋转74到AP ,于是7777(2cos22sin ,2sin22cos )(1,3)4444AP 所以1123x y,解得0,1xy(2)32yx解:设曲线C 上任一点P 的坐标为(,)x y ,OP 绕O 逆时针旋转4后,点P 的坐标为(,)x y 则cos sin 44sincos44x x y yx y ,即2()22()2x x y yx y 又因为223xy,所以2211()()322x y x y ,化简得32yx第二章复习参考题A 组(P118)1、(1)√;(2)√;(3)×;(4)×. 2、(1)D ;(2)B ;(3)D ;(4)C ;(5)D ;(6)B.3、1()2AB a b ,1()2AD a b 4、略解:2133DE BA MA MBa b 2233AD a b ,1133BC a b 1133EF a b ,1233FA DC a b 1233CDa b ,2133AB a b CEa b5、(1)(8,8)AB ,82AB ;(2)(2,16)OC ,(8,8)OD;(3)33OA OB .(第4题)6、AB 与CD 共线.证明:因为(1,1)AB ,(1,1)CD ,所以AB CD . 所以AB 与CD 共线.7、(2,0)D .8、2n. 9、1,0.10、34cos ,cos 0,cos 55A B C11、证明:2(2)22cos6010n m m n m m ,所以(2)n m m .12、1.13、13a b,1a b.14、519cos,cos 820第二章复习参考题B 组(P119)1、(1)A ;(2)D ;(3)B ;(4)C ;(5)C ;(6)C ;(7)D.2、证明:先证aba b a b .222()2a ba b aba b,222()2a ba b a b a b .因为ab ,所以0a b ,于是22a b a ba b .再证a b a ba b. 由于222a b aa bb ,222a b aa b b由a b a b 可得0a b ,于是ab所以a ba b a b. 【几何意义是矩形的两条对角线相等】3、证明:先证abcd22()()c d a b a b ab又a b ,所以0c d ,所以cd再证cd ab .由cd 得0c d,即22()()a b a b a b 所以a b【几何意义为菱形的对角线互相垂直,如图所(第3题)NMOABS(第6题)示】4、12AD AB BC CD a b ,1142AE a b 而34EFa ,14EM a ,所以1111()4242AM AE EMa b a a b 5、证明:如图所示,12ODOP OP ,由于1230OP OP OP ,所以3OP OD ,1OD 所以11OD OP PD 所以1230OPP ,同理可得1330OPP 所以31260PPP ,同理可得12360PP P ,23160P PP ,所以123PP P 为正三角形. 6、连接AB.由对称性可知,AB 是SM N 的中位线,222MN ABb a .7、(1)实际前进速度大小为224(43)8(千米/时),沿与水流方向成60°的方向前进;(2)实际前进速度大小为42千米/时,沿与水流方向成690arccos 3的方向前进.8、解:因为OA OB OB OC ,所以()0OB OA OC ,所以0OB CA 同理,0OA BC ,0OC AB,所以点O 是ABC 的垂心. 9、(1)2110200a x a y a y a x ;(2)垂直;(3)当12210AB A B 时,1l ∥2l ;当12120A A B B 时,12l l ,夹角的余弦121222221122cosA AB B A BA B ;(4)022Ax By CdABDOP 3P 1P 2(第5题)第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式练习(P127)1、cos()cos cos sin sin0cos1sin sin222.c o s(2)c o s2c o s s i n2s i n1c o s0.2、解:由3cos,(,)52,得2234sin1cos1()55;所以23242 cos()cos cos sin sin()444252510.3、解:由15sin17,是第二象限角,得22158cos1sin1()1717;所以811538153 cos()cos cos sin sin33317217234.4、解:由23sin,(,)32,得2225cos1sin1()33;又由33cos,(,2)42,得2237sin1cos1()44.所以3c o4.练习(P131)1、(1)624;(2)624;(3)624;(4)23.2、解:由3cos,(,)52,得2234sin1cos1()55;所以4133433 sin()sin cos cos sin()333525210.3、解:由12sin13,是第三象限角,得22125cos1sin1()1313;所以3c o66.4、解:tan tan314tan()2 41311tan tan4.5、(1)1;(2)12;(3)1;(4)32;(5)原式=1(cos34cos26sin34sin26)cos(3426)cos602;(6)原式=sin20cos70cos20sin70(sin20cos70cos20sin70)sin901.6、(1)原式=cos cos sin sin cos()333x xx ;(2)原式=312(sin cos )2(sin cos cos sin )2sin()22666x x x x x ;(3)原式=222(sin cos )2(sin cos cos sin )2sin()22444x x x x x ;(4)原式=1322(cos sin )22(cos cos sin sin )22cos()22333xx x x x .7、解:由已知得3sin()cos cos()sin5,即3sin[()]5,3sin()5所以3sin5. 又是第三象限角,于是2234cos 1sin1()55. 因此55si 44.练习(P135)1、解:因为812,所以382又由4cos85,得243sin 1()855,3sin 385tan 484cos85所以3424sinsin(2)2sin cos2()()488855252222437c o sc o s(2)c o s s i n ()()488855252232tan23162484tantan(2)3482771tan1()842、解:由3sin()5,得3sin 5,所以222316cos 1sin1()525所以2221637cos2cossin()255253、解:由sin2sin 且sin 0可得1cos2,又由(,)2,得2213sin 1cos1()22,所以s i n 3t an (2)3co s2. 4、解:由1t an 23,得22t an11t an3. 所以2t an6t an 10,所以t a n3105、(1)11sin15cos15sin3024;(2)222cossincos8842;(3)原式=212tan22.511tan4521tan 22.522;(4)原式=2cos452. 习题3.1 A 组(P137)1、(1)333cos()cos cossin sin0cos (1)sin sin 222;(2)333sin()sin coscos sin1cos0sincos 222;(3)cos()cos cos sin sin1cos0sin cos ;(4)sin()sin coscos sin 0cos(1)sin sin . 2、解:由3cos,05,得2234sin1cos1()55,所以4331433cos()cos cossin sin666525210. 3、解:由2sin,(,)32,得2225cos 1sin1()33,又由33cos ,(,)42,得2237sin1cos1()44,所以5co3. 4、解:由1cos7,是锐角,得22143sin1cos1()77因为,是锐角,所以(0,),又因为11cos()14,所以221153sin()1cos ()1()1414所以cos cos[()]cos()cos sin()sin11153431()14714725、解:由60150,得9030180又由3sin(30)5,得2234cos(30)1sin (30)1()55所以coscos[(30)30]cos(30)cos30sin(30)sin3043314335252106、(1)624;(2)264;(3)23. 7、解:由2sin,(,)32,得2225cos 1sin1()33. 又由3cos4,是第三象限角,得2237sin 1cos1()44. 所以cos()cos cossin sin5327()()3434352712sin()sin cos cos sin2357()()()3434635128、解:∵53sin ,cos 135A B 且,A B 为ABC 的内角∴0,02A B ,124cos ,sin 135A B当12cos 13A 时,sin()sin cos cos sin AB A B A B5312433()013513565A B,不合题意,舍去∴124cos ,sin 135A B ∴cos cos()(cos cos sin sin )CA B A B A B 1235416()135135659、解:由3sin,(,)52,得2234cos 1sin1()55. ∴sin 353tan()cos544. ∴31tan tan 242tan()311tan tan111()42. 31tan tan 42tan()2311tan tan1()42.10、解:∵tan ,tan是22370x x 的两个实数根.∴3tantan2,7tan tan2. ∴3tan tan 12tan()71tan tan31()2. 11、解:∵tan()3,tan()5∴tan()tan()tan2tan[()()]1tan()tan()3541357tan()tan()tan2tan[()()]1tan()tan()351135812、解:∵::2:3:6BD DC AD ∴11tan,tan 32BD DC AD AD ∴tan tan tan tan()1tan tanBAC1132111132又∵0180BAC ,∴45BAC βαDACB(第12题)13、(1)65sin()6x ;(2)3sin()3x ;(3)2sin()26x;(4)27sin()212x ;(5)22;(6)12;(7)sin();(8)cos();(9)3;(10)tan().14、解:由sin0.8,(0,)2,得22cos1sin 10.80.6∴sin22sin cos 20.80.60.962222cos2cossin0.60.80.2815、解:由3cos,1802703,得2236sin1cos 1()33∴6322sin22sin cos 2()()3332222361cos2cossin ()()333sin222tan2(3)22cos2316、解:设5sin sin 13B C,且90B ,所以12cos 13B . ∴512120sin sin(1802)sin22sin cos 21313169A B B B B 2222125119cos cos(1802)cos2(cos sin )(()())1313169A B B B B sin 120169120tan ()cos 169119119A A A 17、解:22122tan33tan211tan41()3,13tan tan274tan(2)1131tan tan2174.18、解:1cos()cos sin()sin31cos[()]3,即1cos 3又3(,2)2,所以22122sin 1cos1()33∴22142sin22sin cos 2()33922221227cos2cossin()()339∴72422728cos(2)cos2cossin2sin()44492921819、(1)1sin2;(2)cos2;(3)1sin44x ;(4)tan2.习题3.1 B 组(P138)1、略.2、解:∵tan ,tan A B 是x 的方程2(1)10x p x ,即210xpxp 的两个实根∴tan tan A B p ,tan tan 1A B p ∴tan tan[()]tan()CA B A B tan tan 11tan tan 1(1)A B p A Bp 由于0C,所以34C. 3、反应一般的规律的等式是(表述形式不唯一)223sincos (30)sin cos(30)4(证明略)本题是开放型问题,反映一般规律的等式的表述形式还可以是:223sin (30)cossin(30)cos4223sin (15)cos (15)sin(15)cos(15)4223sincossin cos4,其中30,等等思考过程要求从角,三角函数种类,式子结构形式三个方面寻找共同特点,从而作出归纳. 对认识三角函数式特点有帮助,证明过程也会促进推理能力、运算能力的提高. 4、因为12PAPP ,则2222(c o s ()1)s i n ()(c o sc o s )(s i n s i n )即22cos()22cos cos 2sin sin所以cos()cos cossin sin3.2简单的三角恒等变换练习(P142)1、略. 2、略.3、略.4、(1)1sin42y x . 最小正周期为2,递增区间为[,],8282kk k Z ,最大值为12;(2)cos 2y x . 最小正周期为2,递增区间为[2,22],k k kZ ,最大值为3;(3)2sin(4)3yx. 最小正周期为2,递增区间为5[,],242242k k kZ ,最大值为2.习题3.2 A 组(P143)1、(1)略;(2)提示:左式通分后分子分母同乘以2;(3)略;(4)提示:用22sin cos代替1,用2sin cos 代替sin 2;(5)略;(6)提示:用22cos 代替1cos2;(7)提示:用22sin 代替1cos2,用22cos 代替1cos2;(8)略.2、由已知可有1sin coscos sin2……①,1sin cos cos sin3……②(1)②×3-①×2可得sin cos 5cos sin(2)把(1)所得的两边同除以cos cos 得tan 5tan注意:这里cos cos0隐含与①、②之中3、由已知可解得1tan2. 于是2212()2tan 42tan211tan31()21tantan1142tan()1431tantan1()142∴tan24tan()44、由已知可解得sin x ,cos y ,于是2222sincos1x y.5、()2sin(4)3f x x,最小正周期是2,递减区间为7[,],242242k kkZ .习题3.2 B 组(P143)1、略.2、由于762790,所以sin76sin(9014)cos14m即22cos 71m ,得1cos72m 3、设存在锐角,使223,所以23,tan()32,又tan tan232,又因为tan tan 2tan()21tantan2,所以tantantan()(1tan tan )33222由此可解得tan 1,4,所以6.经检验6,4是符合题意的两锐角.4、线段AB 的中点M 的坐标为11((cos cos ),(sin sin ))22. 过M 作1MM 垂直于x 轴,交x 轴于1M ,111()()22MOM .在Rt OMA 中,coscos22OM OA .在1Rt OM M 中,11cos coscos 22OM OM MOM ,11sin sincos22M M OM MOM .于是有1(cos cos )cos cos 222,1(sin sin )sin cos 2225、当2x时,22()sin cos 1f ;当4x时,4422222()sincos(sincos)2sincosf 211sin 22,此时有1()12f ≤≤;当6x 时,66()sinf 231sin 24,此时有1()14f ≤≤;由此猜想,当2,x k k N 时,11()12k f ≤≤6、(1)345(sin cos )5sin()55y x x x ,其中34cos ,sin55所以,y 的最大值为5,最小值为﹣5;(2)22sin()yab x,其中2222cos,sina b abab所以,y 的最大值为22ab ,最小值为22ab ;第三章复习参考题A 组(P146)xy M 1MC AOB(第4题)1、1665. 提示:()2、5665. 提示:5sin()sin[()]sin[()()]443、1.4、(1)提示:把公式tan tantan()1tan tan变形;(2)3;(3)2;(4)3. 提示:利用(1)的恒等式.5、(1)原式=cos103sin104sin(3010)4 sin10cos10sin20;(2)原式=sin10sin103cos10 sin40(3)sin40cos10cos10=2sin40cos40sin801 cos10cos10;(3)原式=3sin203sin20cos20 tan70cos10(1)tan70cos10cos20cos20=sin702sin10sin20cos101 cos70cos20cos70;(4)原式=3sin10cos103sin10 sin50(1)sin50cos10cos102cos50sin100sin501cos10cos106、(1)95;(2)2425;(3)223. 提示:4422222sin cos(sin cos)2sin cos;(4)17 25.7、由已知可求得2cos cos5,1sin sin5,于是sin sin1tan tancos cos2.8、(1)左边=222cos214cos232(cos22cos21)22242(cos21)2(2cos)8cos=右边(2)左边=222 2sin cos2sin cos(sin cos) 2cos2sin cos2cos(cos sin)sin cos11tan2cos22=右边(3)左边=sin(2)2cos()sin sin[()]2cos()sin sin2cos(cos sin)sin()cos cos()sin sinsin sin=右边(第12(2)题)(4)左边=222234cos22cos 212(cos 22cos21)34cos22cos 212(cos 22cos21)A A A A A A A A 2224222(1cos2)(2sin )tan (1cos2)(2cos )A A A A A =右边9、(1)1sin21cos2sin2cos222sin(2)24y x x x x x递减区间为5[,],88k k k Z(2)最大值为22,最小值为22.10、2222()(cos sin )(cos sin )2sin cos cos2sin22cos(2)4f x x x x x x xx x x(1)最小正周期是;(2)由[0,]2x 得52[,]444x ,所以当24x,即38x时,()f x 的最小值为 2. ()f x 取最小值时x 的集合为3{}8.11、2()2sin 2sin cos 1cos2sin22sin(2)14f x x x x x xx(1)最小正周期是,最大值为21;(2)()f x 在[,]22上的图象如右图:12、()3sin cos 2sin()6f x x x a xa .(1)由21a 得1a;(2)2{22,}3x k x k k Z ≤≤.13、如图,设ABD ,则CAE ,2s i n h AB ,1cos h AC所以1212sin2ABC hh S AB AC ,(0)2当22,即4时,ABCS的最小值为12hh . 第三章复习参考题B 组(P147)1、解法一:由221sin cos 5sincos1,及0≤≤,可解得4sin5,h 1h 2l 2l 1BDE AC(第13题)13 cos sin55,所以24sin225,7cos225,312sin(2)sin2cos cos2sin44450.解法二:由1s i n c o s5得21(sin cos)25,24sin225,所以249 cos2625.又由1sin cos5,得2sin()410.因为[0,],所以3[,]444.而当[,0]44时,sin()04≤;当3[,]444时,22 sin()4210≥.所以(0,)44,即(,)42所以2(,)2,7cos225.312sin(2)4502、把1cos cos2两边分别平方得221cos cos2cos cos4把1sin sin3两边分别平方得221sin sin2sin sin9把所得两式相加,得13 22(cos cos sin sin)36,即1322cos()36,所以59cos()723、由43sin()sin35可得3343sin cos225,4sin()65.又02,所以366,于是3cos()65.所以334 cos cos[()]66104、22sin22sin2sin cos2sin2sin cos(cos sin)sin1tan cos sin1cosx x x x x x x x xxx x xx1tansin2sin2tan()1tan4xx x xx由177124x得5234x,又3cos()45x,所以4sin()45x,4tan()43x所以2cos cos[()]cos()cossin()sin44444410x x x x ,72sin 10x,7sin22sin cos 25x x x, 所以2sin22sin 281tan 75x x x,5、把已知代入222sincos(sin cos )2sin cos 1,得22(2sin )2sin1.变形得2(1cos2)(1cos2)1,2cos2cos2,224cos 24cos 2本题从对比已知条件和所证等式开始,可发现应消去已知条件中含的三角函数.考虑sincos ,sin cos 这两者又有什么关系?及得上解法.5、6两题上述解法称为消去法6、()3sin21cos22sin(2)16f x x x m x m . 由[0,]2x 得72[,]666x,于是有216m . 解得3m . ()2si n (2)4()6f x x x R 的最小值为242,此时x 的取值集合由322()62x k kZ ,求得为2()3xk k Z 7、设AP x ,AQy ,BCP,DCQ,则tan1x ,tan1y于是2()tan()()x y x y xy又APQ 的周长为2,即222x yxy,变形可得2()2xyx y 于是2()tan()1()[2()2]x y xy x y .又02,所以4,()24PCQ.8、(1)由221sin cos 5sincos1,可得225sin 5sin120解得4sin 5或3sin 5(由(0,),舍去)所以13cossin 55,于是4tan 3(2)根据所给条件,可求得仅由sin ,cos ,tan表示的三角函数式的值,例如,sin()3,cos22,sin cos 2tan ,sin cos3sin2cos,等等.。

