虚拟化绿色数据中心的方案文档下载

合集下载

智能化绿色数据中心技术方案建议书

智能化绿色数据中心技术方案建议书

智能化绿色数据中心技术方案建议书目录1.数据中心建设概述 (4)2. 项目规划 (8)2.1 机房功能区规划 (8)2.2 工程设计 (8)3. 项目机房基础装饰描述 (9)3.1 机房装饰装修工程 (9)3.1.1 机房装饰装修概述 (9)3.1.2 机房天面部分 (9)3.1.3机房墙面部分 (10)3.1.4 机房地面部分 (10)4. 机柜系统及密封通道 (12)4.1 微模块机柜系统 (12)4.2 密封冷通道 (13)5. 供配电设计 (16)5.1 数据中心容量规划 (16)5.2 UPS选型计算 (16)5.3 电池选型 (17)5.4 数据中心供配电系统 (17)5.5 机房照明 (18)6. 机房防雷接地 (20)7. 制冷与精密空调系统 (22)7.1 微模块制冷系统 (22)7.2 绿色环保、高效节能优化建议技术措施: (22)8. 综合监控与设备管理系统 (23)8.1 综合监控系统 (24)8.2 机房环境监控系统 (24)1.数据中心建设概述绿色模块化数据中心方案,是当今行业中主流及领先的应用方案,在各行业的大中小型机房中广泛应用,并受到行业专家及用户高度认可。

包括腾讯、阿里、国家超算中心、各国有银行、各国家及省市政府单位、各托管IDC及云计算中心都大量应用并对其便捷性,可扩容性、低运营成本(节能高效性)、高可管理性、整洁美观给予了高度评价。

在实际项目中考虑到机房布局,机柜数量等特定因素,同时考虑到后续扩容的便利性,支持在线扩容无需掉电及避免二次工程及施工、节能突出节约运营及维护成本、方案整体美观整洁兼容性好、维护时避免因不同厂家设备损坏出现扯皮,故障界面不清晰等问题,建议使用公司数据中心方案。

模块化数据中心解决方案是我司针对大中型数据中心应用场合推出的一体化完整解决方案,该方案设计包括四大系统:服务器机柜及封闭通道系统、供配电系统、热管理系统和动力环境监控系统。

数据中心系统框架图根据实际应用需求,数据中心可实施采用封闭冷通道、封闭热通道和冷热通道都封闭等三种形式。

绿色数据中心建设方案

绿色数据中心建设方案

•引言•数据中心建设规划•数据中心硬件设施建设目录•数据中心软件设施建设•数据中心运维管理•数据中心绿色能源应用•数据中心建设效益评估•数据中心建设总结与展望背景介绍建设目标明确规划目标选址及场地条件总体布局030201总体规划负载分析供电方案配电系统冷负荷计算选择合适的制冷设备及布局方案,确保设备运行效率及节能效果。

制冷方案气流组织办公区域设计合理的办公区域,包括办公室、会议室等。

功能分区根据业务需求,划分功能区域。

设备区域合理安排设备区域,避免设备过度堆积导致安全隐患。

空间规划总结词模块化设计、高可用、节能环保详细描述机房建设应采用模块化设计,方便后期扩展和灵活配置。

同时,为了保证数据中心的可用性,机房应采用高可用架构,配备相应的冗余设备和备份机制。

在环保方面,机房建设应采用节能环保的材料和设备,降低能耗和碳排放。

机房建设网络设备总结词高性能、高可用、可扩展详细描述网络设备是数据中心的核心组成部分,应选择高性能的设备,具备较高的吞吐量和较低的延迟。

同时,为了确保数据中心的可用性,网络设备应具备较高的可靠性和稳定性,避免网络故障对业务的影响。

此外,网络设备还应具备可扩展性,方便后期根据业务需求进行扩展。

服务器设备总结词详细描述高性能、高可用、可扩展详细描述存储设备是数据中心的重要设备之一,应选择高性能的存储设备,具备较高的存储能力和读写速度。

同时,为了确保数据中心的可用性,存储设备应具备较高的可靠性和稳定性,避免存储故障对业务的影响。

此外,存储设备还应具备可扩展性,方便后期根据业务需求进行扩展。

总结词存储设备VS操作系统Linux操作系统Windows Server操作系统浪潮信息服务器管理软件该软件可实现服务器硬件状态监控、远程管理等功能,提高数据中心的运营效率。

要点一要点二VMware vSphere虚拟化软件该软件可将物理服务器资源进行虚拟化整合,提高服务器资源利用率和灵活性。

数据中心管理软件Oracle数据库软件MySQL数据库软件数据库软件安全软件防火墙软件杀毒软件专业人才引进内部培训与发展跨部门协作运维团队建设操作手册持续优化规范化流程运维流程制定03数据分析01集中监控02告警机制运维监控系统太阳能供电利用太阳能电池板发电,为数据中心提供电力,降低碳排放和能源成本。

