风力发电原理第六章分析

合集下载

风力发电原理 作者 徐大平 风力发电原理

风力发电原理 作者 徐大平 风力发电原理
9
1.2 中国风能资源与开发
• 1.2.1 风能特点
– 风能蕴藏量大、分布广。 – 风能是可再生能源。 – 风能利用基本没有对环境的直接污染和影响。 – 风能的能量密度低。 – 不同地区风能差异大。 – 风能具有不稳定性。
10
1.2.2 我国风能资源
我国风能密度分布图
11
1.2.2 我国风能资源(续)
15
1.2.3 风电发展概况(续)
我国规划的大型(千万千瓦、百万千瓦级)风电基地分布图
16
1.3 风力发电技术与发展
• 1.3.1 机组类型
– 微型、小型、中型及大型风电机组 – 离网型风电机组和并网型风电机组 – 水平轴风电机组、垂直轴风电机组
17
微型、小型、中型及大型风电机组
• 按照额定功率的大小,可以将风电机组分为: • 1)微型风力发电机组:额定功率小于1KW。 • 2)小型风力发电机组:额定功率1KW~
• 就目前生产技术水平,可大规模开发利用的清洁可再生能源主要有: 风能、太阳能和生物质能。
5
1.1 风能利用及风力发电历史
• 人类利用风能有资料记载的有几千年历史。早期主要是以 风做为动力——风帆、风车。
a) 帆船
b) 风车
人类早期风能利用示例
6
1.1 风能利用及风力发电历史(续)
• 十九世纪晚期开始出现风力发电。 – 1887——美国人Charles F. Brush研制出世界上第一台12kW直
4
能源
• 能够直接或经转换提供能量的资源称为能源。 • 按被利用程度分:
– 常规能源:开发利用时间长,技术相对成熟、能大量生产利用。 – 新能源:开发和利用尚在研究和推广使用。
• 按取得方式分:

风力发电原理(控制)

风力发电原理(控制)
添加项标题
风电成本问题:目前风电成本较高需要降低风电成本提高风电 的经济性。
风力发电技术的发展前景和展望
技术创新:随着科技的不断进步风力发电技术将更加高效、可靠降低成本提高发电量。
政策支持:各国政府对可再生能源的支持力度不断加大将推动风力发电技术的发展。
市场竞争:随着风力发电市场的不断扩大竞争将更加激烈技术领先的企业将获得更大的市场 份额。
风力发电原理和控制技 术
,
汇报人:
目录
01 添 加 目 录 项 标 题
02 风 力 发 电 原 理
03 风 力 发 电 机 组 控 制
技术
05 风 力 发 电 技 术 的 发
展趋势和挑战
04 风 力 发 电 机 组 控 制 技术的应用
Prt One
单击添加章节标题
Prt Two
风力发电原理
风力发电的基本原理
风能捕获:风能通过风力发电 机叶片转化为机械能
机械能转换:机械能通过发电 机转化为电能
电压与电流控制:通过控制系 统调节电压和电流使其稳定并 输送到电网
并网发电:与电网并联运行实 现风能的高效利用
风力发电机组的组成
风轮:捕获风能 并将其转换为机 械能
传动系统:将风 轮的机械能传递 到发电机
发电机:将机械 能转换为电能
Prt Three
风力发电机组控制 技术
风力发电机组控制系统的组成
风速传感器:测量风速为控制系统提供风速信息 控制系统:根据风速和发电机状态调节发电机组的功率输出 偏航系统:根据风向自动调整发电机组的迎风角度提高风能利用率 制动系统:在异常情况下对发电机组进行制动确保安全停机
风力发电机组控制策略
风力发电机组控制技术在节能减排中的应用