2018版高中数学人教A版 必修4第3章 章末综合测评 含解

2018版高中数学人教A版 必修4第3章 章末综合测评 含解

章末综合测评(三) 三角恒等变换(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知cos(α+β)+cos(α-β)=13,则cos αcos β的值为( )A .12B .13C .14D .16【解析】 由题意得:cos αcos β-sin αsin β+cos αcos β+sin αsin β=2cos αcos β=13,所以cos αcos β=16.【答案】 D2.函数y =sin ⎝⎛⎭⎫2x +π3cos ⎝⎛⎭⎫x -π6+cos ⎝⎛⎭⎫2x +π3·sin ⎝⎛⎭⎫π6-x 的图象的一条对称轴方程是( )A .x =π4B .x =π2C .x =πD .x =3π2【解析】 y =sin ⎝⎛⎭⎫2x +π3·cos ⎝⎛⎭⎫x -π6-cos ⎝⎛⎭⎫2x +π3sin ⎝⎛⎭⎫x -π6=sin ⎣⎡⎝⎛⎭⎫2x +π3-⎦⎤⎝⎛⎭⎫x -π6=sin ⎝⎛⎭⎫x +π2=cos x ,故x =π是函数y =cos x 的一条对称轴.【答案】 C3.若tan α=2tan π5,则cos ⎝⎛⎭⎫α-3π10sin ⎝⎛⎭⎫α-π5=( )【导学号:00680080】A .1B .2C .3D .4【解析】 ∵cos ⎝⎛⎭⎫α-3π10=cos ⎝⎛⎭⎫α+π5-π2=sin ⎝⎛⎭⎫α+π5, ∴原式=sin ⎝⎛⎭⎫α+π5sin ⎝⎛⎭⎫α-π5=sin αcos π5+cos αsin π5sin αcos π5-cos αsin π5=tan α+tan π5tan α-tan π5.又∵tan α=2tan π5,∴原式=2tan π5+tanπ52tan π5-tanπ5=3.【答案】 C 4.2cos 10°-sin 20°cos 20°的值为( )A . 3B .62C .1D .12【解析】 原式=2cos (30°-20°)-sin 20°cos 20°=2(cos 30°cos 20°+sin 30°sin 20°)-sin 20°cos 20°=3cos 20°cos 20°= 3.【答案】 A5.cos 4π8-sin 4π8等于( )A .0B .22 C .1D .-22【解析】 原式=⎝⎛⎭⎫cos 2π8-sin 2π8⎝⎛⎭⎫cos 2π8+sin 2π8 =cos 2π8-sin 2π8=cos π4=22.【答案】 B6.已知函数y =tan(2x +φ)的图象过点⎝⎛⎭⎫π12,0,则φ的值可以是( ) 【导学号:70512045】A .-π6B .π6C .-π12D .π12【解析】 由题得tan ⎝⎛⎭⎫2×π12+φ=0, 即tan ⎝⎛⎭⎫π6+φ=0,π6+φ=k π,k ∈Z , φ=k π-π6,k ∈Z ,当k =0时,φ=-π6,故选A .【答案】 A7.若θ∈⎝⎛⎭⎫0,π2,sin θ-cos θ=22,则cos 2θ等于( ) A .32B .-32C .±32D .±12【解析】 由sin θ-cos θ=22两边平方得,sin 2θ=12, 又θ∈⎝⎛⎭⎫0,π2,且sin θ>cos θ, 所以π4<θ<π2,所以π2<2θ<π,因此,cos 2θ=-32,故选B . 【答案】 B8.已知sin ⎝⎛⎭⎫π4-x =45,则sin 2x 的值为( ) A .1925B .725C .1425D .-725【解析】 sin 2x =cos ⎝⎛⎭⎫π2-2x =cos 2⎝⎛⎭⎫π4-x =1-2sin 2⎝⎛⎭⎫π4-x =1-2×⎝⎛⎭⎫452=-725. 【答案】 D9.已知cos ⎝⎛⎭⎫x +π6=35,x ∈(0,π),则sin x 的值为( ) A .-43-310B .43-310C .12D .32【解析】 由cos ⎝⎛⎭⎫x +π6=35,且0<x <π, 得π6<x +π6<π2, 所以sin ⎝⎛⎭⎫x +π6=45, 所以sin x =sin ⎣⎡⎦⎤⎝⎛⎭⎫x +π6-π6=sin ⎝⎛⎭⎫x +π6cos π6-cos ⎝⎛⎭⎫x +π6sin π6 =45×32-35×12=43-310. 【答案】 B10.函数y =sin x +cos x +2⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最小值是( ) A .2- 2 B .2+ 2 C .3D .1【解析】 由y =2sin ⎝⎛⎭⎫x +π4+2,且0≤x ≤π2, 所以π4≤x +π4≤34π,所以22≤sin ⎝⎛⎭⎫x +π4≤1, 所以3≤y ≤2+2. 【答案】 C11.y =sin ⎝⎛⎭⎫2x -π3-sin 2x 的一个单调递增区间是( ) A .⎣⎡⎦⎤-π6,π3 B .⎣⎡⎦⎤π12,7π12 C .⎣⎡⎦⎤5π12,13π12D .⎣⎡⎦⎤π3,5π6【解析】 y =sin ⎝⎛⎭⎫2x -π3-sin 2x =sin 2x cos π3-cos 2x sin π3-sin 2x=-12sin 2x -32cos 2x=-sin ⎝⎛⎭⎫2x +π3. y =-sin ⎝⎛⎭⎫2x +π3的递增区间是y =sin ⎝⎛⎭⎫2x +π3的递减区间, π2+2k π≤2x +π3≤3π2+2k π,k ∈Z , ∴π12+k π≤x ≤7π12+k π,k ∈Z , 令k =0,得x ∈⎣⎡⎦⎤π12,7π12. 【答案】 B12.已知a =(sin α,1-4cos 2α),b =(1,3sin α-2),α∈⎝⎛⎭⎫0,π2,若a ∥b ,则tan ⎝⎛⎭⎫α-π4=( )A .17B .-17C .27D .-27【解析】 因为a ∥b ,所以有sin α(3sin α-2)-(1-4cos 2α)=0, 即3sin 2 α-2sin α-1+4cos 2α=0 ⇒5sin 2 α+2sin α-3=0,解得sin α=35或-1,又α∈⎝⎛⎭⎫0,π2, 所以sin α=35,cos α=45,tan α=34,所以tan ⎝⎛⎭⎫α-π4=tan α-11+tan α=34-11+34=-17. 【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在题中的横线上) 13.函数f (x )=sin x -3cos x (x ∈R )的最小正周期为________,最大值为________. 【解析】 因为f (x )=2sin ⎝⎛⎭⎫x -π3, 所以f (x )=2sin ⎝⎛⎭⎫x -π3的最小正周期为T =2π,最大值为2. 【答案】 2π 214.tan ⎝⎛⎭⎫π6-θ+tan ⎝⎛⎭⎫π6+θ+3tan ⎝⎛⎭⎫π6-θ·tan ⎝⎛⎭⎫π6+θ的值是________. 【解析】 ∵tan π3=tan ⎝⎛⎭⎫π6-θ+π6+θ=tan ⎝⎛⎭⎫π6-θ+tan ⎝⎛⎭⎫π6+θ1-tan ⎝⎛⎭⎫π6-θtan ⎝⎛⎭⎫π6+θ=3,∴3=tan ⎝⎛⎭⎫π6-θ+tan ⎝⎛⎭⎫π6+θ+ 3tan ⎝⎛⎭⎫π6-θtan ⎝⎛⎭⎫π6+θ. 【答案】315.已知tan α=-2,tan(α+β)=17,则tan β的值为________.【解析】 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=3.【答案】 316.已知A ,B ,C 皆为锐角,且tan A =1,tan B =2,tan C =3,则A +B +C 的值为________. 【解析】 ∵tan(A +B )=tan A +tan B 1-tan A tan B =1+21-2=-3<0,①又0<A <π2,0<B <π2,∴0<A +B <π,②由①②知,π2<A +B <π,又tan[(A +B )+C ]=tan (A +B )+tan C 1-tan (A +B )tan C =-3+31-(-3)×3=0.又∵0<C <π2,∴π2<A +B +C <32π,∴A +B +C =π. 【答案】 π三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,2π3上的最小值. 【解】 (1)因为f (x )=sin x +3cos x - 3 =2sin ⎝⎛⎭⎫x +π3-3, 所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎡⎦⎤0,2π3上的最小值为f ⎝⎛⎭⎫2π3=- 3. 18.(本小题满分12分)已知锐角α,β满足tan(α-β)=sin 2β,求证:tan α+tan β=2tan 2β.【证明】 因为tan(α-β)=sin 2β, tan(α-β)=tan α-tan β1+tan αtan β,sin 2β=2sin βcos β=2sin βcos βsin 2β+cos 2β=2tan β1+tan 2β, 所以tan α-tan β1+tan αtan β=2tan β1+tan 2β,整理得:tan α=3tan β+tan 3β1-tan 2β.所以tan α+tan β=3tan β+tan 3β+tan β-tan 3β1-tan 2β=2×2tan β1-tan 2β=2tan 2β.19.(本小题满分12分)已知函数f (x )=sin ⎝⎛⎭⎫π2-x ·sin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性. 【解】 (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x ) =12sin 2x -32cos 2x -32 =sin ⎝⎛⎭⎫2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而 当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎣⎡⎦⎤5π12,2π3上单调递减. 20.(本小题满分12分)已知函数f (x )=sin 2x -sin 2⎝⎛⎭⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值和最小值. 【解】 (1)由已知,有f (x )=1-cos 2x2-1-cos ⎝⎛⎭⎫2x -π32=12⎝⎛⎭⎫12cos 2x +32sin 2x -12cos 2x =34sin 2x -14cos 2x =12sin ⎝⎛⎭⎫2x -π6. 所以f (x )的最小正周期T =2π2=π.(2)因为f (x )在区间⎣⎡⎦⎤-π3,-π6上是减函数,在区间⎣⎡⎦⎤-π6,π4上是增函数, 且f ⎝⎛⎭⎫-π3=-14,f ⎝⎛⎭⎫-π6=-12,f ⎝⎛⎭⎫π4=34, 所以f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值为34,最小值为-12. 21.(本小题满分12分)如图1所示,已知α的终边所在直线上的一点P 的坐标为(-3,4),β的终边在第一象限且与单位圆的交点Q 的纵坐标为210.图1(1)求tan(2α-β)的值;(2)若π2<α<π,0<β<π2,求α+β.【解】 (1)由三角函数的定义知tan α=-43,∴tan 2α=2×⎝⎛⎭⎫-431-⎝⎛⎭⎫-432=247.又由三角函数线知sin β=210. ∵β为第一象限角,∴tan β=17,∴tan(2α-β)=247-171+247×17=16173.(2)∵cos α=-35,∵π2<α<π,0<β<π2,∴π2<α+β<3π2. ∵sin(α+β)=sin αcos β+cos αsin β=45×7210-35×210=22.又∵π2<α+β<3π2,∴α+β=3π4.22.(本小题满分12分)已知向量a =(2cos ωx,1),b =⎝⎛⎭⎫2sin ⎝⎛⎭⎫ωx +π4,-1⎝⎛⎭⎫其中14≤ω≤32,函数f (x )=a ·b ,且f (x )图象的一条对称轴为x =5π8. (1)求f ⎝⎛⎭⎫34π的值;(2)若f ⎝⎛⎭⎫α2-π8=23,f ⎝⎛⎭⎫β2-π8=223,且α,β∈⎝⎛⎭⎫-π2,π2,求cos ()α-β的值. 【解】 (1)∵向量a =(2cos ωx,1),b =⎝⎛⎭⎫2sin ⎝⎛⎭⎫ωx +π4,-1=(2(sin ωx +cos ωx ),-1),∴函数f (x )=a ·b =2cos ωx (sin ωx +cos ωx )-1=2sin ωx cos ωx +2cos 2ωx -1=sin 2ωx +cos 2ωx=2sin ⎝⎛⎭⎫2ωx +π4. ∵f (x )图象的一条对称轴为x =5π8,∴2ω×5π8+π4=π2+k π(k ∈Z ).又14≤ω≤32,∴ω=1,∴f (x )=2sin ⎝⎛⎭⎫2x +π4, ∴f ⎝⎛⎭⎫34π=2sin ⎝⎛⎭⎫2×34π+π4=-2cos π4=-1.(2)∵f ⎝⎛⎭⎫α2-π8=23,f ⎝⎛⎭⎫β2-π8=223, ∴sin α=13,sin β=23.∵α,β∈⎝⎛⎭⎫-π2,π2, ∴cos α=223,cos β=53,∴cos(α-β)=cos αcos β+sin αsin β=210+29.。

