钢管混凝土结构抗震性能
方钢管混凝土框架结构抗震性能试验研究

图2框架 节点示意 图
12 试 验 装置 与 加 载制 度 .
试 验 采 用拟 静 力 加载 水 平反 复 荷 载 采 用 5 O N 压 千 斤顶 通 钢 管 横 向应 力加大 相应 钢 管 对 内部 混 凝 土 的约 束 力不 断 增长 。 Ok 拉 过 反 力墙 施 加 在框 架顶 层 沿 梁 的 中心 线 上 。 向荷载 通 过 框 架柱 顶 竖 卸载 段 基 本 呈直 线 卸 载 刚度 与初 始 刚度 基 本 相 同 。 上 的液压 千 斤 顶施 加 边 柱施 加 3 O N的竖 向 力 中柱 为 5 O N.试 Ok 0k 当正 向加 荷至 P 0 k 反 向加 荷至 P 一 2 1 N 达 到最高 荷 一2 3 N = 2 k 验 过 程 中保 持 不变 。 压 比边 柱 为 O 2 中柱 为 0 3 。水平 荷载 采 载 .相 应 的位 移 延性 系数 “△ 轴 3 8 一 9和“ 6 =19 。此 后 随 荷载 .5
. .
.
用荷载 一 变 形双 控 制 的加 载 方 法 ,即屈服 前 用 荷载 控 制
,
屈 服 后 用
反 复 循 环 变 形 迅 速 增 加 而 荷 载 开 始 缓 慢 下 降 。 当 正 向加 荷 至
维普资讯
别部 位 贴 应 变花 ( 点核 心 处 ) 节 .测算 应 力 S 、S x y 端装 设 倾 角仪 测 量 梁 端转 角 ;中柱 及边 柱 梁端 装 设 百分 表 测算
梁柱 相 对 转 角 ;框架 每层 顶 点 沿梁 中心 线处 安 装位 移 计 .测量 框架
—
』 L 一 — 』I 一 m
钢管混凝土框架结构抗震性能比较研究

钢管混凝土框架结构抗震性能比较研究摘要:分别对钢管混凝土和钢筋混凝土的五层框架结构的抗震性能进行了分析,通过比较两种结构在不同地震作用下的动力特性和抗震性能的反应,得出钢管混凝土结构的抗震性能要优于钢筋混凝土结构。
有进一步研究和推广的价值。
关键词:钢管混凝土;动力特性;抗震性能中图分类号:tu323.5文献标识码: a 文章编号:0引言钢管混凝土就是在钢管中填充混凝土而形成的结构构件。
混凝土的抗压强度高,但抗弯能力弱;而钢材的抗弯能力强、弹塑性好,但在受压时容易发生屈曲而丧失稳定性。
钢管混凝土是两种材料的组合,能够将两者的优点结合在一起。
随着经济的发展和社会的进步,一些超高层、大跨度结构应运而生。
同时,对结构形式和构件材料也有了更高的要求。
由于钢管混凝土的抗压强度高、抗弯能力好、抗震性能强等优点,适应了这一发展趋势。
本文采用有限元软件sap2000分析程序,对钢管混凝土和钢筋混凝土结构做了理论上的比较研究,用工程实例验证钢管混凝土结构优越的抗震性能,为结构设计提供了参考依据。
1框架结构模型的选取1.1 工程概况建筑物所在地区的设防烈度为8度,地震加速度为0.20g,场地类别为ⅱ类场地,混凝土强度等级框架柱采用c35,梁及楼板采用c30,钢筋采用hrb400,钢管采用q345钢。
层高为3米。
1.2 有限元分析模型及参数的确定为了更好的比较分析钢管混凝土结构和钢筋混凝土结构的抗震性能,在此用截面形式和构件尺寸完全相同的两种框架结构进行分析。
柱截面尺寸为800mm×800mm,框架梁截面尺寸为300mm×600mm,楼板厚度为130mm。
2不同地震作用下动力特性比较分析运用sap2000分析软件对两种框架结构进行动力分析,这里采用el centro地震波。
分别用70gal和400gal大小的地震波进行分析。
在70gal el centro地震波的作用下,得出钢管混凝土结构和钢筋混凝土结构的自振频率,如表1所示。
某钢管混凝土系杆拱桥抗震性能评价

某钢管混凝土系杆拱桥抗震性能评价摘要:本文以某三跨钢管混凝土系杆拱桥为背景,利用Midas civil空间有限元软件建立该桥空间动力计算模型,采用反应谱方法进行结构地震反应分析。