企业绿色数据中心建设方案

企业绿色数据中心建设方案

企业绿色数据中心建设方案一、需求分析与规划在建设绿色数据中心之前,企业需要对自身的业务需求进行全面的分析和评估。

这包括预计的数据处理量、存储需求、业务增长趋势等。

基于这些分析,确定数据中心的规模和性能要求。

同时,要考虑数据中心的选址。

理想的地点应具备良好的气候条件,例如较低的平均气温和适度的湿度,以减少冷却系统的负担。

此外,电力供应的稳定性和成本也是重要的因素。

二、高效的 IT 设备选型(一)服务器和存储设备选择具有高能效比的服务器和存储设备是绿色数据中心的基础。

新一代的服务器采用了更先进的处理器技术和节能设计,能够在提供相同性能的情况下降低能耗。

(二)网络设备优化网络架构,减少网络设备的数量和能耗。

选用支持低功耗模式和智能电源管理的网络交换机和路由器。

三、节能的冷却系统(一)自然冷却技术充分利用自然冷源,如在适宜的气候条件下采用新风直接冷却或间接蒸发冷却技术,降低机械制冷的使用时间。

(二)精确制冷采用冷通道封闭或热通道封闭技术,将冷空气精确输送到服务器进气口,提高制冷效率,减少冷量浪费。

(三)智能冷却控制系统安装智能冷却控制系统,根据服务器的负载和环境温度实时调整制冷量,实现按需制冷。

四、高效的电力供应系统(一)优化电源架构采用高压直流供电或市电直供技术,减少电力转换环节的损耗。

(二)UPS 系统选用高效的不间断电源(UPS)系统,如模块化 UPS,提高电源效率,并根据实际负载合理配置 UPS 容量。

(三)能源管理系统建立能源管理系统,实时监测电力消耗情况,分析能耗数据,发现潜在的节能机会。

五、数据中心的布局与布线优化合理规划数据中心的设备布局,确保气流流通顺畅,减少热阻和阻力。

优化布线,减少线缆长度和损耗,提高电力和信号传输效率。

六、虚拟化与云计算技术应用(一)服务器虚拟化通过服务器虚拟化技术,将多个物理服务器整合为一个虚拟资源池,提高服务器资源利用率,减少物理服务器的数量,从而降低能耗。