2017-2018学年高中数学人教A版必修四全册教学案含答案

2017-2018学年高中数学人教A版必修四全册教学案含答案

2017-2018学年高中数学人教A版必修四全册教学案目录1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+φ)的图象1.6 三角函数模型的简单应用第一章章末小结与测评2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的基数量积2.5 平面向量应用举例第二章章末小结与测评3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换第三章章末小结与测评第1课时任意角[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P2~P5的内容,回答下列问题.(1)阅读教材P2“思考”的内容,你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25个小时,你应当如何将它校准?在你调整的过程中,分针转动的方向有什么区别?提示:当手表慢了5分钟时,通常将分针顺时针旋转进行调整;当手表快了1.25小时时,通常将分针逆时针旋转进行调整.故在调整的过程中两种情形分针的转动方向相反.(2)体操中有“转体720°”(即“转体2周”),“转体1 080°”(即“转体3周”)这样的动作名称,而旋转的方向也有顺时针与逆时针的不同;又如图是两个齿轮旋转的示意图,被动轮随着主动轮的旋转而旋转,而且被动轮与主动轮有相反的旋转方向.这样,OA绕O旋转所成的角与O′B绕O′旋转所成的角就会有不同的方向.利用我们以前学过的0°~360°范围的角,还能描述以上现象吗?提示:要准确地描述这些现象,不仅要知道角形成的结果,而且要知道角形成的过程,即必须既要知道旋转量,又要知道旋转方向.故利用0°~360°范围的角,无法描述以上现象.(3)阅读教材P3“探究”的内容,请思考:对于直角坐标系内任一条射线OB,以它为终边的角是否唯一?如果不唯一,那么这些终边相同的角有什么关系?提示:不唯一.它们之间相差360°的整数倍,即相差k·360°(k∈Z).2.归纳总结,核心必记(1)角的有关概念其中O为顶点,OA为始边,OB为终边角α或∠α,或简记为α(2)①②按角的终边位置(ⅰ)角的终边在第几象限,则此角称为第几象限角;(ⅱ)角的终边在坐标轴上,则此角不属于任何一个象限.(3)终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.[问题思考](1)你能说出角的三要素吗?提示:角的三要素是顶点、终边、始边.(2)如果一个角的终边与其始边重合,这个角一定是零角吗?提示:不一定,零角的终边与始边重合,但终边与始边重合的角不一定是零角,如360°,-360°等.(3)一条射线绕端点旋转,旋转的圈数越多,则这个角越大,这样说对吗?提示:不对,如果一条射线绕端点按顺时针方向旋转,则它形成负角,旋转的圈数越多,则这个角越小.(4)在坐标系中,将y轴的正半轴绕坐标原点顺时针旋转到x轴的正半轴形成的角为90°,这种说法是否正确?提示:不正确,在坐标系中,将y轴的正半轴绕坐标原点旋转到x轴的正半轴时,是按顺时针方向旋转的,故它形成的角为-90°.(5)当角的始边和终边确定后,这个角就被确定了吗?提示:不是的.虽然始、终边确定了,但旋转的方向和旋转量的大小并没有确定,所以角也就不能确定.(6)初中我们学过对顶角相等.依据现在的知识试判断一下图中角α,β是否相等?提示:不相等.角α为逆时针方向形成的角,α为正角;角β为顺时针方向形成的角,β为负角.[课前反思](1)角的概念:;(2)角的分类:;(3)终边相同的角:.[思考1]终边相同的角一定是相等的角吗?它们之间有什么关系?如何把这一类角表示出来?名师指津:不一定.相等的角的终边一定相同,但终边相同的角不一定相等,它们相差360°的整数倍.可以用集合{β|β=α+k·360°,k∈Z}表示.[思考2]区域角是指终边落在坐标系的某个区域的角,区域角如何表示?名师指津:区域角可以看作是某一范围内的终边相同角的集合.故可把区域的起始、终止边界表示出来,然后组成集合即可.讲一讲1.(1)写出与α=-1 910°终边相同的角的集合,并把集合中适合不等式-720°≤β<360°的元素β写出来.(2)分别写出终边在下列各图所示的直线上的角的集合.(3)写出终边落在图中阴影部分(包括边界)的角的集合.[尝试解答](1)与角α=-1 910°终边相同的角的集合为{β|β=-1 910°+k·360°,k∈Z}.∵-720°≤β<360°,∴-720°≤-1 910°+k·360°<360°,31136≤k<61136.故k=4,5,6,k=4时,β=-1 910°+4³360°=-470°.k=5时,β=-1 910°+5³360°=-110°.k=6时,β=-1 910°+6³360°=250°.(2)①在0°~360°范围内,终边在直线y=0上的角有两个,即0°和180°,因此,所有与0°角终边相同的角构成集合S1={β|β=0°+k·360°,k∈Z},而所有与180°角终边相同的角构成集合S2={β|β=180°+k·360°,k∈Z},于是,终边在直线y=0上的角的集合为S=S1∪S2={β|β=k·180°,k∈Z}.②由图形易知,在0°~360°范围内,终边在直线y=-x上的角有两个,即135°和315°,因此,终边在直线y=-x上的角的集合为S={β|β=135°+k·360°,k∈Z}∪{β|β=315°+k·360°,k∈Z}={β|β=135°+k·180°,k∈Z}.③终边在直线y=x上的角的集合为{β|β=45°+k·180°,k∈Z},结合②知所求角的集合为S={β|β=45°+k·180°,k∈Z}∪{β|β=135°+k·180°,k∈Z}={β|β=45°+2k·90°,k∈Z}∪{β|β=45°+(2k+1)·90°,k∈Z}={β|β=45°+k·90°,k∈Z}.(3)终边落在OA位臵上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z},终边落在OB位臵上的角的集合为{β|β=-30°+k·360°,k∈Z}.故阴影部分角的集合可表示为{α|-30°+k·360°≤α≤135°+k·360°,k∈Z}.(1)在0°~360°范围内找与给定角终边相同的角的方法①把任意角化为α+k·360°(k∈Z且0°≤α<360°)的形式,关键是确定k.可以用观察法(α的绝对值较小),也可用除法.②要求适合某种条件且与已知角终边相同的角,其方法是先求出与已知角终边相同的角的一般形式,再依条件构建不等式求出k的值.(2)区域角的写法可分三步①按逆时针方向找到区域的起始和终止边界;②由小到大分别标出起始、终止边界对应的一个角α,β,写出所有与α,β终边相同的角;③用不等式表示区域内的角,组成集合.练一练1.在与角1 030°终边相同的角中,求满足下列条件的角.(1)最小的正角;(2)最大的负角.解:1 030°÷360°=2……310°,所以1 030°=2³360°+310°,所以与角1 030°终边相同的角的集合为{α|α=k·360°+310°,k∈Z}.(1)所求的最小正角为310°.(2)取k=-1得所求的最大负角为-50°.[思考1]若α为第一象限角,则α的顶点、始边、终边各有什么特点?提示:若α为第一象限角,则α的顶点为坐标原点、始边与x轴的正半轴重合,终边处在第一象限.[思考2]如何判定象限角?提示:(1)根据图形判定;(2)根据终边相同的角的概念判定.讲一讲2.已知角的顶点与坐标原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是第几象限角.(1)-75°;(2)855°;(3)-510°.[尝试解答]作出各角,其对应的终边如图所示:(1)由图①可知:-75°是第四象限角.(2)由图②可知:855°是第二象限角.(3)由图③可知:-510°是第三象限角.给定角α所处象限的判定方法法一:第一步,将α写成α=k·360°+β(k∈Z,0°≤β<360°)的形式.第二步,判断β的终边所在的象限.第三步,根据β的终边所在的象限,即可确定α的终边所在的象限.法二:在坐标系中画出相应的角,观察终边的位臵,角的终边落在第几象限,此角就是第几象限角.练一练2.已知角α的终边在如图所示的阴影部分内,试指出角α的取值范围.解:终边在30°角的终边所在直线上的角的集合为S 1={α|α=30°+k ·180°,k ∈Z },终边在180°-75°=105°角的终边所在直线上的角的集合为S 2={α|α=105°+k ·180°,k ∈Z },因此终边在图中阴影部分的角α的取值范围为{α|30°+k ·180°≤α<105°+k · 180°,k ∈Z }.讲一讲3.若α是第二象限角,则2α,α2分别是第几象限的角? [尝试解答] (1)∵α是第二象限角,∴90°+k ·360°<α<180°+k ·360°(k ∈Z ),∴180°+k ·720°<2α<360°+k ·720°,∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上.(2)∵α是第二象限角,∴90°+k ·360°<α<180°+k ·360°(k ∈Z ),∴45°+k ·180°<α2<90°+k ·180°(k ∈Z ). 法一:①当k =2n (n ∈Z )时,45°+n ·360°<α2<90°+n ·360°(n ∈Z ),即α2是第一象限角;②当k =2n +1(n ∈Z )时,225°+n ·360°<α2<270°+n ·360°(n ∈Z ),即α2是第三象限角.故α2是第一或第三象限角. 法二:∵45°+k ·180°表示终边为一、三象限角平分线的角,90°+k ·180°(k ∈Z )表示终边为y 轴的角,∴45°+k ·180°<α2<90°+k ·180°(k ∈Z )表示如图中阴影部分图形.即α2是第一或第三象限角.(1)nα所在象限的判断方法确定nα终边所在的象限,先求出nα的范围,再直接转化为终边相同的角即可. (2)αn所在象限的判断方法 已知角α所在象限,要确定角αn所在象限,有两种方法: ①用不等式表示出角αn的范围,然后对n 的取值分情况讨论:被n 整除;被n 除余1;被n 除余2;…;被n 除余n -1.从而得出结论.②作出各个象限的从原点出发的n 等分射线,它们与坐标轴把周角分成4n 个区域.从x 轴非负半轴起,按逆时针方向把这4n 个区域依次循环标上1,2,3,4.α的终边在第几象限,则标号为几的区域,就是αn 的终边所落在的区域.如此,αn所在的象限就可以由标号区域所在的象限直观地看出.K 练一练3.在直角坐标系中,作出下列各角,在0°~360°范围内,找出与其终边相同的角,并判定它是第几象限角.(1)360°;(2)720°;(3)2 016°;(4)-120°.解:如图所示,分别作出各角.可以发现(1)360°=0°+360°,(2)720°=0°+2³360°,因此,在0°~360°范围内,这两个角均与0°角终边相同.所以这两个角不属于任何一个象限.(3)2 016°=216°+5³360°,所以在0°~360°范围内,与2 016°角终边相同的角是216°,所以2 016°是第三象限角.(4)-120°=240°-360°,所以在0°~360°范围内,与-120°角终边相同的角是240°,所以-120°是第三象限角.4.已知角α为第三象限角,试确定角2α,α2是第几象限角.解:∵α为第三象限角,∴k ·360°+180°<α<k ·360°+270°(k ∈Z ).(1)(2k +1)·360°<2α<(2k +1)·360°+180°(k ∈Z ),则2α可能是第一象限角、第二象限角或终边在y 轴非负半轴上的角.(2)k ·180°+90°<α2<k ·180°+135°(k ∈Z ), 当k =2n (n ∈Z )时,n ·360°+90°<α2<n ·360°+135°(n ∈Z ), 此时α2为第二象限角; 当k =2n +1(n ∈Z )时,n ·360°+270°<α2<n ·360°+315°(n ∈Z ), 此时α2为第四象限角. 综上所述,α2可能是第二象限角或第四象限角. ———————————————[课堂归纳·感悟提升]——————————————1.本节课的重点是象限角的判断、终边相同角及区域角的表示,难点是nα及αn所在象限的判定.2.本节课要重点掌握以下规律方法(1)求终边相同的角及区域角的表示,见讲1;(2)象限角及nα、αn所处象限的判断,见讲2和讲3. 3.本节课的易错点有以下几点(1)对于角的理解,要明确该角是按顺时针方向还是逆时针方向旋转形成的,按逆时针方向旋转形成的角为正角,按顺时针方向旋转形成的角为负角.(2)把任意角化为α+k ·360°(k ∈Z ,且0°≤α<360°)的形式,关键是确定k ,可以用观察法(α的绝对值较小),也可以用除法.(3)已知角的终边范围,求角的集合时,先写出边界对应的角,再写出0°~360°内符合条件的角的范围,最后都加上k ·360°,得到所求.课下能力提升(一)[学业水平达标练]题组1终边相同的角及区域角的表示1.与-457°角的终边相同的角的集合是()A.{α|α=457°+k·360°,k∈Z}B.{α|α=97°+k·360°,k∈Z}C.{α|α=263°+k·360°,k∈Z}D.{α|α=-263°+k²360°,k∈Z}解析:选C由于-457°=-1³360°-97°=-2³360°+263°,故与-457°角终边相同的角的集合是{α|α=-457°+k·360°,k∈Z}={α|α=263°+k·360°,k∈Z}.2.终边在直线y=-x上的所有角的集合是()A.{α|α=k·360°+135°,k∈Z}B.{α|α=k·360°-45°,k∈Z}C.{α|α=k·180°+225°,k∈Z}D.{α|α=k·180°-45°,k∈Z}解析:选D因为直线过原点,它有两个部分,一部分出现在第二象限,一部分出现在第四象限,所以排除A、B.又C项中的角出现在第一、三象限,故选D.3.与角-1 560°终边相同的角的集合中,最小正角是________,最大负角是________.解析:-1 560°=(-5)³360°+240°,而240°=360°-120°,故最小正角为240°,而最大负角为-120°.答案:240°-120°4.已知-990°<α<-630°,且α与120°角的终边相同,则α=________.解析:∵α与120°角终边相同,故有α=k·360°+120°,k∈Z.又-990°<α<-630°,∴-990°<k·360°+120°<-630°,即-1 110°<k·360°<-750°.当k=-3时,α=(-3)·360°+120°=-960°.答案:-960°5.(1)写出与下列各角终边相同的角的集合S,并把S中适合不等式-360°≤α<720°的元素α写出来:①60°;②-21°.(2)试写出终边在直线y=-3x上的角的集合S,并把S中适合不等式-180°≤α<180°的元素α写出来.解:(1)①S={α|α=60°+k·360°,k∈Z},其中适合不等式-360°≤α<720°的元素α为:-300°,60°,420°;②S ={α|α=-21°+k ·360°,k ∈Z },其中适合不等式-360°≤α<720°的元素α为:-21°,339°,699°.(2)终边在直线y =-3x 上的角的集合S ={α|α=k ·360°+120°,k ∈Z }∪{α|α=k · 360°+300°,k ∈Z }={α|α=k ·180°+120°,k ∈Z },其中适合不等式-180°≤α< 180°的元素α为:-60°,120°.题组2 象限角的判断6.-1 120°角所在象限是( ) A .第一象限B .第二象限 C .第三象限D .第四象限解析:选D 由题意,得-1 120°=-4³360°+320°,而320°在第四象限,所以-1 120°角也在第四象限.7.下列叙述正确的是( )A .三角形的内角必是第一、二象限角B .始边相同而终边不同的角一定不相等C .第四象限角一定是负角D .钝角比第三象限角小解析:选B 90°的角是三角形的内角,它不是第一、二象限角,故A 错;280°的角是第四象限角,它是正角,故C 错;-100°的角是第三象限角,它比钝角小,故D 错.8.若α是第四象限角,则180°+α一定是( ) A .第一象限角B .第二象限角 C .第三象限角D .第四象限角 解析:选B ∵α是第四象限角, ∴k ·360°-90°<α<k ·360°.∴k ·360°+90°<180°+α<k ·360°+180°. ∴180°+α在第二象限,故选B. 题组3 nα或αn所在象限的判定9.已知角2α的终边在x 轴上方,那么α是( ) A .第一象限角B .第一或第二象限角 C .第一或第三象限角D .第一或第四象限角解析:选C 由条件知k ·360°<2α<k ·360°+180°,(k ∈Z ), ∴k ·180°<α<k ·180°+90°(k ∈Z ),当k 为偶数时,α在第一象限,当k 为奇数时,α在第三象限.[能力提升综合练]1.已知集合A={α|α小于90°},B={α|α为第一象限角},则A∩B=()A.{α|α为锐角}B.{α|α小于90°}C.{α|α为第一象限角}D.以上都不对解析:选D小于90°的角包括锐角及所有负角,第一象限角指终边落在第一象限的角,所以A∩B是指锐角及第一象限的所有负角的集合,故选D.2.终边在第二象限的角的集合可以表示为()A.{α|90°<α<180°}B.{α|90°+k·180°<α<180°+k·180°,k∈Z}C.{α|-270°+k·180°<α<-180°+k·180°,k∈Z}D.{α|-270°+k·360°<α<-180°+k·360°,k∈Z}解析:选D终边在第二象限的角的集合可表示为{α|90°+k·360°<α<180°+k·360°,k∈Z},而选项D是从顺时针方向来看的,故选项D正确.3.若集合M={x|x=45°+k·90°,k∈Z},N={x|x=90°+k·45°,k∈Z},则() A.M=N B.M NC.M N D.M∩N=∅解析:选C M={x|x=45°+k·90°,k∈Z}={x|x=(2k+1)·45°,k∈Z},N={x|x=90°+k·45°,k∈Z}={x|x=(k+2)·45°,k∈Z}.∵k∈Z,∴k+2∈Z,且2k+1为奇数,∴M N.4.角α与角β的终边关于y轴对称,则α与β的关系为()A.α+β=k·360°,k∈ZB.α+β=k·360°+180°,k∈ZC.α-β=k·360°+180°,k∈ZD.α-β=k·360°,k∈Z解析:选B法一:特殊值法:令α=30°,β=150°,则α+β=180°.法二:直接法:∵角α与角β的终边关于y轴对称,∴β=180°-α+k·360°,k∈Z,即α+β=k·360°+180°,k∈Z.5.如果将钟表拨快10分钟,则时针所转成的角度是________度,分针所转成的角度是________度.解析:将钟表拨快10分钟,则时针按顺时针方向转了10³360°12³60=5°,所转成的角度是-5°;分针按顺时针方向转了10³360°60=60°,所转成的角度是-60°.答案:-5 -606.若角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,则角α=________.解析:∵角5α与α具有相同的始边与终边, ∴5α=k ·360°+α,k ∈Z .得 4α=k ·360°, 当k =3时,α=270°. 答案:270°7.写出终边在如下列各图所示阴影部分内的角的集合.解:先写出边界角,再按逆时针顺序写出区域角,则得 (1){α|30°+k ·360°≤α≤150°+k ·360°,k ∈Z }; (2){α|150°+k ·360°≤α≤390°+k ·360°,k ∈Z }.8.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与 670°角的终边相同,求角α,β的大小.解:由题意可知,α+β=-280°+k ·360°,k ∈Z . ∵α,β都是锐角,∴0°<α+β<180°. 取k =1,得α+β=80°.①∵α-β=670°+k ·360°,k ∈Z ,α,β都是锐角,∴-90°<α-β<90°. 取k =-2,得α-β=-50°.② 由①②,得α=15°,β=65°.第2课时 弧 度 制[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 6~P 9的内容,回答下列问题.(1)我们知道,角可以用度为单位进行度量,1度的角是如何定义的?提示:1度的角等于周角的1 360.(2)为了使用方便,数学上还采用弧度制来度量角,1弧度的角是如何定义的?提示:把长度等于半径长的弧所对的圆心角叫做1弧度的角.(3)阅读教材P6“探究”的内容,思考:①如果一个半径为r的圆的圆心角α所对的弧长是l,那么α的弧度数的绝对值是多少?提示:|α|=l r.②既然角度制、弧度制都是角的度量制,那么它们之间是如何换算的?提示:π=180°.2.归纳总结,核心必记(1)度量角的两种制度(3)角度制与弧度制的换算(4)一些特殊角的度数与弧度数的对应表(5)设扇形的半径为R ,弧长为l ,α为其圆心角,则(1)在大小不同的圆中,长为1的弧所对的圆心角相等吗?提示:不相等.这是因为长为1的弧是指弧的长度为1,在大小不同的圆中,由于半径不同,所以圆心角也不同.(2)比值lr 与所取的圆的半径大小是否有关?提示:无关.(3)在具体的运算中,“弧度”二字和单位符号“rad ”可以略去不写,但“度”作单位时“°”能省略吗?提示:不能省略.(4)你认为式子“α=k ·360°+π3,k ∈Z ”正确吗?提示:不正确,在同一个式子中不能同时出现角度制与弧度制.[课前反思](1)角度制的定义: ;(2)弧度制的定义: (3)任意角的弧度数与实数的对应关系: ;(4)角的弧度数的计算公式: ;(5)角度与弧度的互化: ;(6)扇形的弧长及面积公式: .讲一讲1.有关角的度量给出以下说法:①1°的角是周角的1360,1 rad 的角是周角的12π;②1 rad 的角等于1度的角; ③180°的角一定等于π rad 的角;④“度”和“弧度”是度量角的两种不同的度量单位. 其中正确的说法是________.[尝试解答]由弧度制的定义、弧度与角度的关系知,①③④均正确;因为1 rad =⎝⎛⎭⎫180π°≈57.30°≠1°,故②不正确.答案:①③④(1)解决概念辨析问题的关键是准确理解概念.如本题中要准确理解1弧度角的概念,知道角度制与弧度制的关系.(2)角度制和弧度制的比较:①弧度制是以“弧度”为单位来度量角的单位制,而角度制是以“度”为单位来度量角的单位制.②1弧度的角是指等于半径长的弧所对的圆心角,而1度的角是指圆周角的1360的角,大小显然不同.③无论是以“弧度”还是以“度”为单位来度量角,角的大小都是一个与“半径”大小无关的值.④用“度”作为单位度量角时,“度”(即“°”)不能省略,而用“弧度”作为单位度量角时,“弧度”二字或“rad ”通常省略不写.但两者不能混用,即在同一表达式中不能出现两种度量方法.练一练1.下列说法正确的是( )A .在弧度制下,角的集合与正实数集之间建立了一一对应关系B .每个弧度制的角,都有唯一的角度制的角与之对应C .用角度制和弧度制度量任一角,单位不同,数量也不同D .-120°的弧度数是2π3答案:B讲一讲2.把下列角度化成弧度或弧度化成角度: (1)72°;(2)-300°;(3)2;(4)-2π9.[尝试解答] (1)72°=72³π180=2π5;(2)-300°=-300³π180=-5π3;(3)2=2³⎝⎛⎭⎫180π°=⎝⎛⎭⎫360π°;(4)-2π9=-⎝⎛⎭⎪⎫2π9³180π°=-40°.角度与弧度互化技巧在进行角度与弧度的换算时,抓住关系式π rad =180°是关键,由它可以得到:度数³π180=弧度数,弧度数³⎝⎛⎭⎫180π°=度数.练一练2.已知α1=-570°,α2=750°,β1=3π5,β2=-π3.(1)将α1,α2用弧度表示出来,并指出它们是第几象限角;(2)将β1,β2用角度表示出来,并在-720°~0°范围内,找出与它们有相同终边的所有角.解:(1)α1=-570°=-570π180=-19π6,α2=750°=750π180=25π6.∵α1=-19π6=-2³2π+5π6,α2=25π6=2³2π+π6,∴α1是第二象限角,α2是第一象限角.(2)β1=3π5=35³180°=108°,设θ=k ·360°+108°(k ∈Z ), 则由-720°≤θ<0°,得-720°≤k ·360°+108°<0°(k ∈Z ), 解得k =-2或k =-1,∴在-720°~0°范围内,与β1有相同终边的角是-612°和-252°;β2=-π3=-13³180°=-60°,设γ=k ·360°-60°(k ∈Z ),则由-720°≤k ·360°-60°<0(k ∈Z ), 得k =-1或k =0,∴在-720°~0°范围内,与β2有相同终边的角是-60°和-420°.讲一讲3.(1)已知扇形的周长为8 cm ,圆心角为2,则扇形的面积为________cm 2.(2)已知一半径为R 的扇形,它的周长等于所在圆的周长,那么扇形的圆心角是多少弧度?面积是多少?[尝试解答] (1)设扇形的半径为r cm ,弧长为l cm ,由圆心角为2 rad ,依据弧长公式可得l =2r ,从而扇形的周长为l +2r =4r =8,解得r =2,则l =4.故扇形的面积S =12lr =12³4³2=4 cm 2.(2)设扇形的弧长为l ,由题意得2πR =2R +l ,所以l =2(π-1)R ,所以扇形的圆心角是l R =2(π-1),扇形的面积是12lR =(π-1)R 2. 答案:(1)4弧度制下涉及扇形问题的解题策略(1)明确弧度制下扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,r 是扇形的半径,α(0<α<2π)是扇形的圆心角).(2)涉及扇形的周长、弧长、圆心角、面积等的计算,关键是先分析题目已知哪些量求哪些量,然后灵活运用弧长公式、扇形面积公式直接求解或列方程(组)求解.注意:运用弧度制下的弧长公式及扇形面积公式的前提是α为弧度. 练一练3.已知扇形的周长是30 cm ,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?解:设扇形的圆心角为α(0<α<2π),半径为r ,面积为S ,弧长为l , 则l +2r =30, 故l =30-2r , 从而S =12lr =12(30-2r )r=-r 2+15r=-⎝⎛⎭⎫r -1522+2254⎝⎛⎭⎫15π+1<r <15, 所以,当r =152cm 时,α=2,扇形面积最大,最大面积为2254cm 2.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是弧度与角度的换算、扇形的弧长公式和面积公式,难点是对弧度制概念的理解.2.本节要牢记弧度制与角度制的转化公式 (1)π=180°;(2)1°=π180 rad ;(3)1 rad =⎝⎛⎭⎫180π°.3.本节课要重点掌握以下规律方法 (1)弧度制的概念辨析,见讲1; (2)角度与弧度的换算,见讲2;(3)扇形的弧长公式和面积公式的应用,见讲3. 4.本节课的易错点表示终边相同角的集合时,角度与弧度不能混用.课下能力提升(二) [学业水平达标练]题组1 弧度的概念1.下列叙述中正确的是( ) A .1弧度是1度的圆心角所对的弧 B .1弧度是长度为半径的弧 C .1弧度是1度的弧与1度的角之和D .1弧度是长度等于半径长的弧所对的圆心角的大小,它是角的一种度量单位 解析:选D 由弧度的定义知,选项D 正确. 2.与角-π6终边相同的角是( )A.5π6B.π3C.11π6D.2π3解析:选C 与角-π6终边相同的角的集合为{α|α=-π6+2k π,k ∈Z },当k =1时,α=-π6+2π=11π6,故选C.3.角-2912π的终边所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选D -2912π=-4π+1912π,1912π的终边位于第四象限,故选D.题组2 角度与弧度的换算 4.下列转化结果错误的是( ) A .60°化成弧度是π3B .-103π化成度是-600°C .-150°化成弧度是-76πD.π12化成度是15° 解析:选C 对于A ,60°=60³π180=π3;对于B ,-10π3=-103³180°=-600°;对于C ,-150°=-150³π180=-56π;对于D ,π12=112³180°=15°.5.把角-690°化为2k π+α(0≤α<2π,k ∈Z )的形式为________. 解析:法一:-690°=-⎝⎛⎭⎫690³π180=-236π.∵-236π=-4π+π6,∴-690°=-4π+π6.法二:-690°=-2³360°+30°,则-690°=-4π+π6.答案:-4π+π66.已知角α=2 010°.(1)将α改写成θ+2k π(k ∈Z ,0≤θ<2π)的形式,并指出α是第几象限角; (2)在区间[-5π,0)上找出与α终边相同的角; (3)在区间[0,5π)上找出与α终边相同的角. 解析:(1)2 010°=2 010³π180=67π6=5³2π+7π6.又π<7π6<3π2,角α与角7π6的终边相同,故α是第三象限角.(2)与α终边相同的角可以写为β=7π6+2k π(k ∈Z ).又-5π≤β<0,∴k =-3,-2,-1.当k =-3时,β=-29π6;当k =-2时,β=-17π6;当k =-1时,β=-5π6.(3)与α终边相同的角可以写为γ=7π6+2k π(k ∈Z ).又0≤γ<5π,∴k =0,1.当k =0时,γ=7π6;当k =1时,γ=19π6.题组3 扇形的弧长公式和面积公式的应用7.在半径为10的圆中,240°的圆心角所对的弧长为( ) A.403π B.203π C.2003D.4003π 解析:选A 240°=240180π=43π,∴弧长l =43π³10=403π,选A.8.若扇形的面积为3π8,半径为1,则扇形的圆心角为( )A.3π2B.3π4C.3π8D.3π16解析:选B S 扇形=12lR =12(αR )·R =12αR 2,由题中条件可知S 扇形=3π8,R =1,从而α=2S 扇形R 2=3π41=3π4,故选B. 9.一个扇形的面积为1,周长为4,则圆心角的弧度数为________. 解析:设扇形的半径为R ,弧长为l ,则2R +l =4. 根据扇形面积公式S =12lR ,得1=12l ·R .联立⎩⎪⎨⎪⎧2R +l =4,12l ·R =1.解得R =1,l =2,∴α=l R =21=2.答案:210.如图,已知扇形AOB 的圆心角为120°,半径长为6,求弓形ACB 的面积.解:∵120°=120180π=23π,∴l =6³23π=4π,∴AB ︵的长为4π.∵S 扇形OAB =12lr =12³4π³6=12π,如图所示,有S △OAB =12³AB ³OD (D 为AB 中点)=12³2³6cos 30°³3=9 3. ∴S 弓形ACB =S 扇形OAB -S △OAB =12π-9 3. ∴弓形ACB 的面积为12π-9 3.[能力提升综合练]1.角α的终边落在区间⎝⎛⎭⎫-3π,-5π2内,则角α所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选C -3π的终边在x 轴的非正半轴上,-5π2的终边在y 轴的非正半轴上,故角α为第三象限角.2.如果1弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长为( ) A.1sin 0.5B .sin 0.5C .2sin 0.5D .tan 0.5解析:选A 连接圆心与弦的中点,则弦心距、弦长的一半、半径构成一个直角三角形.弦长的一半为1,弦所对的圆心角也为1,所以圆的半径为1sin 0.5,所以该圆心角所对的弧长为1³1sin 0.5=1sin 0.5,故选A.3.圆弧长度等于其所在圆内接正三角形的边长,则该圆弧所对圆心角的弧度数为( ) A.π3 B.2π3C.3D .2 解析:选C 如图,设圆的半径为R ,则圆的内接正三角形的边长为3R ,所以圆弧长度为3R 的圆心角的弧度数α=3RR= 3.4.集合P ={α|2k π≤α≤(2k +1)π,k ∈Z },Q ={α|-4≤α≤4},则P ∩Q =( ) A .∅B .{α|-4≤α≤-π,或0≤α≤π}C .{α|-4≤α≤4}D .{α|0≤α≤π}解析:选B 如图,在k ≥1或k ≤-2时,[2k π,(2k +1)π]∩[-4,4]为空集,分别取k =-1,0,于是A ∩B ={α|-4≤α≤-π,或0≤α≤π}.5.在△ABC 中,若A ∶B ∶C =3∶5∶7,则角A ,B ,C 的弧度数分别为________. 解析:A +B +C =π,又A ∶B ∶C =3∶5∶7,所以A =π5,B =π3,C =7π15.答案:π5,π3,7π156.若角α的终边与8π5角的终边相同,则在[0,2π]上,终边与α4角的终边相同的角是________.解析:由题意,得α=8π5+2k π,∴α4=2π5+k π2(k ∈Z ). 令k =0,1,2,3,得α4=2π5,9π10,7π5,19π10.答案:2π5,9π10,7π5,19π107.已知α=-800°.(1)把α改写成β+2k π(k ∈Z ,0≤β<2π)的形式,并指出α是第几象限角;(2)求γ,使γ与α的终边相同,且γ∈⎝⎛⎭⎫-π2,π2.解:(1)∵-800°=-3³360°+280°,280°=14π9,∴α=-800°=14π9+(-3)³2π.∵α与14π9角终边相同,∴α是第四象限角.(2)∵与α终边相同的角可写为2k π+14π9,k ∈Z 的形式,而γ与α的终边相同,∴γ=2k π+14π9,k ∈Z .又γ∈⎝⎛⎭⎫-π2,π2,∴-π2<2k π+14π9<π2,k ∈Z ,解得k =-1,∴γ=-2π+14π9=-4π9.8.如图所示,已知一长为3dm ,宽为1 dm 的长方体木块在桌面上做无滑动的翻滚,翻滚到第四次时被一小木板挡住,使木块底面与桌面成30°的角.求点A 走过的路径长及走过的弧所在扇形的总面积.解:AA 1︵所在的圆半径是2 dm ,圆心角为π2;A 1A 2︵所在的圆半径是1 dm ,圆心角为π2;A 2A 3所在的圆半径是3dm ,圆心角为π3,所以点A 走过的路径长是三段圆弧之和,即2³π2+1³π2+3³π3=(9+23)π6(dm).三段圆弧所在扇形的总面积是12³π³2+12³π2³1+12³3π3³3=7π4(dm 2).第1课时 三角函数的定义[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 11~P 15的内容,回答下列问题.如图,设锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,那么它的终边在第一象限.在α的终边上任取一点P (a ,b ),它与原点的距离r =a 2+b 2>0.过P 作x 轴的垂线,垂足为M ,则线段OM 的长度为a ,线段MP 的长度为b .(1)根据初中学过的三角函数定义,你能表示出sin α,cos α,tan α的值吗?提示:sin_α=MP OP =b r ,cos_α=OM OP =a r ,tan_α=MP OM =ba.(2)根据相似三角形的知识,对于确定的角α,请问(1)的结果会随点P 在α终边上的位置的改变而改变吗?提示:不会随P 点在终边上的位臵的改变而改变.(3)若将点P 取在使线段OP 的长r =1的特殊位置上,如图所示,则sin α,cos α,tan α各为何值?提示:sin_α=b ,cos_α=a ,tan_α=ba.(4)以上3个问题中的角α为锐角,若α是一个任意角,上述结论还成立吗? 提示:上述结论仍然成立.(5)一般地,设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α,cos α,tan α为何值?提示:sin_α=y r ,cos_α=x r ,tan_α=yx .2.归纳总结,核心必记 (1)任意角的三角函数的定义α=y ; (3)规律:一全正、二正弦、三正切、四余弦. (4)公式一①终边相同的角的同一三角函数的值相等. ②公式:sin(α+k ·2π)=sin_α, cos(α+k ·2π)=cos_α,tan(α+k ·2π)=tan_α,其中k ∈Z .[问题思考]。