研究了结构在E1地震作用(100年超越概率63%)和E2地震作用(100年超越概率4%)两种设防水准地震输入下的地震相应,从计算结果可以得出结论,各部分结构尺寸可以满足结构抗震性能,可为同类型桥梁的设计提供参考经验。
关键词:钢管混凝土系杆拱桥;抗震;反应谱;动力响应;空间模型1.工程概况本项目特大桥采用采用连续刚构钢管混凝土拱组合桥,跨径组成为:(2×37)m+88m+180m+88m+25m,桥长425m。
主拱和边拱均采用为平行式钢管拱,仅主拱设置三个钢管横撑。
主拱上部结构为采用钢—混凝土组合梁桥面系,下部为钻孔灌注桩基础,桩径2.0m。
边拱采用的是预应力混凝土π型梁,下部为钻孔灌注桩基础,桩径2.0m。
桥梁总图布置图见图1根据规范,E1、E2地震作用下的场地设计地震动水平向峰值加速度及加速度反应谱参数,见表1。
地震激励采用纵向和横向两种输入方式。
表1 工程场地设计地震动参数(阻尼比5%)3.2.2最不利单桩内力计算采用100年超越概率63%的反应谱,所得到的各联顺桥向和横桥向最不利单桩内力最大值分别见表4和表5。
表4 E1地震作用下最不利单桩内力汇总-顺桥向3.3.2最不利单桩内力计算采用E2反应谱,所得到的各联顺桥向和横桥向最不利单桩内力最大值分别见表6和表7。
表6 E2地震作用下最不利单桩内力汇总-顺桥向通过验算可知,在E1地震作用下,三角刚架、拱肋和桥墩的顺桥向和横桥向抗弯承载能力均满足要求;三角刚架桩基础和桥墩桩基础顺桥向和横桥向抗弯承载能力均满足要求。
在E2地震作用下,三角刚架、拱肋和桥墩的顺桥向和横桥向抗弯承载能力均满足要求;三角刚架桩基础和桥墩桩基础顺桥向和横桥向抗弯承载能力均满足要求。
5.参考文献(1)戴小冬、卢江波、苏振宇、张铭。
浅析钢管混凝土原理与发展状况

浅析钢管混凝土原理与发展状况钢管混凝土是一种结构材料,由钢筋和混凝土组成。
钢管混凝土结构具有较高的强度和刚度,可以用于各种重要的建筑和桥梁工程。
钢管混凝土结构的原理是将钢管(通常为圆形)嵌入混凝土中,形成一个整体。
混凝土具有很好的抗压性能,而钢管则能够承受拉力。
通过钢筋和混凝土的组合作用,钢管混凝土结构能够同时承受压力和拉力,从而提高整体结构的强度和稳定性。
钢管混凝土结构具有以下几个优点:1.高强度:钢管混凝土结构具有很高的强度和刚度,能够承受较大的荷载,并且具有较好的抗震性能。
2.耐久性:混凝土能够有效地保护钢筋不受腐蚀和氧化的影响,从而延长了结构的使用寿命。
3.施工速度快:钢管混凝土结构的施工速度相对较快,可以大大缩短工期,减少施工费用。
4.灵活性:钢管混凝土结构可以根据实际需要进行调整和改变,具有较好的灵活性。
钢管混凝土结构的发展状况:钢管混凝土结构最早是在20世纪初期发展起来的,最早应用于桥梁和隧道工程中。
随着科学技术的不断进步和应用领域的扩大,钢管混凝土结构逐渐应用于各种建筑工程中,如高层建筑、工业厂房、大跨度空间结构等。
在国内,钢管混凝土结构的应用越来越广泛。
特别是在近几年,随着城市化进程的加快和人们对建筑安全和耐久性要求的提高,钢管混凝土结构成为各种大型工程的首选。
北京的鸟巢体育馆和上海的东方明珠塔等著名建筑都采用了钢管混凝土结构。
当前,钢管混凝土结构正面临着一些挑战和发展机遇。
一方面,需要进一步提高钢管混凝土结构的设计和施工技术,以提高结构的强度和稳定性。
随着低碳环保理念的推广,钢管混凝土结构也需要进一步降低能源消耗和环境污染。
钢管混凝土结构是一种非常有潜力的结构形式,具有很好的发展前景。
随着科学技术的不断进步和人们对建筑安全和耐久性要求的提高,钢管混凝土结构将在未来得到更广泛的应用。
钢管混凝土框架结构抗震性能分析

[] 王 3
振 , 立强. 唐 立式浮放储 罐三 维地 震反应 分析及 试验研 f ] 中国科 学院高科技研 究与发展 局 . 学研 究动 态监 测 快报 6 科
[]先 进 能 源科 技 专 辑 ,0 8 8 :01 . J. 2 0 () 1 —2
究 [ ]2 0 . Z .0 6
[ ] 郭增 建. 市地震政 策I . 京: 4 城 N]北 地震 出版社 ,9 1 15 1 9 :- .