风力发电机机原理课件

风力发电机机原理课件

1.2.2 贝兹理论
1. 贝兹理论中的假设 ——叶轮是理想的; ——气流在整个叶轮扫略面上是均匀的; ——气流始终沿着叶轮轴线; ——叶轮处在单元流管模型中,如图。
3. 动能定理的应用
基本公式:E=1/2 mV2 (m同上) 单位时间内气流所做的功——功率: P’=1/2 mV2= =1/2 SV V2
2、伯努利方程: P0 = P +1/2 * V2=常数
其中: P0 ——气体总压力; P ——气体静压力。
1
2
1
1
3
1
下持翼不面变处,流进场 而横静截压面力面P3≈积PA1。3变化较小,流速V3几乎保 上翼面突出,流场横截面面积减小,空气流速增大,
V2>V1。使得 P2 < P1,即压力减小。 结论:
Re>Recr 紊流 ——雷诺数的物理意义:惯性力与粘性力之比。 雷诺数的影响
考虑对NACA翼型升力曲线和阻力曲线的影响。随着 雷诺数的增加: ——升力曲线斜率,最大升力系数与失速攻角均增加; ——最小阻力系数减小; ——升阻比增加。
§1.2 叶轮空气动力学基础
叶轮的作用:将风能转换为机械能。 1.2.1 几何描述 叶轮轴线:叶轮旋转的轴线。 旋转平面:桨叶扫过的垂直于叶轮轴线的平面。 叶片轴线:叶片绕其旋转以改变相对于旋转平
面的偏转角——安装角(重要概念)。 半径r处的桨叶剖面:距叶轮轴线r处用垂直于
叶片轴线的平面切出的叶片截面。 安装角:桨叶剖面上的翼弦线与旋转平面的夹
角,又称桨距角,记为。
半径r处叶片截面的几何桨距:在r处几何螺旋 线的螺距。
可以从几个方面来理解:
——几何螺旋线的描述:半径r,螺旋升角。 ——此处的螺旋升角为该半径处的安装角r。 ——该几何螺旋线与r处翼剖面的弦线相切。 ——桨距值:H=2r tg r

风力发电原理解析共87页

风力发电原理解析共87页


28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
87

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
ห้องสมุดไป่ตู้

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
风力发电原理解析
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。