高中数学 阶段质量检测(一)(含解析)新人教A版必修4-新人教A版高一必修4数学试题

高中数学 阶段质量检测(一)(含解析)新人教A版必修4-新人教A版高一必修4数学试题

阶段质量检测(一)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若角α的终边经过点P (-1,3),则tan α的值为( ) A .-13 B .-3C .-1010 D.31010解析:选B 由定义,若角α的终边经过点P (-1,3),∴tan α=-3.故选B. 2.若sin α=33,π2<α<π,则sin ⎝⎛⎭⎪⎫α+π2=( )A .-63 B .-12C.12 D.63解析:选A ∵sin ⎝ ⎛⎭⎪⎫π2+α=cos α,又π2<α<π,sin α=33,∴cos α=-63. 3.已知扇形的半径为r ,周长为3r ,则扇形的圆心角等于( ) A.π3 B .1C.2π3D .3 解析:选B 弧长l =3r -2r =r ,则圆心角α=lr=1.4.函数f (x )=sin ⎝⎛⎭⎪⎫x -π4的图象的一条对称轴是( )A .x =π4B .x =π2C .x =-π4D .x =-π2解析:选C f (x )=sin ⎝ ⎛⎭⎪⎫x -π4的图象的对称轴为x -π4=k π+π2,k ∈Z ,得x =k π+3π4, 当k =-1时,则其中一条对称轴为x =-π4.5.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( )A .y =sin ⎝ ⎛⎭⎪⎫x +π2B .y =cos ⎝⎛⎭⎪⎫x +π2C .y =cos ⎝ ⎛⎭⎪⎫2x +π2D .y =sin ⎝⎛⎭⎪⎫2x +π2 解析:选D 周期为π,排除A ,B ;y =cos ⎝ ⎛⎭⎪⎫2x +π2=-sin 2x 在⎣⎢⎡⎦⎥⎤π4,π2上为增函数,y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x 在⎣⎢⎡⎦⎥⎤π4,π2上为减函数,所以选D.6.函数f (x )=tan ⎝⎛⎭⎪⎫x +π4的单调增区间为( )A.⎝⎛⎭⎪⎫k π-π2,k π+π2,k ∈ZB .(k π,(k +1)π),k ∈Z C.⎝⎛⎭⎪⎫k π-3π4,k π+π4,k ∈Z D.⎝⎛⎭⎪⎫k π-π4,k π+3π4,k ∈Z 解析:选C 令k π-π2<x +π4<k π+π2,k ∈Z ,解得k π-3π4<x <k π+π4,k ∈Z ,选C.7.已知sin ⎝ ⎛⎭⎪⎫π4+α=32,则sin ⎝ ⎛⎭⎪⎫3π4-α的值为( )A.12 B .-12C.32 D .-32 解析:选C ∵⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫3π4-α=π,∴3π4-α=π-⎝ ⎛⎭⎪⎫π4+α,∴sin ⎝⎛⎭⎪⎫3π4-α=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π4+α=sin ⎝ ⎛⎭⎪⎫π4+α=32.8.为了得到函数y =sin ⎝ ⎛⎭⎪⎫2x -π6的图象,可以将函数y =cos 2x 的图象( )A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度解析:选B 函数y =sin ⎝ ⎛⎭⎪⎫2x -π6=cos π2-2x -π6=cos ⎝ ⎛⎭⎪⎫2π3-2x =cos ⎝ ⎛⎭⎪⎫2x -2π3=cos2x -π3.故选B.9.函数y =cos 2x +sin x ⎝ ⎛⎭⎪⎫-π6≤x ≤π6的最大值与最小值之和为( )A.32 B .2C .0 D.34解析:选A f (x )=1-sin 2x +sin x =-⎝ ⎛⎭⎪⎫sin x -122+54,∵-π6≤x ≤π6,∴-12≤sin x ≤12.当sin x =-12时,f (x )min =14;当sin x =12时,f (x )max =54,∴f (x )min +f (x )max =14+54=32.10.同时具有下列性质的函数可以是( ) ①对任意x ∈R ,f (x +π)=f (x )恒成立; ②图象关于直线x =π3对称;③在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数. A .f (x )=sin ⎝ ⎛⎭⎪⎫x 2+π6 B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6 C .f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3 D .f (x )=cos ⎝⎛⎭⎪⎫2x -π6解析:选B 依题意知,满足条件的函数的周期是π,图象以直线x =π3为对称轴,且在⎣⎢⎡⎦⎥⎤-π6,π3上是增函数.对于A 选项,函数周期为4π,因此A 选项不符合;对于C 选项,f ⎝ ⎛⎭⎪⎫π3=-1,但该函数在⎣⎢⎡⎦⎥⎤-π6,π3上不是增函数,因此C 选项不符合;对于D 选项,f ⎝ ⎛⎭⎪⎫π3≠±1,即函数图象不以直线x =π3为对称轴,因此D 选项不符合.综上可知,应选B.11.已知函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为( )A .y =2sin ⎝⎛⎭⎪⎫2x -π4 B .y =2sin ⎝ ⎛⎭⎪⎫2x -π4或y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 C .y =2sin ⎝ ⎛⎭⎪⎫2x +3π4 D .y =2sin ⎝⎛⎭⎪⎫2x -3π4 解析:选C 由图象可知A =2,因为π8-⎝ ⎛⎭⎪⎫-π8=π4,所以T =π,ω=2.当x =-π8时,2sin ⎝ ⎛⎭⎪⎫-π8·2+φ=2,即sin ⎝⎛⎭⎪⎫φ-π4=1,又|φ|<π,解得φ=3π4.故函数的解析式为y =2sin ⎝⎛⎭⎪⎫2x +3π4. 12.函数f (x )=A sin ωx (ω>0),对任意x 有f ⎝ ⎛⎭⎪⎫x -12=f ⎝ ⎛⎭⎪⎫x +12,且f ⎝ ⎛⎭⎪⎫-14=-a ,那么f ⎝ ⎛⎭⎪⎫94等于( )A .aB .2aC .3aD .4a解析:选A 由f ⎝ ⎛⎭⎪⎫x -12=f ⎝ ⎛⎭⎪⎫x +12,得f (x +1)=f ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫x +12+12=f ⎝ ⎛⎭⎪⎫x +12-12=f (x ),即1是f (x )的周期.而f (x )为奇函数,则f ⎝ ⎛⎭⎪⎫94=f ⎝ ⎛⎭⎪⎫14=-f ⎝ ⎛⎭⎪⎫-14=a .二、填空题(本大题共4小题,每小题5分,共20分) 13.已知tan α=-3,π2<α<π,那么cos α-sin α的值是________. 解析:因为π2<α<π,所以cos α<0,sin α>0,所以cos α=-cos 2α=-cos 2αcos 2α+sin 2α=-11+tan 2α=-11+3=-12.sin α=32,所以cos α-sin α=-1+32.答案:-1+3214.函数f (sin x )=cos 2x ,那么f ⎝ ⎛⎭⎪⎫12的值为________. 解析:令sin x =12,得x =2k π+π6或x =2k π+5π6,k ∈Z ,所以f ⎝ ⎛⎭⎪⎫12=cos π3=12. 答案:1215.定义运算a *b 为a *b =⎩⎪⎨⎪⎧aa ≤b ,b a >b ,例如1*2=1,则函数f (x )=sin x *cos x的值域为________.解析:由题意可知,这实际上是一个取小的自定义函数,结合函数的图象可得其值域为⎣⎢⎡⎦⎥⎤-1,22.答案:⎣⎢⎡⎦⎥⎤-1,22 16.给出下列4个命题:①函数y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期是π2;②直线x =7π12是函数y =2sin ⎝ ⎛⎭⎪⎫3x -π4的一条对称轴;③若sin α+cos α=-15,且α为第二象限角,则tan α=-34;④函数y =cos(2-3x )在区间⎝ ⎛⎭⎪⎫23,3上单调递减.其中正确的是________.(写出所有正确命题的序号).解析:函数y =sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期是π,则y =⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫2x -π12的最小正周期为π2,故①正确. 对于②,当x =7π12时,2sin ⎝⎛⎭⎪⎫3×7π12-π4=2sin 3π2=-2,故②正确.对于③,由(sin α+cos α)2=125得2sin αcos α=-2425,α为第二象限角,所以sin α-cos α=1-2sin αcos α=75,所以sin α=35,cos α=-45,所以tan α=-34,故③正确. 对于④,函数y =cos(2-3x )的最小正周期为2π3,而区间⎝ ⎛⎭⎪⎫23,3长度73>2π3,显然④错误.答案:①②③三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知tan α+1tan α=52,求2sin 2(3π-α)-3cos π2+αsin ⎝ ⎛⎭⎪⎫3π2-α+2的值.解:tan α+1tan α=52,即2tan 2α-5tan α+2=0,解得tan α=12或tan α=2.2sin 2(3π-α)-3cos ⎝ ⎛⎭⎪⎫π2+αsin ⎝ ⎛⎭⎪⎫3π2-α+2 =2sin 2α-3sin αcos α+2 =2sin 2α-3sin αcos αsin 2α+cos 2α+2 =2tan 2α-3tan αtan 2α+1+2. 当tan α=12时,原式=2×⎝ ⎛⎭⎪⎫122-3×12⎝ ⎛⎭⎪⎫122+1+2=-45+2=65;当tan α=2时,原式=2×22-3×222+1+2=25+2=125. 18.(12分)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6,x ∈R .(1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x )的单调递增区间. 解:(1)f ⎝⎛⎭⎪⎫5π4=2sin ⎝⎛⎭⎪⎫13×5π4-π6=2sin π4= 2(2)令2k π-π2≤13x -π6≤π2+2k π,k ∈Z ,所以2k π-π3≤13x ≤2π3+2k π,k ∈Z ,解得6k π-π≤x ≤2π+6k π,k ∈Z ,所以函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6的单调递增区间为[6k π-π,2π+6k π],k ∈Z .19.(12分)已知函数f (x )=3sin ⎝⎛⎭⎪⎫x +π4.(1)用五点法画出它在一个周期内的闭区间上的图象; (2)写出f (x )的值域、最小正周期、对称轴,单调区间.解:(1)列表如下:x -π4 π4 3π4 5π4 7π4 x +π4π2 π3π2 2πsin ⎝ ⎛⎭⎪⎫x +π40 10 -13sin ⎝⎛⎭⎪⎫x +π4 0 3 0 -3 0描点画图如图所示.(2)由图可知,值域为[-3,3],最小正周期为2π, 对称轴为x =π4+k π,k ∈Z ,单调递增区间为⎣⎢⎡⎦⎥⎤-3π4+2k π,π4+2k π(k ∈Z ),单调递减区间为⎣⎢⎡⎦⎥⎤π4+2k π,5π4+2k π(k ∈Z ).20.(12分)如图,函数y =2sin(πx +φ),x ∈R ⎝ ⎛⎭⎪⎫其中0≤φ≤π2的图象与y 轴交于点(0,1).(1)求φ的值;(2)求函数y =2sin(πx +φ)的单调递增区间; (3)求使y ≥1的x 的集合. 解:(1)因为函数图象过点(0,1), 所以2sin φ=1,即sin φ=12.因为0≤φ≤π2,所以φ=π6.(2)由(1)得y =2sin ⎝⎛⎭⎪⎫πx +π6,所以当-π2+2k π≤πx +π6≤π2+2k π,k ∈Z ,即-23+2k ≤x ≤13+2k ,k ∈Z 时,y =2sin ⎝⎛⎭⎪⎫πx +π6是增函数,故y =2sin ⎝⎛⎭⎪⎫πx +π6的单调递增区间为⎣⎢⎡⎦⎥⎤-23+2k ,13+2k ,k ∈Z . (3)由y ≥1,得sin ⎝⎛⎭⎪⎫πx +π6≥12,所以π6+2k π≤πx +π6≤5π6+2k π,k ∈Z ,即2k ≤x ≤23+2k ,k ∈Z ,所以y ≥1时,x 的集合为⎩⎨⎧⎭⎬⎫x |2k ≤x ≤23+2k ,k ∈Z .21.(12分)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π),在同一周期内,当x =π12时,f (x )取得最大值3;当x =7π12时,f (x )取得最小值-3. (1)求函数f (x )的解析式;(2)求函数f (x )的单调递减区间;(3)若x ∈⎣⎢⎡⎦⎥⎤-π3,π6时,函数h (x )=2f (x )+1-m 的图象与x 轴有两个交点,某某数m 的取值X 围.解:(1)由题意,A =3,T =2⎝⎛⎭⎪⎫7π12-π12=π,ω=2πT =2.由2×π12+φ=π2+2k π,k ∈Z ,得φ=π3+2k π,k ∈Z ,又因为-π<φ<π,所以φ=π3.所以f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π3.(2)由π2+2k π≤2x +π3≤3π2+2k π,k ∈Z ,得π6+2k π≤2x ≤7π6+2k π,k ∈Z , 则π12+k π≤x ≤7π12+k π,k ∈Z , 所以函数f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π(k ∈Z ).(3)由题意知,方程sin ⎝ ⎛⎭⎪⎫2x +π3=m -16在⎣⎢⎡⎦⎥⎤-π3,π6上有两个根.因为x ∈⎣⎢⎡⎦⎥⎤-π3,π6,所以2x +π3∈⎣⎢⎡⎦⎥⎤-π3,2π3.所以m -16∈⎣⎢⎡⎭⎪⎫32,1.所以m ∈[33+1,7).22.(12分)已知函数f (x )=sin(ωx +φ)-b (ω>0,0<φ<π)的图象两相邻对称轴之间的距离是π2.若将f (x )的图象先向右平移π6个单位长度,再向上平移3个单位长度,所得图象对应的函数g (x )为奇函数.(1)求f (x )的解析式;(2)求f (x )的对称轴及单调区间;(3)若对任意x ∈⎣⎢⎡⎦⎥⎤0,π3,f 2(x )-(2+m )f (x )+2+m ≤0恒成立,某某数m 的取值X 围.解:(1)因为2πω=2×π2,所以ω=2,所以f (x )=sin(2x +φ)-b .又因为函数g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+φ-b +3为奇函数,且0<φ<π,所以φ=π3,b =3,故f (x )=sin ⎝⎛⎭⎪⎫2x +π3- 3. (2)令2x +π3=π2+k π,k ∈Z ,得对称轴为直线x =π12+k π2,k ∈Z .令2x +π3∈⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z ,得单调递增区间为⎣⎢⎡⎦⎥⎤-5π12+k π,π12+k π,k ∈Z ,令2x +π3∈⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π,k ∈Z ,得单调递减区间为⎣⎢⎡⎦⎥⎤π12+k π,7π12+k π,k ∈Z .(3)因为x ∈⎣⎢⎡⎦⎥⎤0,π3,所以-3≤f (x )≤1-3,所以-1-3≤f (x )-1≤- 3.因为f 2(x )-(2+m )f (x )+2+m ≤0恒成立, 整理可得m ≤1f x -1+f (x )-1.由-1-3≤f (x )-1≤-3,得-1-332≤1f x -1+f (x )-1≤-433, 故m ≤-1-332,即实数m 的取值X 围是⎝ ⎛⎦⎥⎤-∞,-1-332.。

2018-2019学年高中数学人教A版必修4综合质量评估卷含答案

2018-2019学年高中数学人教A版必修4综合质量评估卷含答案

综合质量评估(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin2010°= ( )A.-B.-C.D.【解析】选A.sin2010°=sin(5×360°+210°)=sin210°=-sin30°=-.2.若点在角α的终边上,则sinα的值为( )A.-B.-C.D.【解析】选A.由题意,x=sin=,y=cos=-,r=1,所以sinα==-.3.(2018·石家庄高一检测)若tanθ=2,则的值为( )A.-B.C.-D.【解析】选D.因为tanθ=2,则====.4.已知a与b是非零向量且满足(a-6b)⊥a,(2a-3b)⊥b,则a与b的夹角是( )A. B. C.π D.π【解析】选B.根据条件:(a-6b)·a=a2-6a·b=0;(2a-3b)·b=2a·b-3b2=0;因为|a|≠0,|b|≠0;所以|a|=6|b|cos<a,b>①,3|b|=2|a|cos<a,b>②;所以3|a||b|=12|a||b|cos2<a,b>,所以cos2<a,b>=;所以cos<a,b>=,所以a,b的夹角为.5.已知扇形的圆心角为π弧度,半径为2,则扇形的面积是( )A.πB.C.2πD.π【解析】选D.由S扇形=|α|R2,可得S扇形=×π×22=π.6.若α,β都是锐角,且cosα=,sin(α-β)=,则cosβ= ( )A. B.C.或-D.或【解析】选A.因为cosα=,所以sinα=,因为α,β都是锐角,所以-<α-β<,因为sin(α-β)=>0,所以0<α-β<,所以cos(α-β)=,所以cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=.7. (2018·日照高一检测)已知A(3,0),B(0,3),C(cosα,sinα),若·=-1,则sin的值为( ) A. B. C. D.【解析】选B.因为=(cosα-3,sinα),=(cosα,sinα-3),所以·=(cosα-3)·cosα+sinα(sinα-3)=-1,得cos2α+sin2α-3(cosα+sinα)=-1,所以sinα+cosα=,故sin=(sinα+cosα)=×=.8.已知a=(2,3),b=(-4,7),则a在b上的投影为( )A. B. C. D.【解析】选C9.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则f(x)的递增区间为( )A.,k∈ZB.,k∈ZC.,k∈ZD.,k∈Z【解析】选B.由图象可知A=2,T=-=,所以T=π,故ω=2.由五点法作图可得2·+φ=0,求得φ=-,所以f(x)=2sin.由2x-∈(k∈Z),得x∈(k∈Z),所以f(x)的递增区间是(k∈Z).10.设函数f(x)=cos,则下列结论错误的是( )A.f(x)的一个周期为-2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在内单调递减【解析】选D.当x∈时,x+∈,函数在该区间内不单调.11.如图,四边形OABC是边长为1的正方形,OD=3,点P为△BCD内(含边界)的动点,则|+|的取值范围为( )A. B.[,4]C.[,]D.【解析】选 B.以O为原点建立平面直角坐标系,如图所示:则C(0,1),A(1,0), D(3,0),设P(x,y),则+=(x+1,y),所以|+|=,设M(-1,0),则|+|=||,由图可知当P与C重合时||取得最小值,当P与D重合时,||取得最大值4,所以|+|的取值范围是[,4].12.已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则·(+)的最小值是( )A.-2B.-C.-D.-1【解析】选B.以BC为x轴,BC的垂直平分线AD为y轴,D为坐标原点建立坐标系,则A(0,),B(-1,0),C(1,0),设P(x,y),所以=(-x,-y),=(-1-x,-y),=(1-x,-y),所以+=(-2x,-2y),·(+)=2x2-2y(-y)=2x2+2-≥-,当P时,所求的最小值为-.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.将函数y=sin的图象上的所有点向右平移个单位,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得的图象的函数解析式为________.【解析】将函数y=sin的图象上的所有点向右平移个单位,得到函数y=sin=sin2x的图象,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得的图象的函数解析式为y=sin4x.答案:y=sin4x14.=________.【解析】原式===.答案:15.设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m=________. 【解析】由已知得:a+b=(m+1,3),所以|a+b|2=|a|2+|b|2⇒(m+1)2+32=m2+12+12+22,解得m=-2.答案:-216.已知e1,e2是互相垂直的单位向量,若e1+e2与e1-λe2夹角为60°,则实数λ的值是________.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图,在△ABC中,已知AB=2,AC=6,∠BAC=60°,点D,E分别在边AB,AC上,且=2,=5,(1)若=-+,求证:点F为DE的中点.(2)在(1)的条件下,求·的值.【解析】(1)因为=-+,所以=-=+,又=2,=5,所以=+,所以F为DE的中点.(2)由(1)可得==(-),因为=2,=5,所以=-,所以·=-·=-+·=-×4+×2×6×cos60°=-.18.(12分)已知a=(sinx,cosx),b=(cosx,cosx),f(x)=2a·b+2m-1(x,m∈R). (1)求f(x)的对称轴方程.(2)若x∈时,f(x)的最小值为5,求m的值.【解析】(1)a·b=sinxcosx+cos2x=sin2x+cos2x+=sin+;所以f(x)=2sin+2m;令2x+=+kπ,k∈Z;所以f(x)的对称轴方程为x=+,k∈Z.(2)因为x∈,所以≤2x+≤;所以2x+=时,f(x)min=2×+2m=5;所以m=3.19.(12分)已知函数f(x)=+cos2x-sin2x.(1)求函数f(x)的最小正周期和单调递减区间.(2)在所给坐标系中画出函数在区间的图象(只作图不写过程).【解析】f(x)=+cos2x =sin2x+cos2x=sin.(1)函数f(x)的最小正周期T==π, 令2kπ+≤2x+≤2kπ+π,k∈Z,则2kπ+≤2x≤2kπ+π,k∈Z,故kπ+≤x≤kπ+π,k∈Z,所以函数f(x)的单调递减区间为(k∈Z).(2)图象如下:20.(12分)(2018·山东高考)设函数f(x)=sin(ωx-)+sin(ωx-),其中0<ω<3,已知f=0,(1)求ω.(2)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在上的最小值.【解析】(1)因为f(x)=sin+sin,所以f(x)=sinωx-cosωx-cosωx=sinωx-cosωx==sin,由题设知f=0,所以-=kπ,k∈Z.故ω=6k+2,k∈Z,又0<ω<3,所以ω=2.(2)由(1)得f(x)=sin,所以g(x)=sin=sin,因为x∈,所以x-∈,当x-=-,即x=-时,g(x)取得最小值-.21.(12分)已知函数f(x)=sin+b(ω>0),且函数图象的对称中心到对称轴的最小距离为,当x∈时,f(x)的最大值为1.(1)求函数f(x)的解析式.(2)将函数f(x)的图象向右平移个单位长度得到函数g(x)的图象,若g(x)-3≤m≤g(x)+3在x∈上恒成立,求实数m的取值范围. 【解析】(1)因为函数f(x)=sin+b(ω>0),且函数图象的对称中心到对称轴的最小距离为,所以=,可得T=π,由=π,可得ω=2,所以f(x)=sin+b,因为当x∈时,2x-∈,由y=sinx在上单调递增,可得当2x-=,即x=时,函数f(x)取得最大值f=sin+b,所以sin+b=1,解得b=-,所以f(x)=sin-.(2)将函数f(x)的图象向右平移个单位长度得到函数解析式为:g(x)=sin-=sin-,因为当x∈时,2x-∈,g(x)=sin-∈[-2,1],所以g(x)-3∈[-5,-2],g(x)+3∈[1,4],因为g(x)-3≤m≤g(x)+3在x∈上恒成立,所以m∈[-2,1].22.(12分)如图所示,已知OPQ是半径为1,圆心角为的扇形,四边形ABCD是扇形的内接矩形,B,C两点在圆弧上,OE是∠POQ的平分线,E在上,连接OC,记∠COE=α,则角α为何值时矩形ABCD的面积最大?并求最大面积.【解析】设OE交AD于M,交BC于N,显然矩形ABCD关于OE对称,而M,N分别为AD,BC的中点,在Rt△ONC中,CN=sinα,ON=cosα,OM==DM=CN=sinα,所以MN=ON-OM=cosα-sinα,即AB=cosα-sinα,而BC=2CN=2sinα,故S矩形ABCD=AB·BC=(cosα-sinα)·2sinα=2sinαcosα-2sin2α=sin2α-(1-cos2α)=sin2α+cos2α-=2-=2sin-.因为0<α<,所以0<2α<,<2α+<,故当2α+=,即α=时,S矩形ABCD取得最大值,此时S矩形ABCD=2-.。