筋 混 凝 土 楼 盖 , 度 为 10mm, 管 采 用 0 4 厚 2 钢 3 5钢 。 由 于结 构 的 控 制 作 用 为 地 震 作 用 , 在 此 分 析 地 震 对 结 构 的 故
作用 , 其他如恒载 、 活载 、 载对结构 的影 响不予考虑。 风
1 2 多遇 地震 作 用下 结构抗 震性 能分 析 .
第3 6卷 第 3 0期
2 0 10年 l0月
山 西 建 筑
SHANXl ARCHI TEC F URE
V0 . 6 NO 3 13 . 0
Oc. 2 1 t 00
・ 57 ・
文 章 编 号 :0 96 2 (0 0 3—0 70 1 0 —8 5 2 1 )00跨桥 梁 、 工业 建筑 以及 地下 结构 等
众多土木工程结构 中 , 取得 了良好 的经济和社会效益 。
随着经济建 设的迅速发展 , 国城市交通 的桥梁建设亦 进入 我
迅 速 发 展 时 期 。 为 改 善 城 市 交 通 , 强 与 周 围 地 区 间 的联 系 , 加 人
采用有 限元 分析软件 S P 0 0对 上述两框 架结 构进行 线性 A 20 时程分析 , 选用的地震波为 E一 et 1 nr C o波和 T f波 。 at 在 7 gl l et 0 a, — nr E C o波作用 下 , 框架 1和框架 2的结构顶 点位
钢管混凝土异形柱框架结构抗震性能分析

钢管混凝土异形柱将混凝土填充在钢管内,通过竖向钢板完成多个钢管混凝土柱之间的连接,并按照一定间隔用横向加劲肋板进行加固形成的[1],其截面形状为不规则状态,例如T 型、L 型以及Z 型和混合型等。
钢管混凝土异形柱在建筑中应用性较好[2],采用该异形柱作为建筑框架结构,施工后美观性较好,同时具有良好的承载性能[3],可极大程度减轻结构自身重力;并且该类框架结构在施工和安装时,节能环保、施工效率较高[4],能提升土地的使用效率,同时抗震性能和耐火性良好。
因此,钢管混凝土异形柱框架结构已在当下住宅建筑中广泛应用,例如工业厂房、多高层建筑以及超高层建筑等。
因为钢管混凝土异形柱框架结构是多个部分焊接、连接形成,在应用过程中,受到外力作用后,其力学变化情况较为复杂[5];并且异形柱界面具有不规则的特殊性,用于建筑框架后的抗震性能尤为关键;该性能决定该类框架结构施工后,能否保证建筑在地震条件下的安全性[6]。
本文主要针对钢管混凝土异形柱框架结构抗震性能展开相关分析,为该类框架结构的应用提供相关依据。
1钢管混凝土异形柱框架结构抗震性能1.1钢管混凝土异形柱框架结构试件制备本文为分析钢管混凝土异形柱框架结构的抗震性能,设计3个钢管混凝土异形柱框架结构试件,该试件形状为H 型钢梁框架-人字形中心支撑结构,三个试件分别用S1、S2、S3表示,试件设计参数如表1所示。
表1设计参数详情支撑形式跨度/mm双人形2475按照表1的设计参数完成试件制备,制备时混凝土等级为C30,制备的框架中两主节点为外肋环板节点,异形柱中钢管的截面边长为78mm ,竖向连接板和异形柱高度一致,横向肋板尺寸为78mm×35mm×5mm 。
三种试件结构立面图相同,如图1所示。