风力发电机的能量转换原理解析

风力发电机的能量转换原理解析

风力发电机的能量转换原理解析风力发电是利用风能将其转化为可利用的电能的一种能源转换技术。

风力发电机是其中的核心设备,通过一系列的能量转换过程,将风能转化为电能供人们使用。

一、风的能量转化风是地球自然界中最常见的一种自然现象,其能量来自太阳能,由于地球表面吸收阳光的不均匀性,造成了大气的温度差异。

这使得一些地区形成了气压差异,在地球自转的作用下,空气会形成湍流运动,即风。

风的能量可以分解为动能和势能两部分。

动能:风的动能是由于风的速度而产生的。

根据动能公式E=1/2mv2,风的动能与风速的平方成正比。

势能:风的势能是由风的压力差而产生的。

根据势能公式E=mgh,风的势能与风的密度、重力加速度和高度成正比。

二、风力发电机的能量转换原理风力发电机的核心设备是风轮和发电机。

风轮采用三片或更多的叶片,通过转动的方式捕捉风的动能,并将其转化为机械能。

而发电机则将机械能转化为电能。

1. 风能转化为机械能当风吹过风轮时,风的动能作用在风轮上,使风轮开始旋转。

风轮上的叶片以固定的角度被设计,当叶片与风垂直时,风的动能最大,当叶片与风平行时,风的动能最小。

通过合理的角度设计,叶片可以最大程度地捕捉风的动能。

2. 机械能传递到发电机风轮与发电机通过主轴相连,当风轮旋转时,主轴带动发电机内部的转子也开始旋转。

发电机内部的电线圈和磁场相互作用,产生感应电动势。

利用电力产生定子和转子之间的磁场相互作用,其中一方的磁场恒定,另一方的磁场随机动作。

通过产生感应电动势,并经过整流电路和变流器的处理,将机械能转化为稳定的电能输出。

3. 电能存储与输送发电机输出的电能通过变压器进行升压处理,提高电能的传输效率。

升压后的电能通过输电线路输送到用户所在地,供人们使用。

部分电能还可以通过蓄电池等设备进行存储,以备不时之需。

三、风力发电机的技术改进与应用随着人们对可再生能源的重视和需求的增加,风力发电技术得到了快速发展和改进。

目前,已经出现了许多技术上的突破,使得风力发电机的效率和可靠性得到了显著提高。

风力发电的基本原理以及特点

风力发电的基本原理以及特点
维护成本
垂直轴风力发电机的维护成本通常高于水 平轴风力发电机。
05
国内外风力发电现状及趋 势分析
国际风力发电现状及趋势分析
现状
近年来,全球风力发电装机容量持续增长,其中欧洲、北美和亚洲是主要的发展 区域。技术的进步和成本的降低使得风力发电在全球能源结构中的占比逐渐增加 。
趋势
未来,国际风力发电将继续向大型化、智能化和海洋风电方向发展。同时,随着 全球应对气候变化的紧迫性增加,各国政府将加大对可再生能源的支持力度,风 力发电有望在全球能源转型中发挥更大作用。
风力发电机组成及工作原理
01
02
03
风力机
包括叶片、轮毂、机舱等, 用于捕捉风能并将其转换 为机械能。
增速机
将风力机传递过来的低速 旋转转换为高速旋转,以 适应发电机的工作需求。
发电机
将机械能转换为电能,通 常采用异步发电机或同步 发电机。
控制系统与并网技术
控制系统
包括偏航系统、变桨系统、刹车 系统等,用于确保风力发电机在
国内风力发电现状及趋势分析
现状
中国拥有丰富的风能资源,近年来国内风力发电发展迅速, 装机容量和发电量均位居世界前列。政府的一系列扶持政策 为风力发电产业的快速发展提供了有力保障。
趋势
未来,中国将继续推进风力发电的大规模开发和高质量发展 。在技术创新、智能运维、海洋风电等领域将取得更多突破 。同时,随着电力体制改革的深入推进,风力发电的市场化 程度和竞争力将进一步提升。
03
风力发电的前景
随着全球对可再生能源的需求不断增长,以及风力发电技术的不断进步
和成本的降低,风力发电的前景十分广阔。未来,风力发电将在全球能
源结构中占据重要地位。

第6章-风力发电机组液压与润滑系统

第6章-风力发电机组液压与润滑系统

第6章风力发电机组液压与润滑系统6.1 概述1、风力发电机组的液压系统的主要功能是为(),()、()等机构提供动力。

2、在定桨距风力发电机组中,液压系统除了提供()外,还对机组的()提供动力,控制空气与机械制动的开启,实现机组的开机和停机。

3、在某些变桨距风力发电机组中,采用了液压变桨距装置,利用液压系统控制(),实现风力发电机组的()、(),同时也控制机械制动机构以及驱动偏航减速机构。

4、润滑油,填充在金属运动副之间,用以保护(),降低(),减少(),防止(),带走(),更要求超强()、抗()和良好的()适应性能,保证设备在设计寿命内无故障运行。

6.2 风力发电机组的液压系统1、液压系统主要功能:2、某些机组采用液压变桨距系统,对于变桨距系统的伺服油缸,需要压力油的()和()都要适时变化,系统中的控制元件是()。

3、比例阀控制技术基本工作原理:4、变桨距液压系统图见P157,熟悉各液压元件,读懂工作原理。

5、风力发电机液压系统使用的液压油要求具有良好的()、()及()性能,能适应北方寒冷的气候。

推荐使用黏度指数高、抗磨性能好、抗腐蚀、抗氧化性能好、空气释放性、分水性能以及低温性能优异的液压油。

6.3 液压系统的使用与维护1、液压油污染原因:2、液压油污染危害:3、液压系统检查项目:4、液压故障处理:6.4 润滑基础1、一般来说,在摩擦副之间加入某种物质,用来()、(),以达到延长机件使用寿命的措施叫润滑。