新人教A版高中数学必修四全册同步课时练习(附答案)

新人教A版高中数学必修四全册同步课时练习(附答案)

新人教A 版高中数学必修四全册课时练习任意角(建议用时:45分钟)[基础达标练]一、选择题1.角-870°的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限C [-870°=-3×360°+210°,∴-870°是第三象限角,故选C .] 2.在-360°~0°范围内与角1 250°终边相同的角是( ) A .170° B .190° C .-190°D .-170°C [与1 250°角的终边相同的角为α=1 250°+k ·360°,k ∈Z ,因为-360°<α<0°,所以-16136<k <-12536,因为k ∈Z ,所以k =-4,所以α=-190°.]3.把-1 485°转化为α+k ·360°(0°≤α<360°,k ∈Z )的形式是( ) A .45°-4×360° B .-45°-4×360° C .-45°-5×360°D .315°-5×360°D [∵1 485°÷360°=4.125,∴-1 485°=-4×360°-45°或写成-1 485°=-5×360°+315°.∵0°≤α<360°,故-1 485°=315°-5×360°.] 4.若α=k ·180°+45°,k ∈Z ,则α所在象限是( ) A .第一或第三象限 B .第一或第二象限 C .第二或第四象限D .第三或第四象限A [当k =0时,α=45°为第一象限角,当k =1时,α=225°为第三象限角.] 5.已知角α=45°,β=315°,则角α与β的终边( ) A .关于x 轴对称B .关于y 轴对称C .关于直线y =x 对称D .关于原点对称A [α是第一象限角,β是第四象限角且45°=0°+45°与360°+45°终边相同,315°=360°-45°.]二、填空题6.若时针走过2小时40分,则分针走过的角是________.-960° [40分=23小时,23×360°=240°,因为时针按顺时针旋转,故形成负角,-360°×2-240°=-960°.]7.与2 013°角的终边相同的最小正角是________,绝对值最小的角是________.213°-147°[与2 013°角的终边相同的角为2 013°+k·360°(k∈Z).当k=-5时,213°为最小正角;当k=-6时,-147°为绝对值最小的角.]8.若α,β两角的终边互为反向延长线,且α=-120°,则β=________.k·360°+60°(k∈Z)[在0°~360°范围内与α=-120°的终边互为反向延长线的角是60°,所以β=k·360°+60°(k∈Z).]三、解答题9.已知角β的终边在直线3x-y=0上.(1)写出角β的集合S;(2)写出集合S中适合不等式-360°<β<720°的元素.[解](1)因为角β的终边在直线3x-y=0上,且直线3x-y=0的倾斜角为60°,所以角β的集合S={β|β=60°+k·180°,k∈Z}.(2)在S={β|β=60°+k·180°,k∈Z}中,取k=-2,得β=-300°,取k=-1,得β=-120°,取k=0,得β=60°,取k=1,得β=240°,取k=2,得β=420°,取k=3,得β=600°.所以S中适合不等式-360°<β<720°的元素分别是-300°,-120°,60°,240°,420°,600°.10.已知集合A={α|k·180°+45°<α<k·180°+60°,k∈Z},集合B={β|k·360°-55°<β<k·360°+55°,k∈Z}.(1)在平面直角坐标系中,表示出角α终边所在区域;(2)在平面直角坐标系中,表示出角β终边所在区域;(3)求A∩B.[解](1)角α终边所在区域如图①所示.(2)角β终边所在区域如图②所示.图① 图②(3)由(1)(2)知A ∩B ={γ|k ·360°+45°<γ<k ·360°+55°,k ∈Z } .[能力提升练]1.角α与角β的终边关于y 轴对称,则α与β的关系为( ) A .α+β=k ·360°,k ∈Z B .α+β=k ·360°+180°,k ∈Z C .α-β=k ·360°+180°,k ∈Z D .α-β=k ·360°,k ∈ZB [法一:(特殊值法)令α=30°,β=150°,则α+β=180°.故α与β的关系为α+β=k ·360°+180°,k ∈Z .法二:(直接法)因为角α与角β的终边关于y 轴对称,所以β=180°-α+k ·360°,k ∈Z ,即α+β=k ·360°+180°,k ∈Z .]2.若角α满足180°<α<360°,角5α与α有相同的始边,且又有相同的终边,那么角α=________.270° [由于5α与α的始边和终边相同,所以这两角的差应是360°的整数倍,即5α-α=4α=k ·360°.又180°<α<360°,令k =3,得α=270°.]弧度制(建议用时:45分钟)[基础达标练]一、选择题1.下列说法中,错误的是( )A .“度”与“弧度”是度量角的两种不同的度量单位B .1°的角是周角的1360,1 rad 的角是周角的12πC .1 rad 的角比1°的角要大D .用角度制和弧度制度量角,都与圆的半径有关D [ 无论是角度制度量角还是弧度制度量角,都与圆的半径没有关系.] 2.29π6是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角B [29π6=4π+5π6.∵56π是第二象限角,∴29π6是第二象限角.]3.在0到2π范围内,与角-4π3终边相同的角是( )A .π6B .π3C .2π3D .4π3C [与角-4π3终边相同的角是2k π+⎝ ⎛⎭⎪⎫-4π3,k ∈Z ,令k =1,可得与角-4π3终边相同的角是2π3,故选C.]4.下列表示中不正确的是( )A .终边在x 轴上角的集合是{α|α=k π,k ∈Z }B .终边在y 轴上角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z C .终边在坐标轴上角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=k π2,k ∈ZD .终边在直线y =x 上角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π4+2k π,k ∈ZD [对于A ,终边在x 轴上角的集合是{α|}α=k π,k ∈Z ,故A 正确;对于B ,终边在y 轴上的角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z ,故B 正确;对于C ,终边在x 轴上的角的集合为{α|}α=k π,k ∈Z ,终边在y 轴上的角的集合为⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z , 故合在一起即为{α|}α=k π,k ∈Z ∪⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π2+k π,k ∈Z =⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=k π2,k ∈Z ,故C 正确;对于D ,终边在直线y =x 上的角的集合是⎩⎨⎧α⎪⎪⎪⎭⎬⎫α=π4+k π,k ∈Z ,故D 不正确.]5.已知扇形的弧长是4 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是( ) A .1 B .2 C .4D .1或4C [因为扇形的弧长为4 cm ,面积为2 cm 2, 所以扇形的面积为12×4×r =2,解得r =1(cm),则扇形的圆心角的弧度数为41=4.故选C.]二、填空题6.把角-274π用角度制表示为________.-1 215° [-274π=-274×180°=-1 215°.]7.在△ABC 中,若A ∶B ∶C =3∶5∶7,则角A ,B ,C 的弧度数分别为______________. π5,π3,7π15 [因为A +B +C =π, 又A ∶B ∶C =3∶5∶7,所以A =3π3+5+7=π5,B =5π3+5+7=π3,C =7π15.]8.圆的一段弧长等于该圆外切正三角形的外边,则这段弧所对圆心角的弧度数是________.2 3 [设圆的半径为r ,外切正三角形边长为a ,则32a ×13=r ,则r =36a ,又弧长为a ,所以圆心角为:ar=a36a =63=2 3.]三、解答题9.已知角α=2 010°.(1)将α改写成β+2k π(k ∈Z ,0≤β<2π)的形式,并指出α是第几象限的角; (2)在区间[-5π,0)上找出与α终边相同的角. [解] (1)2 010°=2 010×π180=67π6=5×2π+7π6.又π<7π6<3π2,∴α与7π6终边相同,是第三象限的角.(2)与α终边相同的角可以写成γ=7π6+2k π(k ∈Z ),又-5π≤γ<0,∴当k =-3时,γ=-296π;当k =-2时,γ=-176π;当k =-1时,γ=-56π.∴在区间[-5π,0)上与α终边相同的角为-296π,-176π,-56π.10.已知半径为10的圆O 中,弦AB 的长为10. (1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形的弧长l 及弧所在的弓形的面积S . [解] (1)由⊙O 的半径r =10=AB , 知△AOB 是等边三角形, ∴α=∠AOB =60°=π3.(2)由(1)可知α=π3,r =10,∴弧长l =α·r =π3×10=10π3,∴S 扇形=12lr =12×10π3×10=50π3,而S △AOB =12·AB ·53=12×10×53=253,∴S =S 扇形-S △AOB =25⎝⎛⎭⎪⎫2π3-3.[能力提升练]1.若角α与角x +π4有相同的终边,角β与角x -π4有相同的终边,那么α与β间的关系为( )A .α+β=0B .α-β=0C .α+β=2k π(k ∈Z )D .α-β=π2+2k π(k ∈Z )D [∵α=2k 1π+x +π4,β=2k 2π+x -π4(k 1,k 2∈Z ),∴α-β=2(k 1-k 2)π+π2,也即α-β=π2+2k π(k ∈Z ).]2.已知集合A ={x |2k π≤x ≤2k π+π,k ∈Z },集合B ={x |-4≤x ≤4},则A ∩B =________________.[-4,-π]∪[0,π] [如图所示,∴A ∩B =[-4,-π]∪[0,π].]任意角的三角函数(建议用时:60分钟)[基础达标练]一、选择题1.sin(-1 380°)的值为( ) A .-12B .12C .-32D .32D [sin(-1 380°)=sin(-4×360°+60°)=sin 60°=32.] 2.如果角α的终边过点P (2sin 30°,-2cos 30°),则sin α的值等于( ) A .12 B .-12C .-32D .-33C [sin 30°=12,cos 30°=32,∴P 点坐标为(1,-3),r =12+(-3)2=2,∴sin α=-32.] 3.已知角α的终边在函数y =-|x |的图象上,则cos α的值为( ) A .22B .-22C .22或-22D .12C [由y =-|x |的图象知,α的终边落在第三、四象限的角平分线上,当α终边落在第三象限时,cos α=-22;当α终边落在第四象限时,cos α=22.] 4.θ是第二象限角,则下列选项中一定为正值的是( ) A .sin θ2B .cos θ2C .tan θ2D .cos 2θC [∵θ是第二象限角,则θ2一定是第一或第三象限角,这时tan θ2一定为正值,故选C.]5.某点从(1,0)出发,沿单位圆x 2+y 2=1按逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A .⎝ ⎛⎭⎪⎫-12,32 B .⎝ ⎛⎭⎪⎫-32,-12 C .⎝ ⎛⎭⎪⎫-12,-32D .⎝⎛⎭⎪⎫-32,12 A [点(1,0)在x 轴正半轴,由题意可知,θ一定在α=2π3的终边上,∵OQ =1,∴Q 点的坐标为⎝ ⎛⎭⎪⎫cos 2π3,sin 2π3即⎝ ⎛⎭⎪⎫-12,32.] 二、填空题6.在平面直角坐标系中,以x 轴的非负半轴为角的始边,如果角α,β的终边分别与单位圆交于点⎝ ⎛⎭⎪⎫513,1213和⎝ ⎛⎭⎪⎫-35,45,那么sin α·tan β= .-1613[由任意角的正弦、正切函数的定义知 sin α=1213,tan β=45-35=-43,所以sin α·tan β=1213×⎝ ⎛⎭⎪⎫-43=-1613.]7.点P (tan 2 018°,cos 2 018°)位于第 象限. 四 [因为2 018°=5×360°+218°, 所以2 018°与218°终边相同,是第三象限角, 所以tan 2 018°>0,cos 2 018°<0, 所以点P 位于第四象限.]8.已知角α的终边经过点P (x ,-6)且cos α=-45,则x = .-8 [因为|OP |=x 2+(-6)2=x 2+36, 所以cos α=xx 2+36,又cos α=-45,所以xx 2+36=-45,整理得x =-8.]三、解答题 9.化简下列各式:(1)sin 72π+cos 52π+cos(-5π)+tan π4;(2)a 2sin 810°-b 2cos 900°+2ab tan 1 125°. [解] (1)原式=sin 32π+cos π2+cos π+1=-1+0-1+1=-1.(2)原式=a 2sin 90°-b 2cos 180°+2ab tan 45°=a 2+b 2+2ab =(a +b )2. 10.已知1|sin α|=-1sin α,且lg cos α有意义.(1)试判断角α的终边所在的象限;(2)若角α的终边上一点M ⎝ ⎛⎭⎪⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.[解] (1)由1|sin α|=-1sin α,可知sin α<0.由lg cos α有意义,可知cos α>0, ∴角α的终边在第四象限.(2)∵|OM |=1,∴⎝ ⎛⎭⎪⎫352+m 2=1,解得m =±45.又α是第四象限角,故m <0,从而m =-45.由正弦函数的定义可知 sin α=y r =m |OM |=-451=-45.[能力提升练]1.函数y =sin x +-cos x 的定义域是( ) A .(2k π,2k π+π),k ∈Z B .⎣⎢⎡⎦⎥⎤2k π+π2,2k π+π,k ∈Z C .⎣⎢⎡⎦⎥⎤k π+π2,k π+π,k ∈Z D .[]2k π,2k π+π,k ∈ZB [由sin x ≥0,-cos x ≥0,得x 为第二象限角或y 轴正半轴上的角或x 轴负半轴上的角,所以2k π+π2≤x ≤2k π+π,k ∈Z .]2.若角α满足sin α·cos α<0,cos α-sin α<0,则α在( )A .第一象限B .第二象限C .第三象限D .第四象限B [由sin α·cos α<0知α是第二或第四象限角,由cos α-sin α<0,得cos α<sin α,所以α是第二象限角.]3.已知角α的终边过点(-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则cos α= .35 [因为θ∈⎝ ⎛⎭⎪⎫π2,π,所以cos θ<0,r =(-3cos θ)2+(4cos θ)2=5|cos θ|=-5cos θ,所以cos α=-3cos θ-5cos θ=35.]4.函数y =|cos x |cos x +tan x|tan x |的值域为 .{-2,0,2} [已知函数的定义域为⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠k π2,k ∈Z ,即角x 的终边不能落在坐标轴上,当x 是第一象限角时,cos x >0,tan x >0,y =cos x cos x +tan xtan x =1+1=2;当x 是第二象限角时,cos x <0,tan x <0,y =-cos x cos x +-tan xtan x =-1-1=-2;当x 是第三象限角时,cos x <0,tan x >0,y =-cos x cos x +tan xtan x =-1+1=0;当x 是第四象限角时,cos x >0,tan x <0,y =cos x cos x +-tan xtan x =1-1=0.综上知原函数的值域是{-2,0,2}.] 5.已知sin θ<0,tan θ>0. (1)求角θ的集合; (2)求θ2的终边所在的象限;(3)试判断sin θ2cos θ2tan θ2的符号.[解] (1)因为sin θ<0,所以θ为第三、四象限角或在y 轴的负半轴上, 因为tan θ>0,所以θ为第一、三象限角,所以θ为第三象限角,θ角的集合为⎩⎨⎧⎭⎬⎫θ⎪⎪⎪2k π+π<θ<2k π+3π2,k ∈Z .(2)由(1)可得,k π+π2<θ2<k π+3π4,k ∈Z .当k 是偶数时,θ2终边在第二象限;当k 是奇数时,θ2终边在第四象限.(3)由(2)可得当k 是偶数时,sin θ2>0,cos θ2<0,tan θ2<0,所以sin θ2cos θ2tan θ2>0;当k 是奇数时sin θ2<0,cos θ2>0,tan θ2<0,所以sin θ2cos θ2tan θ2>0.综上知,sin θ2cos θ2tan θ2>0.三角函数及其应用(建议用时:45分钟)[基础达标练]一、选择题1.对三角函数线,下列说法正确的是( ) A .对任意角都能作出正弦线、余弦线和正切线 B .有的角的正弦线、余弦线和正切线都不存在C .任意角的正弦线、正切线总是存在的,但余弦线不一定存在D .任意角的正弦线、余弦线总是存在的,但正切线不一定存在D [终边在y 轴上的角的正切线不存在,故A ,C 错,对任意角都能作正弦线、余弦线,故B 错,因此选D .]2.有三个命题:①π6和5π6的正弦线长度相等;②π3和4π3的正切线相同;③π4和5π4的余弦线长度相等.其中正确说法的个数为( )A .1B .2C .3D .0C [π6和5π6的正弦线关于y 轴对称,长度相等;π3和4π3两角的正切线相同;π4和5π4的余弦线长度相等.故①②③都正确,故选C.]3.角α(0<α<2π)的正弦线、余弦线的长度相等,且正弦、余弦符号相异,那么α的值为( )A .π4B .3π4C .7π4D .3π4或7π4D [由已知得角α的终边应落在直线y =-x 上, 又0<α<2π,所以α=3π4或7π4.]4.cos 1,cos 2,cos 3的大小关系是( ) A .cos 1>cos 2>cos 3 B .cos 1>cos 3>cos 2 C .cos 3>cos 2>cos 1D .cos 2>cos 1>cos 3A [作出已知三个角的余弦线(如图),观察图形可知cos 1>0>cos 2>cos 3.] 5.使sin x ≤cos x 成立的x 的一个区间是( )A .⎣⎢⎡⎦⎥⎤-3π4,π4B .⎣⎢⎡⎦⎥⎤-π2,π2C .⎣⎢⎡⎦⎥⎤-π4,3π4 D .[0,π]A [如图,画出三角函数线sin x =MP ,cos x =OM ,由于sin ⎝ ⎛⎭⎪⎫-3π4=cos ⎝ ⎛⎭⎪⎫-3π4, sin π4=cos π4,为使sin x ≤cos x 成立,由图可得在[-π,π]范围内,-3π4≤x ≤π4.]二、填空题6.已知θ∈⎝ ⎛⎭⎪⎫π4,π2,在单位圆中角θ的正弦线、余弦线、正切线分别是MP ,OM ,AT ,则它们从大到小的顺序为 .AT>MP>OM [如图:因为θ∈⎝ ⎛⎭⎪⎫π4,π2,所以θ>π4,根据三角函数线的定义可知AT >MP >OM .]7.利用三角函数线写出满足tan x <3且x ∈(0,2π)的x 的取值范围为 . ⎝⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫π2,4π3 [由tanx <3得k π-π2<x <k π+π3(k ∈Z ),又∵x ∈(0,2π), ∴x 的取值范围为⎝⎛⎭⎪⎫0,π3∪⎝ ⎛⎭⎪⎫π2,4π3.]8.函数y =2cos x -1的定义域为 .⎣⎢⎡⎦⎥⎤-π3+2k π,π3+2k π(k ∈Z ) [因为2cos x -1≥0,所以cos x ≥12.如图:作出余弦值等于12的角:-π3和π3,在图中所示的阴影区域内的每一个角x ,其余弦值均大于或等于12,因而满足cos x ≥12的角的集合为⎣⎢⎡⎦⎥⎤-π3+2k π,π3+2k π(k ∈Z ).所以函数定义域为⎣⎢⎡⎦⎥⎤-π3+2k π,π3+2k π(k ∈Z ).]三、解答题9.已知-12≤sin θ<32,利用单位圆中的三角函数线,确定角θ的范围.[解] 画出三角函数线如图.由图可知角θ的范围是⎩⎨⎧θ⎪⎪⎪⎭⎬⎫2k π-π6≤θ<2k π+π3或2k π+2π3<α≤2k π+7π6,k ∈Z . 10.求下列函数的定义域: (1)f (x )=sin x ·tan x ; (2)f (x )=lg sin x +9-x 2. [解] (1)∵要使函数f (x )有意义,∴sin x ·tan x ≥0,∴sin x 与tan x 同号或sin x ·tan x =0, 故x 是第一、四象限的角或终边在x 轴上的角. ∴函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π-π2<x <2k π+π2或x =(2k +1)π,k ∈Z .(2)由题意,要使f (x )有意义,则⎩⎪⎨⎪⎧sin x >0,9-x 2≥0. 由sin x >0得2k π<x <2k π+π(k ∈Z ), ① 由9-x 2≥0得-3≤x ≤3,②由①②得:f (x )的定义域为{x |0<x ≤3}.[能力提升练]1.在(0,2π)内,使得|sin x |>|cos x |成立的x 的取值范围是( ) A .⎝ ⎛⎭⎪⎫π4,π2∪⎝⎛⎭⎪⎫π,5π4B .⎝ ⎛⎭⎪⎫π4,πC .⎝ ⎛⎭⎪⎫π4,3π4∪⎝ ⎛⎭⎪⎫5π4,7π4D .⎝ ⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫5π4,3π2C [|sin x |>|cos x |可转化为x 的正弦线的长度大于余弦线的长度,观察图形可知:在(0,2π)内,使得|sin x |>|cos x |成立的x 的取值范围是⎝ ⎛⎭⎪⎫π4,3π4∪⎝ ⎛⎭⎪⎫5π4,7π4.]2.点P (sin 3-cos 3,sin 3+cos 3)所在的象限为( ) A .第一象限 B .第二象限 C .第三象限D .第四象限D [∵56π<3<π,作出单位圆如图所示.