制备的3种试件在轴心压力作用下,异型柱截面的受压承载力用N u 表示,其计算公式为:N u =m (f y A s +f c A c )(1)式中m 表示钢管混凝土异形柱中单肢柱的数量;f y 和f c 分别表示钢管屈服应力和混凝土抗压强度;A s 和A c 均表示截面面积,前者对应单肢柱钢管,后者对应混凝土。
钢管混凝土的优缺点

钢管混凝土的优缺点钢管混凝土的优缺点钢管混凝土是一种在建筑和工程领域中常见的结构材料。
它由钢筋和混凝土组成,将钢筋与混凝土紧密结合,形成具有高强度和耐久性的结构。
钢管混凝土具有许多优点和缺点,下面将详细介绍。
一、优点1. 强度高:钢管混凝土结构由于钢筋的加入,具有很高的抗压和抗张能力,可以承受较大的荷载。
相比之下,传统的纯混凝土结构往往强度较低。
2. 耐久性好:钢管混凝土结构的耐久性较好,可以长时间抵抗风吹雨打、震动、酸碱侵蚀等自然环境的影响。
它的寿命通常比传统的混凝土结构长。
3. 施工方便:钢管混凝土可以在厂房内进行预制,减少现场施工时间和工期,提高施工效率。
此外,它可以根据需要进行切割和连接,便于实现各种形式的结构。
4. 抗震性能好:钢管混凝土结构具有很好的抗震性能。
其弹性模量大,刚度高,可以有效地吸收和分散地震产生的能量,减少建筑物受到的损坏和影响。
5. 火灾安全性高:钢管混凝土的钢管在火灾中具有很好的耐高温性能,可以保护混凝土免受热胀冷缩和火灾的影响,提高建筑物的火灾安全性。
二、缺点1. 成本较高:与传统的混凝土结构相比,钢管混凝土的施工成本较高。
这是由于其需要使用大量的钢筋和混凝土材料,并需要进行预制和组装等特殊工艺。
2. 维护困难:钢管混凝土结构一旦出现损坏或破坏,修复和维护较为困难。
特别是对于埋入土中的部分,需要进行专门的检测和维护,增加了维护成本和工作量。
3. 对环境影响较大:钢管混凝土的生产过程需要消耗大量的能源和资源,同时会产生大量的二氧化碳等废气和废水。
这对环境造成了不可忽视的影响。
以上是钢管混凝土的优点和缺点的详细介绍。
钢管混凝土作为一种常见的结构材料,具有广泛的应用前景和潜力。
然而,在实际应用中,需要综合考虑其优点和缺点,根据具体情况做出合理的选择。
附件:1. 钢管混凝土相关设计图纸2. 钢管混凝土施工工艺说明书3. 钢管混凝土检测报告法律名词及注释:1. 混凝土:指通过水泥、砂、石等材料按一定比例混合制成的人造石材,广泛用于建筑和工程领域。
钢管混凝土框架结构抗震性能分析

1 试 验 结果 分 析
文献 [ ] 单 层 钢 管混 凝 土框 架 模 型进 行 了低 1对
周往 复加 载试验 , 过对 试 验结 果 和 破坏 形 态 的分 通
析得 出钢 管混凝 土框 架 的 骨架 曲线 , 并对 变形 和 耗
配筋 混凝土 以及钢结 构 的基 础上演 变 和发展 起来 的
一
两种材料 在受力 过 程 中 的相互 作 用 , 钢管 对 其核 即 心混凝 土 的约束作用 和核 心混凝 土增 强管壁 的稳定 作用 , 混凝 土的强 度得 以提 高 , 使 塑性 和韧性性 能大 为改善 . 同时 , 免 或 延缓 了钢 管发 生 局 部 屈 曲 , 避 从
钢管混 凝土柱是 在钢 管中填 充混 凝土后 形成 的
一
框 架 的承载能力 、 变形 特 征 、 耗能 能 力进 行 了分 析 , 并 与钢筋 混凝土 框架 结 构 进行 对 比, 以期 使 钢管 混 凝 土框 架结构在 工程实 践 中得 到较 为广泛 的应 用 .