2、能起到减低机件接触面间的()的物质都叫润滑剂。

3、润滑对机械设备的正常运转起着如下作用:4、根据润滑剂的物质形态分类:5、根据润滑膜在摩擦表面间的分布状态分类:1.();2.()。

6、润滑油由()加()调和而成。

基础油在润滑油成分中,一般占()以上。

7、添加剂按其性能区分有:8、润滑脂由()加()和()组成。

基础油可以是()或()。

6.5 风力发电机组的润滑1、风力发电机组使用的油品应当具备下列特性:2、风力发电机组运行的环境温度一般不超过()度,且持续时间不长。

风力发电原理

风力发电原理

风轮旳总转矩是由风轮桨叶全部叶素旳转矩微元之和。根据一样能够由总转矩得到风力机吸收总旳风能。
气流相对于叶片旳相对速度为:
33
3 涡流理论
因为存在尾流和涡流影响,风轮叶片下游存在着尾迹涡,它形成两个主要旳涡区:一种在轮毂附近,一种在叶尖。当风轮旋转时,经过每个叶片尖部旳气流旳迹线为一螺旋线,在轮毂附近也存在一样旳情况,风速旳涡流系统如下图。
5
当翼片与气流方向有夹角(该角称攻角或迎角)时,随攻角增长升力会增大,阻力也会增大,平衡这一利弊,一般说来攻角为8至15度很好。超出15度后翼片上方气流会发生分离,产生涡流,升力会迅速下降,阻力会急剧上升,这一现象称为失速。
6
7
发生转变旳临界角度称之为临界迎角或失速迎角,对于不同旳翼型失速迎角也不同,一般翼型多在10度至15度,一般薄翼型失速迎角稍小,厚翼型失速迎角要大某些;对于同一种翼型影响失速迎角旳是翼片运营时旳雷诺数与翼片旳光洁度。
计算出升力为3075牛顿
18
风力机叶片运动时所感受到旳风速是外来风速与叶片运动速度旳合成速度,称为相对风速。上图是一种风力机旳叶片截面,当叶片运动时,叶片感受到旳相对风速为w,它是叶片旳线速度(矢量)u与风进叶轮前旳速度(矢量)v旳合成矢量。
19
相对风速与叶片弦线之间旳夹角就是叶片旳攻角α
(2)
25
根据国家原则,把风力发电机组旳分为5级,按年平均风速10 m/s、8.5 m/s、7.5 m/s、6 m/s四种风速和特殊设计风速一个(本处设为13 m/s),我们再增长停机风速20 m/s和起动风速3 m/s共七个风速来计算单位面积(每平方米)旳风功率与风压,计算所得数据填于下表: 风速、风功率、风压对照表
22
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风力发电原理第六章分析
§6-1 风力机载荷类型
风力机所处的环境不同,其载荷也有所不同,图示了 风力机组所承受的各种载荷。
按载荷源分类
空气动力载荷:由于空气流动及其与风电机组动、静部件 相互作用所产生的载荷,是风电机组主要的外部载荷之 一,取决于作用于风轮的风况条件、风电机组气动特性 、结构特性和运行条件等因素。
左图为叶片切线方向的载荷分布,其载荷导致叶片产生 了切向的弯曲应力;右图为拍向的风载荷分布,反映了轴向 推力导致叶片在拍向的弯曲应力。从两图可以看出,由于叶 片的扭曲,从起动风速到切出风速,叶片载荷分布轮廓明显 不同。
在切向分布,随着风速的提高,叶片切向承受的风载荷 增大,且为均匀分布;但在切出风速24m/s时,叶片根部 承受的载荷最大,且从叶根向叶尖移动,载荷逐渐在减小 。
在没有变桨距控制的风轮中,靠气动失速来限制功率 输出,因此风轮在到达额定功率后,推力继续增加,或者保 持在一个恒定的水平。正因为如此,无变桨控制的风轮承受 着更高的空气动力载荷。
将百年中的最大阵风作为风力机的最大静载荷,此 时叶片迎风且静止,叶片安装角达90°。设CD为叶片垂 直于风向的阻力系数。作用在[r,r+dr]叶素上的力为
dF
1 2
CDtu2dr
计算和经验表明,某些大型风力机,在风轮迎风静 止状态下,叶片经得起60m/s左右的大风。
二、垂直剪切风和横风
只要风不对称地吹扫风轮,就产生不稳定的、循环变 化载荷。受地表粗糙度的影响,风速随高度增加而增加, 不可避免地造成风的不均匀性。为此,风轮在每旋转一圈 中,叶片在上部的旋转部位,比离地面近的部位承受的风 载荷更高。由于横风风向的快速变化,也引起了风轮的循 环变化的载荷。