设MP ,OM 分别为a ,b . sin 3=a >0,cos 3=b <0, 所以sin 3-cos 3>0. 因为|MP |<|OM |,即|a |<|b |, 所以sin 3+cos 3=a +b <0.故点P (sin 3-cos 3,sin 3+cos 3)在第四象限.]同角三角函数的基本关系(建议用时:45分钟)[基础达标练]一、选择题1.已知α是第三象限角,且sin α=-13,则3cos α+4tan α=( )A .- 2B . 2C .- 3D . 3A [因为α是第三象限角,且sin α=-13,所以cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-132=-223, 所以tan α=sin αcos α=122=24,所以3cos α+4tan α=-22+2=- 2.] 2.化简sin 2α+cos 4α+sin 2αcos 2α的结果是( ) A .14 B .12 C .1 D .32C [原式=sin 2α+cos 2α(cos 2α+sin 2α)=sin 2α+cos 2α=1.]3.若α是三角形的一个内角,且sin α+cos α=23,则这个三角形是( )A .正三角形B .直角三角形C .锐角三角形D .钝角三角形D [sin α+cos α=23得1+2sin αcos α=49,所以sin αcos α=-518<0,又因α∈(0,π),所以α为钝角,故三角形为钝角三角形.]4.⎝ ⎛⎭⎪⎫tan x +1tan x cos 2x 等于( ) A .tan x B .sin x C .cos x D .1tan xD [原式=⎝⎛⎭⎪⎫sin x cos x +cos x sin x ·cos 2x=sin 2x +cos 2x sin x cos x ·cos 2x =1sin x cos x ·cos 2x =cos x sin x =1tan x.]5.已知sin θ+cos θ=43⎝ ⎛⎭⎪⎫0<θ<π4,则sin θ-cos θ的值为( )A .23B .-23C .13D .-13B [因为sin θ+cos θ=43⎝ ⎛⎭⎪⎫0<θ<π4,所以两边平方可得:1+2sin θcos θ=169,即sin θ·cos θ=718,所以(sin θ-cos θ)2=1-2sin θcos θ=1-79=29,又因为0<θ<π4,所以sin θ<cos θ,所以sin θ-cos θ<0,所以sin θ-cos θ=-23,故应选B .]二、填空题 6.化简11+tan 220°的结果是 .cos 20° [11+tan 220°=11+sin 220°cos 220°=1cos 220°+sin 220°cos 220°=11cos 220°=|cos 20°|=cos 20°.] 7.已知sin αcos α=12,则sin α-cos α= .0 [(sin α-cos α)2=1-2sin αcos α=1-2×12=0,∴sin α-cos α=0.]8.已知tan α=2,则4sin 2α-3sin αcos α-5cos 2α= . 1 [4sin 2α-3sin αcos α-5cos 2α =4sin 2α-3sin αcos α-5cos 2αsin 2α+cos 2α =4tan 2α-3tan α-5tan 2α+1 =4×4-3×2-54+1=55=1.]三、解答题 9.化简下列各式: (1)sin α1+sin α-sin α1-sin α; (2)⎝⎛⎭⎪⎫1sin α+1tan α(1-cos α).[解] (1)原式=sin α(1-sin α)-sin α(1+sin α)(1+sin α)(1-sin α)=-2sin 2α1-sin 2α=-2sin 2αcos 2α=-2tan 2α.(2)原式=⎝⎛⎭⎪⎫1sin α+cos αsin α(1-cos α) =1+cos αsin α(1-cos α)=sin 2αsin α=sin α.10.已知2cos 2α+3cos αsin α-3sin 2α=1,α∈⎝ ⎛⎭⎪⎫-3π2,-π.求:(1)tan α;(2)2sin α-3cos α4sin α-9cos α. [解] (1)2cos 2α+3cos αsin α-3sin 2α =2cos 2α+3cos αsin α-3sin 2αsin 2α+cos 2α=2+3tan α-3tan 2αtan 2α+1=1, 即4tan 2α-3tan α-1=0, 解得tan α=-14或tan α=1.∵α∈⎝ ⎛⎭⎪⎫-3π2,-π,∴α为第二象限角, ∴tan α<0,∴tan α=-14.(2)原式=2tan α-34tan α-9=720.[能力提升练]1.1-2sin 10°cos 10°sin 10°-1-sin 210°的值为( ) A .1 B .-1 C .sin 10°D .cos 10°B [1-2sin 10°cos 10°sin 10°-1-sin 210° =(cos 10°-sin 10°)2sin 10°-cos 210°=|cos 10°-sin 10°|sin 10°-cos 10°=cos 10°-sin 10°sin 10°-cos 10°=-1.]2.已知sin θ,cos θ是方程2x 2-mx +1=0的两根,则sin θ1-1tan θ+cos θ1-tan θ= .±2 [sin θ1-1tan θ+cos θ1-tan θ=sin θ1-cos θsin θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ=sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ,又因为sin θ,cos θ是方程2x 2-mx +1=0的两根,所以由根与系数的关系得sin θcos θ=12,则(sin θ+cos θ)2=1+2sinθcos θ=2,所以sin θ+cos θ=± 2.]三角函数的诱导公式(1)(建议用时:45分钟)[基础达标练]一、选择题1.已知sin(π+θ)=45,则角θ的终边在( )A .第一或第二象限B .第二或第三象限C .第一或第四象限D .第三或第四象限D [sin(π+θ)=-sin θ=45,∴sin θ=-45<0,所以θ为第三或第四象限角.]2.sin 2(2π-α)+cos(π+α)cos(π-α)+1的值是( ) A .1 B .2 C .0 D .-1 B [原式=sin 2α+(-cos α)·(-cos α)+1 =sin 2α+cos 2α+1=1+1=2.]3.已知600°角的终边上有一点P (a ,-3),则a 的值为( ) A . 3 B .- 3 C.33 D .-33B [由题意得tan 600°=-3a,又因为tan 600°=tan(360°+240°) =tan 240°=tan(180°+60°) =tan 60°=3,所以-3a=3,所以a =- 3.]4.已知点(-4,3)是角α终边上的一点,则sin(π-α)=( ) A .35 B .-35 C .-45 D .45A [x =-4,y =3,∴r =(-4)2+32=5,∴sin(π-α)=sin α=y r =35.故选A.]5.已知sin ⎝ ⎛⎭⎪⎫α-π4=32,则sin ⎝ ⎛⎭⎪⎫5π4-α的值为( ) A .12 B .-12 C .32 D .-32 C [sin ⎝⎛⎭⎪⎫5π4-α=sin ⎝ ⎛⎭⎪⎫π+π4-α=-sin ⎝ ⎛⎭⎪⎫π4-α =sin ⎝ ⎛⎭⎪⎫α-π4=32.]二、填空题6.若P (-4,3)是角α终边上一点,则cos (α-3π)·tan (α-2π)sin 2(π-α)的值为________. -53 [由条件可知sin α=35,cos α=-45,tan α=-34, ∴cos (α-3π)·tan (α-2π)sin 2(π-α)=-cos α·tan αsin 2α=-sin αsin 2α=-1sin α=-53.] 7.已知cos(508°-α)=1213,则cos(212°+α)=________.1213[由于cos(508°-α)=cos(360°+148°-α) =cos(148°-α)=1213,所以cos(212°+α)=cos(360°+α-148°) =cos(α-148°)=cos(148°-α)=1213.]8.已知sin(α+π)=45,且sin αcos α<0,则2sin (α-π)+3tan (3π-α)4cos (α-3π)=________.-73 [因为sin(α+π)=-sin α=45, 且sin αcos α<0,所以sin α=-45,cos α=35,tan α=-43,所以2sin (α-π)+3tan (3π-α)4cos (α-3π)=-2sin α-3tan α-4cos α=85+4-4×35=-73.] 三、解答题 9.化简下列各式:(1)sin ⎝ ⎛⎭⎪⎫-193πcos 76π;(2)sin(-960°)cos 1 470°-cos(-240°)sin(-210°).[解] (1)sin ⎝ ⎛⎭⎪⎫-193πcos 76π=-sin ⎝⎛⎭⎪⎫6π+π3cos ⎝ ⎛⎭⎪⎫π+π6=sin π3cos π6=34. (2)sin(-960°)cos 1 470°-cos(-240°)sin(-210°) =-sin(180°+60°+2×360°)cos(30°+4×360°)+ cos(180°+60°)sin(180°+30°) =sin 60°cos 30°+cos 60°sin 30°=1.10.已知f (α)=sin (π+α)cos (2π-α)tan (-α)tan (-π-α)sin (-π-α).(1)化简f (α);(2)若α是第三象限角,且sin(α-π)=15,求f (α)的值;(3)若α=-31π3,求f (α)的值.[解] (1)f (α)=-sin αcos α(-tan α)(-tan α)sin α=-cos α.(2)∵sin(α-π)=-sin α=15,∴sin α=-15.又α是第三象限角,∴cos α=-265,∴f (α)=265.(3)∵-31π3=-6×2π+5π3,∴f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝⎛⎭⎪⎫-6×2π+5π3=-cos 5π3=-cos π3=-12.[能力提升练]1.已知a =tan ⎝ ⎛⎭⎪⎫-7π6,b =cos 23π4,c =sin ⎝ ⎛⎭⎪⎫-33π4,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .b >c >aD .c >a >bB [a =-tan 7π6=-tan π6=-33,b =cos ⎝⎛⎭⎪⎫6π-π4=cos π4=22, c =-sin33π4=-sin π4=-22, ∴b >a >c .]2.已知f (x )=⎩⎪⎨⎪⎧sin πx (x <0),f (x -1)-1(x >0),则f ⎝ ⎛⎭⎪⎫-116+f ⎝ ⎛⎭⎪⎫116的值为________.-2 [f ⎝ ⎛⎭⎪⎫-116=sin ⎝ ⎛⎭⎪⎫-11π6=sin ⎝⎛⎭⎪⎫-2π+π6=sin π6=12,f ⎝ ⎛⎭⎪⎫116=f ⎝⎛⎭⎪⎫116-1-1=f ⎝ ⎛⎭⎪⎫56-1=f ⎝⎛⎭⎪⎫56-1-2 =f ⎝ ⎛⎭⎪⎫-16-2 =sin ⎝ ⎛⎭⎪⎫-π6-2=-sin π6-2=-12-2=-52, 所以f ⎝ ⎛⎭⎪⎫-116+f ⎝ ⎛⎭⎪⎫116=12-52=-2.]三角函数的诱导公式(2)(建议用时:45分钟)[基础达标练]一、选择题1.若sin ⎝ ⎛⎭⎪⎫π2+θ<0,且cos ⎝ ⎛⎭⎪⎫π2-θ>0,则θ是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角B [sin ⎝ ⎛⎭⎪⎫π2+θ=cos θ<0,且cos ⎝ ⎛⎭⎪⎫π2-θ=sin θ>0, ∴θ为第二象限角.]2.若sin(3π+α)=-12,则cos ⎝ ⎛⎭⎪⎫7π2-α等于( )A .-12B .12C .32D .-32A [∵sin(3π+α)=-sin α=-12,∴sin α=12.∴cos ⎝⎛⎭⎪⎫7π2-α=cos ⎝ ⎛⎭⎪⎫3π2-α=-cos ⎝ ⎛⎭⎪⎫π2-α =-sin α=-12.]3.已知sin ⎝ ⎛⎭⎪⎫α-π4=13,则cos ⎝ ⎛⎭⎪⎫π4+α等于( ) A .-13 B .13 C .223 D .-223A [cos ⎝ ⎛⎭⎪⎫π4+α=cos ⎝ ⎛⎭⎪⎫α-π4+π2=-sin ⎝⎛⎭⎪⎫α-π4=-13.故选A.]4.若sin(180°+α)+cos(90°+α)=-a ,则cos(270°-α)+2sin(360°-α)的值是( )A .-2a 3B .-3a 2C .2a 3D .3a2B [由sin(180°+α)+cos(90°+α)=-a , 得-sin α-sin α=-a ,即sin α=a2,cos(270°-α)+2sin(360°-α) =-sin α-2sin α=-3sin α=-32a .]5.化简:sin (θ-5π)cos ⎝ ⎛⎭⎪⎫-π2-θcos (8π-θ)sin ⎝⎛⎭⎪⎫θ-3π2sin (-θ-4π)=( )A .-sin θB .sin θC .cos θD .-cos θA [原式=sin (θ-π)cos ⎝ ⎛⎭⎪⎫π2+θcos (-θ)cos θsin (-θ)=(-sin θ)(-sin θ)cos θcos θ(-sin θ)=-sin θ.]二、填空题6.(2019·天一大联考)在平面直角坐标系xOy 中,角α的终边经过点P (3,4),则sin ⎝ ⎛⎭⎪⎫α-2 019π2=________. 35 [∵角α的终边经过点P (3,4),∴sin α=45,cos α=35,∴sin ⎝ ⎛⎭⎪⎫α-2 019π2=sin ⎝ ⎛⎭⎪⎫π2-α=cos α=35.]7.化简sin(π+α)cos ⎝⎛⎭⎪⎫3π2+α+sin ⎝ ⎛⎭⎪⎫π2+αcos(π+α)=________.-1 [原式=(-sin α)·sin α+cos α·(-cos α) =-sin 2α-cos 2α=-1.]8.已知函数f (x )=2cos ⎝ ⎛⎭⎪⎫x -π12,x ∈R .若cos θ=35,θ∈⎝ ⎛⎭⎪⎫3π2,2π,则f ⎝ ⎛⎭⎪⎫θ-5π12=________.-425 [由f (x )=2cos ⎝ ⎛⎭⎪⎫x -π12得f ⎝⎛⎭⎪⎫θ-5π12=2cos ⎝ ⎛⎭⎪⎫θ-5π12-π12=2cos ⎝⎛⎭⎪⎫θ-π2=2sin θ.又∵cos θ=35,θ∈⎝ ⎛⎭⎪⎫3π2,2π,∴sin θ=-45,故f ⎝ ⎛⎭⎪⎫θ-5π12=-425.]三、解答题9.已知角α的终边经过点P ⎝ ⎛⎭⎪⎫45,-35.(1)求sin α的值;(2)求sin ⎝ ⎛⎭⎪⎫π2-αtan (α-π)sin (α+π)cos (3π-α)的值.[解] (1)因为点P ⎝ ⎛⎭⎪⎫45,-35,所以|OP |=1,sin α=-35.(2)sin ⎝⎛⎭⎪⎫π2-αtan (α-π)sin (α+π)cos (3π-α) =cos αtan α-sin α(-cos α)=1cos α,由三角函数定义知cos α=45,故所求式子的值为54.10.求证:2sin ⎝⎛⎭⎪⎫θ-3π2cos ⎝ ⎛⎭⎪⎫θ+π2-11-2sin 2θ=tan (9π+θ)+1tan (π+θ)-1. [证明] 左边=-2cos θ·sin θ-1sin 2θ+cos 2θ-2sin 2θ =-(sin θ+cos θ)2(cos θ+sin θ)(cos θ-sin θ) =sin θ+cos θsin θ-cos θ,右边=tan ·(8π+π+θ)+1tan (π+θ)-1=tan (π+θ)+1tan (π+θ)-1=tan θ+1tan θ-1=sin θcos θ+1sin θcos θ-1=sin θ+cos θsin θ-cos θ, 所以左边=右边, 所以等式成立.[能力提升练]1.计算sin 21°+sin 22°+sin 23°+…+sin 289°=( ) A .89 B .90 C .892D .45C [原式=(sin 21°+sin 289°)+(sin 22°+sin 288°)+…+(sin 244°+sin 246°)+sin 245°=44+12=892.]2.已知f (α)=cos ⎝ ⎛⎭⎪⎫π2+αsin ⎝ ⎛⎭⎪⎫3π2-αcos (-π-α)tan (π-α),则f ⎝ ⎛⎭⎪⎫-26π3的值为________.-12 [f (α)=(-sin α)·(-cos α)(-cos α)·(-tan α)=sin αcos αsin α=cos α,所以f ⎝ ⎛⎭⎪⎫-26π3=cos ⎝ ⎛⎭⎪⎫-263π=cos 263π=cos ⎝ ⎛⎭⎪⎫9π-π3=-cos π3=-12.]正弦函数余弦函数的图像(建议用时:60分钟)[基础达标练]一、选择题1.用“五点法”作y =sin 2x 的图象时,首先描出的五个点的横坐标是( ) A .0,π2,π,3π2,2πB .0,π4,π2,3π4,πC .0,π,2π,3π,4πD .0,π6,π3,π2,2π3B [令2x =0,π2,π,3π2,2π可得x =0,π4,π2,3π4,π,故选B.]2.若点M ⎝ ⎛⎭⎪⎫π2,-m 在函数y =sin x 的图象上,则m 等于( ) A .0 B .1 C .-1 D .2 C [当x =π2时,y =sin π2=1,故-m =1,m =-1.]3.已知f (x )=sin ⎝ ⎛⎭⎪⎫x +π2,g (x )=cos ⎝⎛⎭⎪⎫x -π2,则f (x )的图象( )A .与g (x )的图象相同B .与g (x )的图象关于y 轴对称C .向左平移π2个单位,得g (x )的图象D .向右平移π2个单位,得g (x )的图象D [f (x )=sin ⎝⎛⎭⎪⎫x +π2,g (x )=cos ⎝⎛⎭⎪⎫x -π2=cos ⎝ ⎛⎭⎪⎫π2-x =sin x , f (x )图象向右平移π2个单位得到g (x )图象.]4.如图是下列哪个函数的图象( )A .y =1+sin x ,x ∈[0,2π]B .y =1+2sin x ,x ∈[0,2π]C .y =1-sin x ,x ∈[0,2π]D .y =1-2sin x ,x ∈[0,2π]C [根据图象上特殊点进行验证,可知C 正确.]5.将余弦函数y =cos x 的图象向右至少平移m 个单位,可以得到函数y =-sin x 的图象,则m =( )A .π2B .πC .3π2D .3π4C [根据诱导公式得,y =-sin x =cos ⎝⎛⎭⎪⎫3π2-x =cos ⎝ ⎛⎭⎪⎫x -3π2,故欲得到y =-sin x的图象,需将y =cos x 的图象向右至少平移3π2个单位长度.]二、填空题6.用“五点法”作函数y =1-cos x ,x ∈[0,2π]的图象时,应取的五个关键点分别是______________.(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,2),⎝ ⎛⎭⎪⎫3π2,1,(2π,0) [x 依次取0,π2,π,3π2,2π得五个关键点(0,0),⎝⎛⎭⎪⎫π2,1,(π,2),⎝ ⎛⎭⎪⎫3π2,1,(2π,0).]7.函数y =1+sin x ,x ∈[0,2π]的图象与直线y =32的交点个数是________.2 [在同一坐标系内画出y =1+sin x 和y =32的图象(如图所示),观察可得交点的个数为2.]8.函数y =lg(2-2cos x )的定义域是________.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪π4+2k π<x <7π4+2k π,k ∈Z [由2-2cos x >0得cos x <22,作出y =cos x 的图象和直线y =22,由图象可知cos x <22的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪π4+2k π<x <7π4+2k π,k ∈Z .] 三、解答题9.用“五点法”画出y =-2cos x +3(0≤x ≤2π)的简图. [解] 列表:10.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形(如图),求这个封闭图形的面积.[解] 观察图形可知:图形S 1与S 2,S 3与S 4都是两个对称图形,有S 1=S 2,S 3=S 4. 因此函数y =2cos x 的图象与直线y =2所围成的图形面积,可以等价转化为求矩形OABC 的面积.∵|OA |=2,|OC |=2π, ∴S 矩形OABC =2×2π=4π, ∴所求封闭图形的面积为4π.[能力提升练]1.若sin θ=1-log 2x ,则实数x 的取值范围是( )A .[1,4]B .⎣⎢⎡⎦⎥⎤14,1C .[2,4]D .⎣⎢⎡⎦⎥⎤14,4A [由sin θ∈[-1,1]得-1≤1-log 2x ≤1,解得0≤log 2x ≤2,即1≤x ≤4.]2.方程sin x =x10的根的个数是( )A .7B .8C .9D .10A [在同一坐标系内画出y =x10和y =sin x 的图象如图所示:根据图象可知方程有7个根.]3.在(0,2π)内,使sin x >cos x 成立的x 的取值范围是________.⎝⎛⎭⎪⎫π4,5π4 [在同一坐标系中画出y =sin x ,x ∈(0,2π)与y =cos x ,x ∈(0,2π)的图象如图所示,由图象可观察出当x ∈⎝ ⎛⎭⎪⎫π4,5π4时,sin x >cos x .]4.函数y =cos x +4,x ∈[0,2π]的图象与直线y =4的交点的坐标为________.⎝ ⎛⎭⎪⎫π2,4,⎝ ⎛⎭⎪⎫3π2,4 [由⎩⎪⎨⎪⎧y =cos x +4,y =4得cos x =0, 当x ∈[0,2π]时,x =π2或3π2,∴交点为⎝ ⎛⎭⎪⎫π2,4,⎝ ⎛⎭⎪⎫3π2,4.]5.函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,求k 的取值范围.[解] f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x ,x ∈[0,π],-sin x ,x ∈(π,2π].图象如图所示,若使f (x )的图象与直线y =k 有且仅有两个不同的交点,根据上图可得k 的取值范围是(1,3).正弦余弦函数的周期性与奇偶性(建议用时:60分钟)[基础达标练]一、选择题1.函数f (x )=x +sin x ,x ∈R ( ) A .是奇函数,但不是偶函数 B .