种 受力构件 , 这种 构件是在 劲性 钢筋 混凝 土、 螺旋 种新 型结构 构件 . 管 混凝 土 利 用 钢 管 和混 凝 土 钢
斌 田忠 民 ,
04 1 ;. 头 稀 土 高新 区 新 纪 元科 技开 发 股 份 有 限 公 司 , 100 2 包
关 键 词 : 管 混 凝 土 ; 架 ; 震 性 能 钢 框 抗
中 圈分 类 号 : U 1 . T 312 文献标识码 : A
摘
要: 通过两榀具有 同一外形尺寸及用料的钢管混凝土框 架结构在低 局往复荷载下 的试验研究和 理论分析 , 研
Ci ) h a n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南昌大学研究生2015~2016学年第二学期期末读书报告课程名称:混凝结构理论与应用专业:建筑与土木工程学生姓名:李海学号:4160146150学院:建筑工程学院得分:任课教师:熊进刚时间:2016年6月钢管混凝土结构抗震性能研究摘要: 介绍了钢管混凝土组合结构的特点,综述了国内外钢管混凝土结构的抗震性能的研究现状; 分析了其存在的问题和实用价值,展望了钢管混凝土结构发展趋势和应用前景; 指出了进一步研究的方向。
关键词: 组合结构; 钢管混凝土结构; 抗震性能; 工程应用Abstract:This paper presents the characteristics of steel concrete composite structures, review the status of research on seismic behavior of domestic and foreign steel concrete structure; analyzes the problems and practical value, the prospect of the development trend of steel and concrete structures prospects; points out further research direction.Keywords:composite structure; steel concrete structure; seismic performance; engineering applications钢管混凝土是指在钢管中填充混凝土而形成、且钢管及其核心混凝土能共同承受外荷载作用的结构构件,按截面形式不同,可分为圆钢管混凝土,方、矩形钢管混凝土和多边形钢管混凝土等。
钢管混凝土是在劲性钢筋混凝土、螺旋配筋混凝土和钢管结构的基础上演变和发展起来的,利用钢管和混凝土两种材料在受力过程中的相互作用,即钢管对混凝土的约束作用使混凝土处于复杂应力状态之下,从而使混凝土的强度得以提高,塑性和韧性性能大为改善。
同时,由于混凝土的存在可以避免或延缓钢管发生局部屈曲,保证其材料性能的充分发挥。
钢管混凝土组合结构的优势主要表现在: 承载力高、塑性和韧性好、经济效果好、施工方便、耐火性能较好。
钢管混凝土结构早在19 世纪80 年代就出现了,到目前为止,钢管混凝土结构在土木工程中的应用已经有百年历史。
由于钢管混凝土具有优越的力学性能和良好的经济效益,一开始便受到世界各国土木工程界的重视,并争先恐后开发利用。
1879年,英国最早将钢管混凝土杆件用于Severn 铁路桥的桥墩,在钢管内填混凝土以承受轴向压力,并防止钢管内部锈蚀。
1897 年,美国人JOHN LALLY 提出在钢管中填充混凝土作为房屋建筑的承重柱,并获得专利【1】。
我国从1959 年开始研究钢管混凝土的基本性能和应用,1963 年成功地将钢管混凝土柱用于北京地铁车站工程。