垂直剪切风和横风导致在叶片上循环地增加和降低气动 载荷。与稳定而均匀风产生的基本载荷相比,产生了极大 的变化。
下图反映了由于剪切风风轮廓和沿风向变化的不对 称气流轮廓,而引起的叶片根部的弯曲应力。
在风轮旋转中,叶片空气动力学载荷的变化也代表了风 轮整体载荷的变化。对于非铰链连接的两叶片风轮,变桨和 偏航中的交变应力,造成偏航传动部件中相当大的疲劳载荷 。基于此原因,大型两叶片风力机通常设计有摇摆轮毂,可 或多或少补偿了这些变化的载荷。
三、风力机塔架影响
在许多情况下,因风轮和塔架之间的距离太小,而导 致塔架周围的空气动力学流场会影响叶片的运行。
当以传统的上风式安装风轮时,塔架周围的流场对风轮 的影响最小。上风位置的风轮仅受到塔架前的延迟气流的 影响,这就是所谓的塔坝效应。塔坝效应对老式风车及风 车房产生重要的惯性载荷:由重力、振动、旋转及地震引起的静 态和动态载荷。
操作载荷:在风电机组运行和控制过程中产生的载荷, 如发电机负荷控制、偏航、变桨距以及机械刹车过程产 生的载荷。
其他载荷:尾流载荷、冲击载荷和覆冰载荷等。
按结构设计要求分类:
最大极限载荷:风电机组可能承受的最大载荷,需要 根据载荷的波动情况,考虑相应的安全系数。
在拍向方向,随着风速的增加,叶片整体的载荷在增大,且 叶尖比叶片根部承受着更大的载荷。但当风速为切出风速时,叶 片根部拍向承受着最大风载荷,叶尖载荷几乎最小。
扭角是在额定风速经优化得到的,因而只有在额定风速下的 气动载荷才接近于理论最佳值。在其他风速,特别是较额定风速 更高的风速,会在接近于轮毂的部分产生气流分离,这导致气动 载荷发生巨大改变。
在整个叶片长度上对载荷进行积分,便可得出整个叶片的 载荷和力矩。切向载荷提供了风轮旋转力矩,推力载荷分布 提供了整个风轮推力,如图示。这两个参数本质上决定了整 个风力机的静态载荷水平。
在变桨距控制风轮中,风轮力矩和推力增加到某一值 后下降,使得风轮控制系统将捕获的风能控制在额定功率附 近。因此,在额定功率点风轮推力是最大的,然后下降。
疲劳载荷:风电机组构件的寿命设计要考虑的主要因 素,与构件所承受交变循环载荷的循环次数对应。
按载荷时变特征分类:
平稳载荷:指均匀风速、叶片的离心力、作用在塔架上的 风电机组重量引起的载荷,包括静载荷。 循环载荷:指由于风剪切、偏航系统的误差以及误操作、 重力等引起的周期性载荷。 随机载荷:由湍流风引起的气动载荷。 瞬变载荷:由于阵风、起停机和变桨距等操作、冲击载荷 等引起的载荷。 共振激励载荷:与结构动态特性有关的载荷。
在圆柱形塔架前,风速由于受到塔架的阻碍作用,而逐渐 降低。其中几乎在1倍塔柱直径时风速开始降速,而在0.5倍 塔柱直径时风速发生明显降低的现象。因此,只要设计风轮 叶片和塔架的间隙保持在一个塔架直径的距离,就可以将塔 柱对风轮载荷的影响减到最小;否则,如果风轮转速在塔架 的自振频率范围内,那么塔坝效应有可能激起塔架振动。
下图用两个坐标图来表明风轮所受的载荷
在叶片局部断面所在的旋转坐标轴系统中,作用于风轮 叶片的力和力矩被分解为沿弦向和拍向两个分量。在机翼弦长 方向,获得弦向分量;在垂直于弦长方向,为拍向分量。在风 轮旋转平面内,作用于风轮的力被分解为旋转面的切向力和垂 直于旋转平面的推力分量。这个二维系统表达了以载荷的形式 作用于风轮上的全部受力和力矩。
阵风导致风速在短时间内增加和风向的显著改变。但由 于风力机的惯性和对风向调节的滞后,风速增加后,而风轮 来不及作出快速增加转速的反应,短时间内叶片表面气流相 对速度很高;由于风轮轴不可能立即和已改变的风向一致, 所以会发生对风偏差30°~40°,甚至更多,结果使叶片承受 的弯曲力矩增大。事实上攻角变化比气流相对速度增大,而 引起更大的应力。
§6-2 载荷来源
一、均匀稳定空气流的载荷
假设空气流均匀稳定地流经风轮扫掠面,那么水平轴 风轮叶片承受着稳定的气动力。垂直轴风轮则不同, Darrieus风轮或类似结构风轮在均匀流场中承受着随时间 发生改变的载荷。
水平轴风轮叶片上的风载荷,在很大程度上由从叶片 根部到叶尖的有效风速的变化来决定。此外,风轮叶片的 结构形状也影响着风载荷在叶片上的分布。
相关文档
最新文档