是偶函数,但不是奇函数 C .既是奇函数,又是偶函数 D .既不是奇函数,又不是偶函数A [函数y =x 为奇函数且y =sin x 也是奇函数,故f (x )=x +sin x ,x ∈R 是奇函数.] 2.下列函数中最小正周期为π的偶函数是( ) A .y =sin x2B .y =cos x2C .y =cos xD .y =cos 2xD [A 中函数是奇函数,B 、C 中函数的周期不是π,只有D 符合题目要求.] 3.函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6的最小正周期为π5,其中ω>0,则ω等于( ) A .5 B .10 C .15 D .20 B [由已知得2π|ω|=π5,又ω>0,所以2πω=π5,ω=10.]4.函数y =-x cos x 的部分图象是下图中的( )A B C DD [y =cos x 为偶函数,y =x 为奇函数,∴y =-x cos x 为奇函数,排除A 、C ,又x ∈⎝⎛⎭⎪⎫0,π2时cos x >0,x >0,∴y <0,故排除B ,选D.]5.定义在R 上的函数f (x )周期为π,且是奇函数,f ⎝ ⎛⎭⎪⎫π4=1,则f ⎝ ⎛⎭⎪⎫3π4的值为( )A .1B .-1C .0D .2B [由已知得f (x +π)=f (x ),f (-x )=-f (x ), 所以f ⎝⎛⎭⎪⎫3π4=f ⎝ ⎛⎭⎪⎫3π4-π=f ⎝ ⎛⎭⎪⎫-π4=-f ⎝ ⎛⎭⎪⎫π4=-1.]二、填空题6.关于x 的函数f (x )=sin(x +φ)有以下说法: ①对任意的φ,f (x )都是非奇非偶函数; ②存在φ,使f (x )是偶函数; ③存在φ,使f (x )是奇函数; ④对任意的φ,f (x )都不是偶函数. 其中错误的是________(填序号).①④ [φ=0时,f (x )=sin x ,是奇函数,φ=π2时,f (x )=cos x 是偶函数.]7.若函数f (x )=2cos ⎝ ⎛⎭⎪⎫ωx +π3的最小正周期为T ,且T ∈(1,4),则正整数ω的最大值为________.6 [T =2πω,1<2πω<4,则π2<ω<2π,∴ω的最大值是6.]8.函数y =sin x 的图象关于原点对称,观察正弦曲线的形状,结合正弦函数的周期性可知,正弦曲线的对称中心为________.(k π,0)(k ∈Z ) [∵y =sin x 是奇函数,∴(0,0)是其对称中心,又正弦函数的周期为2k π,结合正弦曲线可知,对称中心为(k π,0)(k ∈Z ).]三、解答题9.已知函数y =12sin x +12|sin x |.(1)画出函数的简图;(2)此函数是周期函数吗?若是,求其最小正周期. [解] (1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π](k ∈Z ),0,x ∈[2k π-π,2k π](k ∈Z ),图象如下:(2)由图象知该函数是周期函数,且周期是2π.[能力提升练]1.函数f (x )=sin x1+cos x 的奇偶性是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数A [首先1+cos x ≠0,即x ≠2k π+π(k ∈Z ),定义域关于原点对称,又y =sin x 是奇函数,y =1+cos x 是偶函数,所以f (x )=sin x1+cos x是奇函数.]2.设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2 018)=( )A .32 B .-32C .0D . 3 D [∵f (x )=sin π3x 的周期T =2ππ3=6,∴f (1)+f (2)+f (3)+…+f (2 018)=336[f (1)+f (2)+f (3)+f (4)+f (5)+f (6)]+f (2 017)+f (2 018) =336⎝ ⎛⎭⎪⎫sin π3+sin 23π+sin π+sin 43π+sin 53π+sin 2π+f (336×6+1)+f (336×6+2)=336×0+f (1)+f (2)=sin π3+sin 23π= 3.]3.已知f (x )是定义在(-3,3)上的奇函数,当0<x <3时,f (x )的图象如图所示,那么不等式f (x )cos x <0的解集是________.⎝ ⎛⎭⎪⎫-π2,-1∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3 [∵f (x )是(-3,3)上的奇函数,∴g (x )=f (x )·cosx 是(-3,3)上的奇函数,从而观察图象(略)可知所求不等式的解集为⎝ ⎛⎭⎪⎫-π2,-1∪(0,1)∪⎝ ⎛⎭⎪⎫π2,3.]4.设f (x )是定义域为R ,最小正周期为3π2的函数,若f (x )=⎩⎪⎨⎪⎧cos x ,-π2≤x ≤0,sin x ,0<x≤π,则f ⎝⎛⎭⎪⎫-15π4的值等于________.22 [因为函数f (x )的周期为3π2,∴f ⎝ ⎛⎭⎪⎫-154π=f ⎝ ⎛⎭⎪⎫-154π+3π2×3=f ⎝ ⎛⎭⎪⎫3π4,又∵3π4∈(0,π],∴f ⎝ ⎛⎭⎪⎫-154π=sin 3π4=22.]5.已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x +π3,若函数g (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时,g (x )=f ⎝ ⎛⎭⎪⎫x 2,求关于x 的方程g (x )=32的解集.[解] 当x ∈⎣⎢⎡⎦⎥⎤-π2,π2时, g (x )=f ⎝ ⎛⎭⎪⎫x 2=cos ⎝⎛⎭⎪⎫x +π3. 因为x +π3∈⎣⎢⎡⎦⎥⎤-π6,5π6,所以由g (x )=32解得x +π3=-π6或π6,即x =-π2或-π6. 又因为g (x )的最小正周期为π,所以g (x )=32的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π-π2或x =k π-π6,k ∈Z .正弦余弦函数的单调性与最值(建议用时:60分钟)[基础达标练]一、选择题1.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( ) A .y =sin ⎝⎛⎭⎪⎫2x +π2 B .y =cos ⎝⎛⎭⎪⎫2x +π2C .y =sin ⎝ ⎛⎭⎪⎫x +π2D .y =cos ⎝⎛⎭⎪⎫x +π2A [对于选项A ,注意到y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x 的周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上是减函。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年新人教A版高中数学必修四全册同步检测目录第1章1.1-1.1.1任意角第1章1.1-1.1.2弧度制第1章1.2-1.2.1任意角的三角函数第1章1.2-1.2.2同角三角函数的基本关系第1章1.3第1课时诱导公式二、三、四第1章1.3第2课时诱导公式五、六第1章1.4-1.4.1正弦函数、余弦函数的图象第1章1.4-1.4.2第1课时正、余弦函数的周期性与奇偶性第1章1.4-1.4.2第2课时正、余弦函数的单调性与最值第1章1.4-1.4.3正切函数的性质与图象第1章1.5函数y=Asin(ωx+φ)的图象第1章1.6三角函数模型的简单应用第1章章末复习课第1章单元评估验收(一)第2章2.1平面向量的实际背景及基本概念第2章2.2-2.2.2向量减法运算及其几何意义第2章2.2-2.2.3向量数乘运算及其几何意义第2章2.3-2.3.1平面向量基本定理第2章2.3-2.3.3平面向量的坐标运算第2章2.3-2.3.4平面向量共线的坐标表示第2章2.4-2.4.1平面向量数量积的物理背景及其含义第2章2.4-2.4.2平面向量数量积的坐标表示、模、夹角第2章2.5平面向量应用举例第2章章末复习课第2章单元评估验收(二)第3章3.1-3.1.1两角差的余弦公式第3章3.1-3.1.2两角和与差的正弦、余弦、正切公式第3章3.1-3.1.3二倍角的正弦、余弦、正切公式第3章3.2简单的三角恒等变换第3章章末复习课第3章单元评估验收(三)模块综合评价第一章三角函数1.1 任意角和弧度制1.1.1 任意角A级基础巩固一、选择题1.已知A={第二象限角},B={钝角},C={大于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=CC.A C D.A=B=C解析:钝角大于90°,小于180°,故B C,选项B正确.答案:B2.若角α的终边经过点M(0,-3),则角α()A.是第三象限角B.是第四象限角C.既是第三象限角,又是第四象限角D.不是任何象限的角解析:因为点M(0,-3)在y轴负半轴上,所以角α的终边不在任何象限.答案:D3.若α是第四象限角,则-α一定在()A.第一象限B.第二象限C.第三象限D.第四象限解析:因为α是第四象限角,所以k·360°-90°<α<k·360°,k∈Z.所以-k·360°<-α<-k·360°+90°,k∈Z,由此可知-α是第一象限角.答案:A4.终边与坐标轴重合的角α的集合是()A.{α|α=k·360°,k∈Z}B.{α|α=k·180°+90°,k∈Z}C.{α|α=k·180°,k∈Z}D.{α|α=k·90°,k∈Z}解析:终边在坐标轴上的角为90°或90°的倍数角,所以终边与坐标轴重合的角的集合为{α|α=k·90°,k∈Z}.答案:D5.下面说法正确的个数为()(1)第二象限角大于第一象限角;(2)三角形的内角是第一象限角或第二象限角;(3)钝角是第二象限角.A.0 B.1 C.2 D.3解析:第二象限角如120°比第一象限角390°要小,故(1)错;三角形的内角可能为直角,直角既不是第一象限角,也不是第二象限角,故(2)错;(3)中钝角是第二象限角是对的.所以正确的只有1个.答案:B二、填空题6.50°角的始边与x轴的非负半轴重合,把其终边按顺时针方向旋转3周,所得的角是________.解析:顺时针方向旋转3周转了-(3×360°)=-1 080°.又50°+(-1 080°)=-1 030°,故所得的角为-1 030°.答案:-1 030°7.若α为锐角,则角-α+k·360°(k∈Z)是第________象限角.解析:α为锐角,则角α是第一象限角,所以角-α是第四象限角,又因为角-α+k·360°(k∈Z)与-α的终边相同,所以角-α+k·360°(k∈Z)是第四象限角.答案:四8.在0°~360°范围内,与角-60°的终边在同一条直线上的角为________.解析:根据终边相同角定义知,与-60°终边相同角可表示为β=-60°+k·360°(k∈Z),当k=1时β=300°与-60°终边相同,终边在其反向延长线上且在0°~360°范围内角为120°.答案:120°,300°三、解答题9.如图所示,写出阴影部分(包括边界)的角的集合,并指出-950°12′是否是该集合中的角.解:题图阴影部分(包括边界)的角的范围是k·360°≤α≤k·360°+125°,k∈Z,所求集合为{α|k·360°≤α≤k·360°+125°,k∈Z},因为-950°12′=-3×360°+129°48′,所以-950°12′不是该集合中的角.10.已知角β的终边在直线3x-y=0上.(1)写出角β的集合S;(2)写出S中适合不等式-360°<β<720°的元素.解:(1)因为角β的终边在直线3x-y=0上,且直线3x-y=0的倾斜角为60°,所以角β的集合S={β|β=60°+k·180°,k∈Z}.(2)在S={β|β=60°+k·180°,k∈Z}中,取k=-2,得β=-300°,取k=-1,得β=-120°,取k=0,得β=60°,取k=1,得β=240°,取k=2,得β=420°,取k=3,得β=600°.所以S中适合不等式-360°<β<720°的元素分别是-300°,-120°,60°,240°,420°,600°.B级能力提升1.集合A={α|α=k·90°-36°,k∈Z},B={β|-180°<β<180°},则A∩B等于()A.{-36°,54°} B.{-126°,144°}C.{-126°,-36°,54°,144°} D.{-126°,54°}解析:令k=-1,0,1,2,则A,B的公共元素有-126°,-36°,54°,144°.答案:C2.如图,终边落在OA的位置上的角的集合是________;终边落在OB的位置上,且在-360°~360°内的角的集合是________.解析:终边落在OA的位置上的角的集合是{α|α=120°+k·360°,k∈Z};终边落在OB的位置上的角的集合是{α|α=315°+k·360°,k∈Z}(或{α|α=-45°+k·360°,k∈Z}),取k=0,1,得α=315°,-45°,所求的集合是{-45°,315°}.答案:{α|α=120°+k·360°,k∈Z}{-45°,315°}3.已知角α的集合M={α|α=30°+k·90°,k∈Z},回答下列问题:(1)集合M有几类终边不相同的角?(2)集合M中大于-360°且小于360°的角是哪几个?(3)写出集合M中的第二象限角β的一般表达式.解:(1)集合M的角可以分成四类,即终边分别与-150°,-60°,30°,120°的终边相同的角.(2)令-360°<30°+k·90°<360°,则-133<k<113,又因为k∈Z,所以k=-4,-3,-2,-1,0,1,2,3,所以集合M中大于-360°且小于360°的角共有8个,分别是-330,-240°,-150,-60°,30°,120°,210°,300.(3)集合M中的第二象限角与120°角的终边相同,所以β=120°+k·360°,k∈Z.第一章 三角函数 1.1 任意角和弧度制1.1.2 弧度制A 级 基础巩固一、选择题1.下列说法中,错误的是( ) A .半圆所对的圆心角是π rad B .周角的大小等于2πC .1弧度的圆心角所对的弧长等于该圆的半径D .长度等于半径的弦所对的圆心角的大小是1弧度解析:根据弧度的定义及角度与弧度的换算知A 、B 、C 均正确,D 错误. 答案:D2.时钟的分针在1点到3点20分这段时间里转过的弧度为( ) A.143π B .-143π C.718π D .-718π解析:显然分针在1点到3点20分这段时间里,顺时针转过了73周,转过的弧度为-73×2π=-143π. 答案:B3.在半径为10的圆中,240°的圆心角所对弧长为( ) A.403π B.203πC.2003π D.4003π 解析:240°=240180π=43π,所以弧长l =|α|·r =43π×10=403π.答案:A4.把-11π4表示成θ+2k π(k ∈Z)的形式,使|θ|最小的θ值是( )A .-3π4B .-π4C.π4D.3π4解析:令-11π4=θ+2k π(k ∈Z),则θ=-11π4-2k π(k ∈Z).取k ≤0的值,k =-1时,θ=-3π4,|θ|=3π4;k =-2时,θ=5π4,|θ|=5π4>3π4;k =0时,θ=-11π4,|θ|=11π4>3π4.答案:A5.一段圆弧的长度等于其圆内接正方形的边长,则其圆心角的弧度数为( ) A.π2 B.π3 C. 3D. 2解析:设圆内接正方形的边长为a ,则该圆的直径为2a , 所以弧长等于a 的圆弧所对的圆心角为α=l r =a22a = 2.答案:D二、填空题6.π12 rad =________度,________ rad =-300°. 解析:π12=180°12=15°;-300°=-300×π180=-5π3.答案:15 -5π37.已知扇形的圆心角为60°,半径为3,则扇形的面积是________. 解析:因为60°=π3 rad则扇形的面积S =12×π3×32=32π.答案:32π8.(1)1°的圆心角所对弧长为1米,则此圆半径为________米; (2)1 rad 的圆心角所对弧长为1米,则此圆半径为______米. 解析:(1)因为|α|=1°=π180,l =1,所以r =l|α|=1π180=180π.(2)因为l =1,|α|=1,所以r =l|α|=1. 答案:(1)180π (2)1三、解答题 9.已知α=2 000°.(1)把α写成2k π+β [k ∈Z ,β∈[0,2π)]的形式; (2)求θ,使得θ与α的终边相同,且θ∈(4π,6π).解:(1)α=2 000°=5×360°+200°=10π+109π. (2)θ与α的终边相同,故θ=2k π+109π,k ∈Z , 又θ∈(4π,6π),所以k =2时,θ=4π+109π=46π9.10.用弧度表示终边落在如图所示阴影部分内(不包括边界)的角的集合.解:(1)如题图①,330°角的终边与-30°角的终边相同,将-30°化为弧度,即-π6,而75°=75×π180=5π12, 所以终边落在阴影部分内(不包括边界)的角的集合为⎩⎨⎧⎭⎬⎫θ⎪⎪⎪2k π-π6<θ<2k π+5π12,k ∈Z .(2)如题图②,因为30°=π6,210°=7π6,这两个角的终边所在的直线相同,因此终边在直线AB 上的角为α=k π+π6,k ∈Z ,又终边在y 轴上的角为β=k π+π2,k ∈Z ,从而终边落在阴影部分内(不包括边界)的角的集合为⎩⎨⎧⎭⎬⎫θ⎪⎪⎪k π+π6<θ<k π+π2,k ∈Z .B 级 能力提升1.集合⎩⎨⎧α⎪⎪⎪⎭⎬⎫k π+π4≤α≤k π+π2,k ∈Z 中角的终边所在的范围(阴影部分)是( )解析:当k =2m ,m ∈Z 时,2m π+π4≤α≤2m π+π2,m ∈Z ;当k =2m +1,m ∈Z 时,2m π+5π4≤α≤2m π+3π2,m ∈Z ,所以选C.答案:C2.钟表的时间经过了一小时,则时针转过了________rad.解析:钟表的时针是按顺时针的方向旋转的,经过12小时,时针转过-2π rad ,所以经过一小时,时针转过-π6rad.答案:-π63.已知半径为10的圆O 中,弦AB 的长为10.求α(∠AOB )所在的扇形的弧长l 及弧所在的弓形的面积S .解:由⊙O 的半径r =10=AB ,知△AOB 是等边三角形, 所以α=∠AOB =60°=π3.所以弧长l =a ·r =π3×10=10π3,所以S 扇形=12lr =12×10π3×10=50π3,又S △AOB =12·AB ·53=12×10×53=5032,所以S =S 扇形-S △AOB =50⎝ ⎛⎭⎪⎫π3-32.第一章 三角函数 1.2 任意角的三角函数 1.2.1 任意角的三角函数A 级 基础巩固一、选择题1.已知角α终边经过P ⎝ ⎛⎭⎪⎫32,12,则cos α等于( )A.12B.32C.33 D .±12解析:由三角函数定义可知,角α的终边与单位圆交点的横坐标为角α的余弦值,故cos α=32. 答案:B2.如果MP 和OM 分别是角α=7π8的正弦线和余弦线,那么下列结论正确的是( )A .MP <OM <0B .OM >0>MPC .OM <MP <0D .MP >0>OM解析:因为78π是第二象限角,所以sin 78π>0,cos 78π<0,所以MP >0,OM <0, 所以MP >0>OM . 答案:D3.若α=2π3,则α的终边与单位圆的交点P 的坐标是( )A.⎝ ⎛⎭⎪⎫12,32B.⎝ ⎛⎭⎪⎫-12,32C.⎝⎛⎭⎪⎫-32,12D.⎝ ⎛⎭⎪⎫12,-32解析:设P (x ,y ),因为角α=2π3在第二象限,所以x =-12,y =1-⎝ ⎛⎭⎪⎫-122=32,所以P ⎝ ⎛⎭⎪⎫-12,32.答案:B4.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( ) A .锐角三角形 B .钝角三角形C .直角三角形D .以上三种情况都可能解析:因为sin αcos β<0,α,β∈(0,π),所以sin α>0,cos β<0,所以β为钝角.答案:B5.函数y =11+sin x的定义域为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠3π2+2k π,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π2+2k π,k ∈ZC.{}x |x ≠2k π,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-3π2+2k π,k ∈Z解析:因为1+sin x ≠0,所以sin x ≠-1.又sin 3π2=-1,所以x ≠3π2+2k π,k ∈Z.答案:A 二、填空题6.(2016·四川卷)sin 750°=________.解析:sin 750°=sin(30°+2×360°)=sin 30°=12.答案:127.sin 1 485°的值为________.解析:sin 1 485°=sin(4×360°+45°)=sin 45°=22.答案:228.已知θ∈⎝ ⎛⎭⎪⎫π3,π2,在单位圆中角θ的正弦线、余弦线、正切线分别是MP ,OM ,AT ,则它们从大到小的顺序为____________.解析:作图如下,因为θ∈⎝ ⎛⎭⎪⎫π3,π2,所以θ >π4,根据三角函数线的定义可知AT >MP >OM .答案:AT >MP >OM 三、解答题9.求下列各式的值:(1)sin(-1 320°)cos(1 110°)+cos(-1 020°)sin 750°; (2)cos ⎝ ⎛⎭⎪⎫-233π+tan 17π4.解:(1)原式=sin(-4×360°+120°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 120°cos 30°+cos 60°sin 30°=32×32+12×12=1.(2)原式=cos ⎣⎢⎡⎦⎥⎤π3+(-4)×2π+tan ⎝ ⎛⎭⎪⎫π4+2×2π=cos π3+tan π4=12+1=32.10.已知P (-2,y )是角α终边上一点,且sin α=-55,求cos α与tan α的值.解:因为点P 到原点的距离为r =4+y 2, 所以sin α=y 4+y 2=-55,所以y 2+4=5y 2,所以y 2=1.又易知y <0,所以y =-1,所以r =5, 所以cos α=-25=-255,tan α=-1-2=12.B 级 能力提升1.若α是第三象限角,则|sin α|sin α-cos α|cos α|=( )A .0B .1C .2D .-2解析:因为α是第三象限角,所以sin α<0,cos α<0, 所以|sin α|sin α-cos α|cos α|=-1-(-1)=0. 答案:A2.