改革开放后,随着国家经济的迅猛发展,钢管混凝土结构技术在我国的高层建筑、地铁车站和大跨度桥梁等工程中得到了广泛应用,有力地推动了上述领域营造技术的发展,取得了令人瞩目的成就【2】。
2008 年汶川地震中,钢管混凝土建筑显示了优越的抗震性能,钢管混凝土的研究成为热门课题之一。
1 钢管混凝土的特点混凝土的抗压强度高,但抗弯能力差,而钢材,特别是型钢的抗弯能力强,具有良好的弹塑性,但在受压时容易失稳而丧失轴向抗压能力。
而钢管混凝土在结构上能够将二者的优点结合在一起,可使混凝土处于侧向受压状态,其抗压强度可成倍提高,同时由于混凝土的存在,提高了钢管的刚度,两者共同发挥作用,从而大大地提高了承载能力。
钢管混凝土作为一种新兴的组合结构,主要以轴心受压和作用力偏心较小的受压构件为主,被广泛使用于框架结构中( 如厂房和高层) 。
钢管混凝土结构的迅速发展是由于它具有良好的受力性能和施工性能,具体表现为以下几个方面:1)承载力高、延性好,抗震性能优越。
钢管混凝土柱中,钢管对其内部混凝土的约束作用使混凝土处于三向受压状态,提高了混凝土的抗压强度; 钢管内部的混凝土又可以有效地防止钢管发生局部屈曲。
研究表明,钢管混凝土柱的承载力高于相应的钢管柱承载力和混凝土柱承载力之和。
钢管和混凝土之间的相互作用使钢管内部混凝土的破坏由脆性破坏转变为塑性破坏,构件的延性性能明显改善,耗能能力大大提高,具有优越的抗震性能。
2) 施工方便,工期大大缩短。
钢管混凝土结构施工时,钢管可以做为劲性骨架承担施工阶段的施工荷载和结构重量,施工不受混凝土养护时间的影响; 由于钢管混凝土内部没有钢筋,便于混凝土的浇注和捣实; 钢管混凝土结构施工时,不需要模板,既节省了支模、拆模的材料和人工费用,也节省了时间。
3)耐腐蚀性能优于钢结构。
钢管中浇注混凝土使钢管的外露面积减少,受外界气体腐蚀面积比钢结构少得多,抗腐和防腐所需费用也比钢结构节省。
钢管混凝土构件的截面形式对钢管混凝土结构的受力性能、施工难易程度、施工工期和工程造价都有很大的影响。
圆钢管混凝土受压构件借助于圆钢管对其内部混凝土有效的约束作用,使钢管内部的混凝土处于三向受压状态,使混凝土具有更高的抗压强度。
但是圆钢管混凝土结构的施工难度大,施工成本较高。
相比之下,方钢管混凝土结构的施工较为方便,但钢管混凝土受到的约束作用较小,结构的承载力较低。
就目前实际应用而言,由于受力性能的优越性,圆钢管比方钢管混凝土应用更为广泛。
2 钢管混凝土构件抗震性能国外对圆钢管混凝土构件抗震性能研究较早,在日本,1923 年关东大地震后,发现钢管混凝土结构在该次地震中的破坏并不明显,在以后的建筑中尤其是高( 多) 层建筑中,钢管混凝土得到大量应用。
1991 年Ichinohe 等对圆钢管高强混凝土柱进行了拟静力试验,试验结果表明: 局部屈曲后柱的承载力并不降低,有足够的变形能力,抗震性能很好。
1991 年Yamakawa【3】等通过拟静力试验研究圆钢管配筋混凝土短柱的承载能力、延性和耗能能力,但由于纵筋较多,钢管与混凝土之间约束效应变小,导致滞回曲线有一定的捏缩,另外配筋还造成了钢材浪费,并增加了施工的难度。
1998 年Park,s. M【4】等对钢管内表面有栓钉的圆钢管配筋混凝土柱进行了拟静力试验,由于栓钉和箍筋的存在,柱发生局部屈曲后承载力并未下降,延性和耗能能力明显提高阻。
在国内,钟善桐、韩林海、张素梅等【5】对圆钢管混凝土柱的压、弯、剪受力性能进行了试验研究,较全面地分析了圆钢管混凝土柱的延性、耗能和破坏性能。
1998 年闫维波【6】等对钢管混凝土压弯构件滞回性能进行了研究,提出往复应力状态下高强混凝土和应力应变关系模型,利用数值方法计算出钢管高强混凝土构件在往复荷载作用下的弯矩一曲率关系曲线及P -△曲线。
在此基础上,分析了影响弯矩,曲率滞回关系曲线和P -△恢复力模型,以及模型中各参数、位移延性系数、耗能比和耗能等参数的简化计算公式。
2008 年沈阳工业大学魏华等【7】通过对 6 组圆形钢管混凝土双肢框架柱在水平反复荷载作用下的试验,深入研究了圆钢管混凝土双肢框架柱的滞回性能、吸能性能和延性等抗震性能。
分析了混凝土强度等主要实验参数对双肢框架柱抗震性能的影响。
结果表明,钢管混凝土双肢框架柱具有良好的抗震性能,配置二重筋后会迸一步增强试验体的吸能性能、承载力及延性。
2010 年东北石油大学张文福等【8】为获得钢管混凝土支撑的抗震性能,对14 根圆钢管混凝土支撑试件开展滞回性能数值仿真,主要参数包括混凝土强度、钢材屈服强度、长细比和含钢率等; 通过获得的试件轴力一位移滞回曲线,得到试件的骨架曲线,分析混凝土抗主要参数对荷载一位移骨架曲线的影响,基于滞回曲线,对试件的位移延性、耗能能力和单位体积耗能进行探讨。
结果表明: 随混凝土强度、钢材屈服强度和长细比的增加,位移延性、耗能能力和单位体积耗能能力逐渐减小; 随着含钢率的增加,构件的位移延性、耗能能力减小,单位体积耗能能力逐渐增加。
2. 2 方钢管混凝土构件抗震性能方钢管混凝土四角处混凝土沿对角线受压,随着轴压比的增大,边中混凝土方钢管混凝土所受约束越来越小,甚至出现与钢管壁剥离。
方钢管混凝土的约束作用不如圆钢管混凝土明显从而导致同样条件下其构件强度比圆钢管混凝土稍差。
天津大学王铁成教授对一榀三层两跨方钢管混凝土组合框架进行了抗震性能试验,结果证明该框架模型的荷载一位移滞回曲线非常饱满从而说明方钢管混凝土结构具有优越的抗震性能。
多层住宅采用方钢管混凝土结构,与砖混结构和轻钢结构相比,施工比砖混结构快,造价比轻钢结构低,具有明显的经济效益。
方钢管混凝土结构用在多层住宅是一个发展方向,它有很多优点,会产生较大的经济和社会效益。
1981 年,Sakino【9】等进行了方钢管混凝土柱的拟静力试验,分析了试验参数对构件抗震性能的影响Tomii【10】等通过拟静力试验研究方钢管配筋混凝土短柱的延性和耗能能力。
Matsui C【11】等对钢管内壁有凸肋的方钢管混凝土柱进行了拟静力试验,试验结果表明: 内凸肋提高了钢管与混凝土之间的约束效应,延性和耗能能力明显好于没有内凸肋的方钢管混凝土柱。
Okamoto【12】对离心法预制的高强混凝土矩形钢管混凝土柱进行了拟静力试验,柱的滞回曲线呈纺锤形,延性很好。
Nakanishi【13】通过拟静力试验研究在静载或地震荷载作用下己破坏方钢管混凝土柱的极限强度、剐度和延性,试验获得的水平力与水平位移滞回曲线仍很饱满,极限强度和延性好于相同截面的钢管。
Sun[14]【14】对高轴压比的方钢管套箍钢筋混凝土柱进行了拟静力试验,试验中钢管不直接承受纵向荷载,只对核心混凝土起约束作用,试验结果表明; 即使在高轴压比情况下,这种柱仍然具有良好的的延性,没有剪切破坏和粘结破坏现象发生。
吕西林、陆伟东【15】对12 根承受常轴力和反复水平荷载作用的方钢管混凝土柱试件进行了试验,研究了不同试验参数,如宽厚比、轴压比和内填混凝土强度对试件抗震性能的影响。
试验结果表明,方钢管混凝土具有良好的荷载—位移滞回性能和抗局部屈曲的能力以及比普通钢筋混凝土柱更好的耗能能力和更小的强度退化。
通过编写的计算程序,对方钢管混凝土柱的荷载一变形全过程进行了分析,计算得到的弯矩一轴力一曲率关系和荷载,位移关系与试验结果吻合较好。
在空钢管中填充混凝土可以避免或延缓钢管过早地发生局部屈曲、可以有效地提高构件的延性,从而增强构件的抗震性能。
华侨大学罗漪、徐玉野等【16】采用三维有限元法,分析了方钢管混凝土柱在竖向及水平荷载联合作用下的抗侧力-位移关系,轴压比、钢板宽厚比以及内填混凝土抗压强度对方钢管混凝土柱抗震性能的影响,通过试验证了有限元分析的结果。