已知角α的终边过点(-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则cos α=________. 解析:因为θ∈⎝ ⎛⎭⎪⎫π2,π,所以cos θ<0, 所以点(-3cos θ,4cos θ)到原点的距离r =5|cos θ|=-5cos θ, 所以cos α=-3cos θ-5cos θ=35.答案:353.利用三角函数线,写出满足|cos α|>|sin α|的角α的集合. 解:如图,作出单位圆.所以角α满足的集合为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪k π-π4<α<k π+π4,k ∈Z .第一章 三角函数 1.2 任意角的三角函数 1.2.2 同角三角函数的基本关系A 级 基础巩固一、选择题1.化简1-sin 2160°的结果是( ) A .cos 160° B .-cos 160° C .±cos 160° D .±|cos 160°| 解析:1-sin 2160°=cos 2160°=|cos 160°|=-cos 160°. 答案:B2.已知α∈⎝ ⎛⎭⎪⎫π2,π,且sin α=35,则tan α=( )A.34 B .-34 C.43 D .-43解析:由sin α=35,α∈⎝ ⎛⎭⎪⎫π2,π得cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.答案:B3.若α是三角形的内角,且sin α+cos α=23,则三角形是( )A .钝角三角形B .锐角三角形C .直角三角形D .等边三角形解析:将sin α+cos α=23两边平方,得1+2sin αcos α=49,即2sin α·cos α=-59.又α是三角形的内角,所以sin α>0,cos α<0,所以α为钝角.答案:A4.若sin θ=m -3m +5,cos θ=4-2mm +5,则m 的值为( )A .0B .8C .0或8D .3<m <9解析:由sin 2θ+cos 2θ=1得⎝ ⎛⎭⎪⎫m -3m +52+⎝ ⎛⎭⎪⎫4-2m m +52=1,解得m =0或8. 答案:C5.已知sin αcos α=18,且π<α<5π4,则cos α-sin α的值为( )A.32B .-32C.34 D .-34解析:(cos α-sin α)2=1-2sin αcos α=1-2×18=34,因为π<α<54π,所以cos α<sin α,所以cos α-sin α<0, 所以cos α-sin α=-34=-32. 答案:B 二、填空题6.在△ABC 中,若cos(A +B )>0,sin C =13,则tan C 等于________.解析:在△ABC 中,因为cos(A +B )>0, 所以0<A +B <π2,又C =π-(A +B ),所以角C 是钝角,所以cos C =- 1-sin 2C =-223,所以tan C =sin C cos C =13-223=-24.答案:-247.若4sin α-2cos α5cos α+3sin α=10,则tan α的值为________.解析:因为4sin α-2cos α5cos α+3sin α=10,所以4sin α-2cos α=50cos α+30sin α, 所以26sin α=-52cos α,即sin α=-2cos α. 所以tan α=-2. 答案:-28.已知-π2<x <0,sin x +cos x =15,则sin x -cos x =________.解析:由sin x +cos x =15,平方得sin 2x +2sin x cos x +cos 2x =125,即2sin x cos x =-2425,所以(sin x -cos x )2=1-2sin x ·cos x =4925,又因为-π2<x <0,所以sin x <0,cos x >0,sin x -cos x <0,所以sin x -cos x =-75.答案:-75三、解答题9.已知tan α=23,求下列各式的值;(1)1sin αcos α; (2)sin 2α-2sin αcos α+4cos 2α.解:(1)1sin αcos α=sin 2α+cos 2αsin αcos α=tan 2α+1tan α=136.(2)sin 2α-2sin αcos α+4cos 2 a = sin 2α-2sin αcos α+4cos 2αsin 2α+cos 2α=tan 2α-2tan α+4tan 2α+1=49-43+449+1=2813.10.化简:tan α·1sin2α-1(α是第二象限角). 解:tan α·1sin2α-1=tan α·1-sin2αsin2α=tan α·cos2αsin2α=sin αcos α·⎪⎪⎪⎪⎪⎪cos αsin α. 因为α为第二象限角, 所以sin α>0,cos α<0, 所以原式=sin αcos α·-cos αsin α=-1.B 级 能力提升1.已知α是锐角,且tan α是方程4x 2+x -3=0的根,则sin α=( ) A.45 B.35 C.25 D.15解析:因为方程4x 2+x -3=0的根为x =34或x =-1,又因为tan α是方程4x 2+x -3=0的根且α为锐角, 所以tan α=34,所以sin α=34cos α,即cos α=43sin α,又sin 2α+cos 2α=1, 所以sin 2α+169sin 2α=1, 所以sin 2α=925(α为锐角),所以sin α=35.答案:B 2.使1-cos α1+cos α=cos α-1sin α成立的α的范围是__________.解析:1-cos α1+cos α=(1-cos α)2sin 2α=1-cos α|sin α|=cos α-1sin α,所以sin α<0,故2k π-π<α<2k π,k ∈Z. 答案:{α|2k π-π<α<2k π,k ∈Z}3.求证:sin α(1+tan α)+cos α·⎝ ⎛⎭⎪⎫1+1tan α=1sin α+1cos α. 证明:左边=sin α·⎝ ⎛⎭⎪⎫1+sin αcos α+cos α·⎝ ⎛⎭⎪⎫1+cos αsin α =sin α+sin2αcos α+cos α+cos2αsin α=sin2α+cos2αsin α+sin2α+cos2αcos α=1sin α+1cos α=右边.即原等式成立.第一章 三角函数 1.3 三角函数的诱导公式 第1课时 诱导公式二、三、四A 级 基础巩固一、选择题1.sin 7π6的值是( )A .-12B .-2C .2 D.12解析:sin 7π6=sin ⎝⎛⎭⎪⎫π+π6=-sin π6=-12.答案:A2.sin 600°+tan(-300°)的值是( ) A .-32 B.32 C .-12+ 3 D.12+ 3 解析:原式=sin(360°+240°)+tan(-360°+60°)=-sin 60°+tan 60°=32. 答案:B3.已知sin(π+α)=35,α为第三象限角,则cos(π-α)=( )A.35 B .-35 C.45 D .-45解析:因为sin (π+α)=35,所以sin α=-35.因为α为第三象限角,所以cos α=-45.所以cos (π-α)=-cos α=45.答案:C4.设f (x )=a sin(πx +α)+b cos(πx +β),其中a ,b ,α,β∈R ,若f (2 017)=5,则f (2 018)等于( )A .4B .3C .-5D .5解析:因为f (2 017)=a sin (2 017π+α)+b cos (2 017π+β)=-a sin α-b cos β=5,所以f (2 018)=a sin (2 018π+α)+b cos (2 018π+β)=a sin α+b cos β=-5.答案:C5.设tan(5π+α)=m ,则sin (α+3π)+cos (π+α)sin (-α)-cos (π+α)的值等于( )A.m +1m -1B.m -1m +1 C .-1D .1解析:因为tan(5π+α)=tan[4π+(π+α)]= tan(π+α)=tan α,所以tan α=m ;所以原式=sin (π+α)-cos α-sin α+cos α=-sin α-cos α-sin α+cos α=tan α+1tan α-1=m +1m -1. 答案:A 二、填空题6.已知tan ⎝ ⎛⎭⎪⎫π3-α=13,则tan ⎝ ⎛⎭⎪⎫2π3+α=________.解析:因为tan ⎝ ⎛⎭⎪⎫2π3+α=tan ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-α=-tan ⎝ ⎛⎭⎪⎫π3-α,所以tan ⎝ ⎛⎭⎪⎫2π3+α=-13.答案:-137.已知sin(π+α)=45,且α是第四象限角,则cos(α-2π)=________.解析:由sin(π+α)=-sin α,得sin α=-45.故cos(α-2π)=cos α=1-sin 2α=1-⎝ ⎛⎭⎪⎫-452=35.答案:358.化简sin 2(π+α)-cos(π+α)cos(-α)+1的值是________. 解析:原式=(-sin α)2-(-cos α)·cos α+1= sin 2α+cos 2α+1=2. 答案:2 三、解答题9.计算下列各式的值:(1)cos π5+cos 2π5+cos 3π5+cos 4π5;(2)sin 420°cos 330°+sin(-690°)cos(-660°).解:(1)原式=⎝ ⎛⎭⎪⎫cos π5+cos 4π5+⎝ ⎛⎭⎪⎫cos 2π5+cos3π5= ⎣⎢⎡⎦⎥⎤cos π5+cos ⎝ ⎛⎭⎪⎫π-π5+⎣⎢⎡⎦⎥⎤cos 2π5+cos ⎝ ⎛⎭⎪⎫π-2π5= ⎝ ⎛⎭⎪⎫cos π5-cos π5+⎝ ⎛⎭⎪⎫cos 2π5-cos2π5=0. (2)原式=sin(360°+60°)cos(360°-30°)+sin(-2×360°+30°)·cos(-2×360°+60°)=sin 60°cos 30°+sin 30°cos 60°= 32×32+12×12=1. 10.已知sin(α+π)=45,且sin αcos α<0,求2sin (α-π)+3tan (3π-α)4cos (α-3π)的值.解:因为sin(α+π)=45,所以sin α=-45,又因为sin αcos α<0, 所以cos α>0,cos α= 1-sin 2α=35,所以tan α=-43.所以原式=-2sin α-3tan α-4cos α=2×⎝ ⎛⎭⎪⎫-45+3×⎝ ⎛⎭⎪⎫-434×35=-73.B 级 能力提升1.下列三角函数:①sin ⎝ ⎛⎭⎪⎫n π+4π3;②cos ⎝ ⎛⎭⎪⎫2n π+π6;③sin ⎝ ⎛⎭⎪⎫2n π+π3;④cos ⎣⎢⎡⎦⎥⎤(2n +1)π-π6;⑤sin ⎣⎢⎡⎦⎥⎤(2n +1)π-π3,上述中的n ∈Z.其中与sin π3的值相同的是( )A .①②B .①③④C .②③⑤D .①③⑤解析:①sin ⎝ ⎛⎭⎪⎫n π+43π=⎩⎨⎧sin π3(n 为奇数),-sin π3(n 为偶数);②cos ⎝ ⎛⎭⎪⎫2n π+π6=cos π6=sin π3;③sin ⎝⎛⎭⎪⎫2n π+π3=sin π3;④cos ⎣⎢⎡⎦⎥⎤(2n +1)π-π6=cos 5π6=-sin π3;⑤sin ⎣⎢⎡⎦⎥⎤(2n +1)π-π3=sin π3.答案:C2.已知f (x )=⎩⎪⎨⎪⎧sin πx (x <0),f (x -1)-1(x >0),则f ⎝ ⎛⎭⎪⎫-116+f ⎝ ⎛⎭⎪⎫116=________.解析:f ⎝ ⎛⎭⎪⎫-116=sin ⎝ ⎛⎭⎪⎫-116π=sin π6=12,f ⎝ ⎛⎭⎪⎫116=f ⎝ ⎛⎭⎪⎫56-1=f ⎝ ⎛⎭⎪⎫-16-2=sin ⎝ ⎛⎭⎪⎫-π6-2=-52, 所以f ⎝ ⎛⎭⎪⎫-116+f ⎝ ⎛⎭⎪⎫116=12-52=-2. 答案:-23.已知α是第二象限角,且tan α=-2. (1)求cos 4α-sin 4α的值;(2)设角k π+α(k ∈Z)的终边与单位圆x 2+y 2=1交于点P ,求点P 的坐标. 解:(1)原式=(cos 2α+sin 2α)(cos 2α-sin 2α)=cos 2α-sin 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α=1-(-2)21+(-2)2=-35.(2)由tan α=-2得sin α=-2cos α, 代入sin 2α+cos 2α=1得cos 2α=15,因为α是第二象限,所以cos α<0, 所以cos α=-55,sin α=tan αcos α=255. 当k 为偶数时,P 的坐标⎩⎨⎧x =cos (k π+α)=cos α=-55,y =sin (k π+α)=sin α=255,即P ⎝⎛⎭⎪⎫-55,255. 当k 为奇数时,P 的坐标⎩⎨⎧x =cos (k π+α)=cos (π+α)=-cos α=55,y =sin (k π+α)=sin (π+α)=-sin α=-255, 即P ⎝ ⎛⎭⎪⎫55,-255. 综上,点P 的坐标为⎝ ⎛⎭⎪⎫-55,255或⎝ ⎛⎭⎪⎫55,-255.第一章 三角函数 1.3 三角函数的诱导公式 第2课时 诱导公式五、六A 级 基础巩固一、选择题1.sin 95°+cos 175°的值为( ) A .sin 5° B .cos 5° C .0D .2sin 5°解析:原式=cos 5°-cos 5°=0. 答案:C2.若sin ⎝ ⎛⎭⎪⎫π2+θ<0,且cos ⎝ ⎛⎭⎪⎫π2-θ>0,则θ是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角解析:由于sin ⎝ ⎛⎭⎪⎫π2+θ=cos θ<0,cos ⎝ ⎛⎭⎪⎫π2-θ=sin θ>0.所以角θ的终边落在第二象限.答案:B3.如果角θ的终边经过点⎝ ⎛⎭⎪⎫-35,45,那么sin ⎝ ⎛⎭⎪⎫π2+θ+cos(π-θ)+tan(2π-θ)=( ) A .-43B.43C.34D .-34解析:易知sin θ=45,cos θ=-35,tan θ=-43.原式=cos θ-cos θ-tan θ=43.答案:B4.若角A 、B 、C 是△ABC 的三个内角,则下列等式中一定成立的是( ) A .cos(A +B )=cos C B .sin(A +B )=-sin C C .cos A +C2=sin BD .sin B +C 2=cos A2解析:因为A +B +C =π,所以A +B =π-C ,A +C 2=π-B 2,B +C 2=π-A2,所以cos(A +B )=cos (π-C )=-cos C , sin(A +B )=sin (π-C )=sin C ,cos A +C 2=cos ⎝ ⎛⎭⎪⎫π2-B 2=sin B2,sin B +C 2=sin ⎝ ⎛⎭⎪⎫π2-A 2=cos A 2.答案:D5.若sin ⎝ ⎛⎭⎪⎫π3+α=13,则cos ⎝ ⎛⎭⎪⎫π6-α=( ) A .-223 B .-13C.13D.223解析:因为π6-α=π2-⎝ ⎛⎭⎪⎫π3+α.所以cos ⎝ ⎛⎭⎪⎫π6-α=cos⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3+α=sin ⎝ ⎛⎭⎪⎫π3+α=13答案:C 二、填空题6.若cos α=15,且α是第四象限角,则cos ⎝⎛⎭⎪⎫α+π2=________.解析:因为cos α=15,且α是第四象限角,所以sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫152=-265.所以cos ⎝⎛⎭⎪⎫α+π2=-sin α=265.答案:2657.已知sin ⎝ ⎛⎭⎪⎫π2+α=1010,则sin ⎝ ⎛⎭⎪⎫3π2-α=________. 解析:因为sin ⎝ ⎛⎭⎪⎫π2+α=1010,所以cos α=1010.又因为sin ⎝ ⎛⎭⎪⎫3π2-α=-cos α,所以sin ⎝ ⎛⎭⎪⎫3π2-α=-1010.答案:-10108.sin 21°+sin 22°+sin 245°+sin 288°+sin 289°=________.解析:原式=(sin 21°+sin 289°)+(sin 22°+sin 288°)+sin 245°=(sin 21°+cos 21°)+(sin 22°+cos 22°)+⎝ ⎛⎭⎪⎫222=1+1+12=52.答案:52三、解答题9.化简:sin ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫π2-αcos (π+α)+sin (π-α)cos ⎝ ⎛⎭⎪⎫π2+αsin (π+α).解:因为sin ⎝⎛⎭⎪⎫π2+α=cos α,cos ⎝⎛⎭⎪⎫π2-α=sin α,cos (π+α)=-cos α,sin (π-α)=sin α,cos ⎝ ⎛⎭⎪⎫π2+α=-sin α,sin (π+α)=-sin α, 所以原式=cos α·sin α-cos α+sin α·(-sin α)-sin α=-sin α+sin α=0.10.已知cos α=-45,且α为第三象限角.(1)求sin α的值;(2)求f (α)=tan (π-α)·sin (π-α)·sin ⎝ ⎛⎭⎪⎫π2-αcos (π+α)的值.解:(1)因为cos α=-45,且α为第三象限角,所以sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫-452=-35.(2)f (α)=-tan α·sin α·cos α-cos α=tan αsin α=sin αcos α·sin α=-35-45×⎝ ⎛⎭⎪⎫-35=-920. B 级 能力提升1.已知f (x )=sin x ,下列式子成立的是( ) A .f (x +π)=sin xB .f (2π-x )=sin xC .f ⎝⎛⎭⎪⎫x -π2=-cos xD .f (π-x )=-f (x )解析:f (x +π)=sin(x +π)=-sin x ;f (2π-x )=sin(2π-x )=sin(-x )=-sin x ;f ⎝ ⎛⎭⎪⎫x -π2=sin ⎝ ⎛⎭⎪⎫x -π2=-sin ⎝ ⎛⎭⎪⎫π2-x =-cos x ;f (π-x )=sin(π-x )=sin x =f (x ).答案:C2.已知cos ⎝ ⎛⎭⎪⎫5π12+α=13,且-π<α<-π2,则cos ⎝ ⎛⎭⎪⎫π12-α= ________.解析:因为-π<α<-π2,所以-7π12<5π12+α<-π12.又cos ⎝ ⎛⎭⎪⎫5π12+α=13>0,所以sin ⎝ ⎛⎭⎪⎫5π12+α=-1-cos 2⎝ ⎛⎭⎪⎫5π12+α=-223, 由⎝ ⎛⎭⎪⎫π12-α+⎝ ⎛⎭⎪⎫5π12+α=π2, 得cos ⎝ ⎛⎭⎪⎫π12-α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫5π12+α= sin ⎝ ⎛⎭⎪⎫5π12+α=-223.答案:-2233.设tan ⎝ ⎛⎭⎪⎫α+87π=a .求证:sin ⎝ ⎛⎭⎪⎫157π+α+3cos ⎝ ⎛⎭⎪⎫α-137πsin ⎝ ⎛⎭⎪⎫207π-α-cos ⎝ ⎛⎭⎪⎫α+227π=a +3a +1.证明:左边=sin ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫87π+α+3cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+87π-3πsin ⎣⎢⎡⎦⎥⎤4π-⎝ ⎛⎭⎪⎫α+ 87π-cos ⎣⎢⎡⎦⎥⎤2π+⎝ ⎛⎭⎪⎫α+87π=-sin ⎝ ⎛⎭⎪⎫α+87π-3cos ⎝ ⎛⎭⎪⎫α+87π-sin ⎝ ⎛⎭⎪⎫α+87π-cos ⎝ ⎛⎭⎪⎫α+87π=tan ⎝ ⎛⎭⎪⎫α+87π+3tan ⎝⎛⎭⎪⎫α+87π+1.将tan ⎝ ⎛⎭⎪⎫α+87π=a 代入得,左边=a +3a +1=右边,所以等式成立.第一章 三角函数 1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象A 级 基础巩固一、选择题1.点M ⎝ ⎛⎭⎪⎫π2,-m 在函数y =sin x 的图象上,则m 等于( ) A .0 B .1 C .-1 D .2 解析:由题意-m =sin π2,所以-m =1,所以m =-1.答案:C2.在同一坐标系中函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象( ) A .重合B .形状相同,位置不同C .形状不同,位置相同D .形状不同,位置不同 解析:解析式相同,定义域不同. 答案:B3.函数y =-sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,3π2的简图是( )解析:可以用特殊点来验证:x =0时,y =-sin 0=0,排除A 、C.当x =3π2时,y=-sin 3π2=1,排除B.答案:D4.函数y =1+sin x ,x ∈[0,2π]的图象与直线y =2交点的个数是( ) A .0 B .1 C .2 D .3解析:由函数y =1+sin x ,x ∈[0,2π]的图象(如图所示),可知其与直线y =2只有1个交点.答案:B5.不等式cos x <0,x ∈[0,2π]的解集为( )A.⎝⎛⎭⎪⎫π2,3π2 B.⎣⎢⎡⎦⎥⎤π2,3π2 C.⎝ ⎛⎭⎪⎫0,π2 D.⎝ ⎛⎭⎪⎫π2,2π 解析:由y =cos x 的图象知,在[0,2π]内使cos x <0的x 的范围是⎝ ⎛⎭⎪⎫π2,3π2.答案:A 二、填空题6.用“五点法”画出y =2sin x 在[0,2π]内的图象时,应取的五个点为________________.解析:可结合函数y =sin x 的五个关键点寻找,即把相应的五个关键点的纵坐标变为原来的2倍即可.答案:(0,0),⎝ ⎛⎭⎪⎫π2,2,(π,0),⎝ ⎛⎭⎪⎫3π2,-2,(2π,0) 7.若sin x =2m +1且x ∈R ,则m 的取值范围是________. 解析:因为-1≤sin x ≤1,sin x =2m +1, 所以-1≤2m +1≤1,解得-1≤m ≤0. 答案:[-1,0] 8.函数y =log 12sin x 的定义域是______________. 解析:由log 12sin x ≥0知0<sin x ≤1,由正弦函数图象知2k π<x <2k π+π,k ∈Z.答案:{x |2k π<x <2k π+π,k ∈Z} 三、解答题9.用“五点法”作函数y =-2cos x +3(0≤x ≤2π)的简图. 解:列表:10.判断方程sin x =x10的根的个数.解:当x =3π时,y =x 10=3π10<1;。

相关文档
最新文档