(二)存储虚拟化实现存储资源的虚拟化管理,提高存储资源的利用率,避免存储容量的过度配置。

绿色数据中心解决方案

绿色数据中心解决方案

绿色数据中心解决方案
《绿色数据中心解决方案:可持续发展的关键》
随着互联网的飞速发展和数据中心的数量不断增加,能源消耗和环境影响成为了一个日益严重的问题。

传统的数据中心大量消耗电力、产生热量和排放二氧化碳,给环境带来巨大压力,因此寻找绿色的数据中心解决方案成为了当务之急。

绿色数据中心解决方案是指利用创新技术和可持续发展理念,通过降低能源消耗、提高能源利用率和减少环境排放来打造更环保的数据中心。

这些解决方案包括但不限于以下几个方面:
第一,采用节能的硬件设备。

包括能源效率更高的服务器、存储设备和网络设备,以及能够有效降低功耗和散热的硬件设备。

通过替换旧设备和采用节能设备,可以有效减少数据中心的能源消耗。

第二,优化数据中心的设计和建设。

在建筑、布局、制冷和供电等方面进行优化,确保数据中心能够在最低的能源消耗下运行。

例如,采用更高效的制冷系统、灯光系统和供电系统,减少能源浪费。

第三,推广可再生能源的使用。

数据中心可以通过采用太阳能、风能等可再生能源来替代传统的能源供应,达到零排放的目标。

这样不仅能够降低对化石能源的依赖,还能够减少环境污染。

第四,实施智能能源管理系统。

利用智能传感器和控制系统,
对数据中心内的能源使用进行实时监测和调控,保证能源的最佳利用和分配。

总之,绿色数据中心解决方案是实现可持续发展的关键之一。

通过采用这些解决方案,不仅能够降低数据中心的运营成本、提高竞争力,还能够减少对环境的影响,为社会和地球健康可持续发展贡献力量。

希望各国政府、企业和个人都能够意识到绿色数据中心的重要性,积极推广和应用绿色数据中心解决方案。

绿色数据中心和虚拟化技术降低功率50%白皮书说明书

绿色数据中心和虚拟化技术降低功率50%白皮书说明书

WHITE PAPERGreen Data Center and Virtualisation Reducing power by up to 50%CONTENTSExecutive summary 3 Blade for Blade, power is the same 5 PAN lowers power by reducing server/CPU count by 50% 8 PRIMERGY BladeFrame’s Data Centre Virtualisation Architecture 9 CoolFrame Technology reduces Data Centre air cooling load up to 83% 10 Summary 12The evolution of distributed computing has led to an explosion in data center complexity as the number of servers, storage devices, and local and wide area networks has grownexponentially. At the same time, processors continue to get more powerful but applications remain rigidly tied to specific servers, leading to low server utilisation across the data center. This makes today’s environment extremely complex and difficult to manage, yielding high costs for:H ardware and software to meet peak loads, high availability and disaster recoveryOperational expenses for space, power and cooling P ersonnel-intensive administration of redundant power, LAN, SAN and management networksAs a result of these industry trends, businesses are spending an increasingly large portion of their IT budgets on maintenance and power and cooling. According to IDC, in 2006 businesses world-wide spent about $55.4 billion on new servers and approximately $29 billion to power and cool those machines. That is almost half the cost of the equipment itself – for every $1 spent on the server, $0.5 is spent on energy to power and cool it! The amount of money that businesses will spend to power and cool the data center is only going up, so it is critical for IT departments to get control over its computing, storage and network resources.Executive summaryFor every $1 spent on new server spend, $0.50 is spent on energy to power and cool it.(Figure 1: IDC) Worldwide Server Installed Base, New Server Spending, and Power and Cooling Expense12010080604020050403545302520151050S p e n d i n g (U S $ i n b i l l i o n s )Installed base (units in thousands)199619971998199920002001200220032004200520062007200820092010Worldwide Server Installed Base, New Server Spending, and Power Cooling ExpenseNew Server Spending Power and CoolingSource: IDC 2007IDC March 2007 "CIO Strategies to Build the Next-Generation Data Center" by Vernon TurnerData centre complexity and the large number of servers in the data centre are the primary drivers of increased energy consumption for power and cooling. An increasing number of enterprises have hit the limits of their data centre’s power, cooling and space capacity.IT leaders need to consider the following questions:1) H ow can I most efficiently use only the processing powerI need within each server?1) H ow can I eliminate a majority of the components that are drawing power and generating heat (servers, switches, disk drives, etc.) while maintaining high levels of service to my customer?1) H ow can I efficiently remove heat from my data centre?Data centre virtualisation is key to achieving these goals, and alone could reduce energy costs in the data centre by up to 50%. Data centre virtualisation creates dynamic pools of processing, storage and networking resources that can be applied as needed, when needed, to applications. PRIMERGY BladeFrame’s data centre virtualisation architecture is called the PAN (Processing Area Network). The PAN transforms many common hardware components into software, thus dramatically reducing the overall cost and complexity in the data centre. The PAN architecture allows IT to 1) deliver power efficiently by supplying only the power needed at the right time; 2) reduce data centre complexity by up to 80% and the number of servers/ CPUs that need to be cooled by up to 50%; and 3) provide an additional 25% reduction in data centre cooling with advanced system-level cooling technologies, such as the CoolFrame™ solution.The majority of power in blade servers is consumed by the CPU and memory. Therefore, chip manufacturers are focused ondeveloping processors that provide better performance-per-watt, and the ability to dynamically adjust performance, based on CPU utilisation (e.g. optimise the performance-per-watt for each CPU). The remaining 30–40% of the power is consumed by disk drives, networking, I/O, peripherals and power.Hardware vendors are using the same components in their servers, so there are very few differences from a power perspective when comparing a “blade to a blade.” The real impact on power and cooling occurs with data centrevirtualisation, which reduces server/CPU count and powerthe data centre.Blade for Blade, power is the same –BladeFrame allows you to power only what you need50% CPU30-40% Disk, network, I/O, peripherals, power 10% MemorySource: “Full-System Power Analysis and Modelling for Server Environments,” by Dimitris Economou, Suzanne Rivoire, Christos Kozyrakis, and Partha RanganathanComparing PRIMERGY BladeFrame Processing Blade™ (pBlade™) modules to traditional blades, highlights some of the advantages of the PRIMERGY BladeFrame PAN architecture.P ower requirements are the samefor PRIMERGY BladeFrame pBlademodules as competitive blades.On average, power requirements arethe same for each blade configurationbecause each hardware vendor usesthe same components. Figure 3 and 4illustrate that performance/power andpower/blade only slightly vary for avariety of server configurations.R eduction in physical complexitylowers data centre power requirements.PRIMERGY BladeFrame requires~15–20% less power/blade in someconfigurations compared to traditionalbladed architectures (e.g. 4-socketconfigurations). Through the PANarchitecture, many common hardwarecomponents are eliminated (NICs,HBAs, disk drives, CDROMS, externalswitch port consolidation) andcontrolled in software. The PANdramatically reduces the number ofphysical components that exist in thedata centre, and therefore, reducesthe amount of power drawn andheat emitted.S hared-nothing architectures allowyou to only power what you need.PRIMERGY BladeFrame appears torequire ~15–20% more power/bladein some configurations compared totraditional bladed architectures(e.g. higher density 2-socketconfigurations). However, sharedarchitectures power and cool theentire system whether you have twoor 16 blades installed. PRIMERGYBladeFrame has a “shared-nothing”architecture, so you only power whatyou need. Figure 5 illustrates how ashared-nothing architecture is moreefficient regardless of whether thesystem is partially or fully utilised.P RIMERGY BladeFrame pBlademodules are optimised for thehighest efficiency. Each PRIMERGYBladeFrame pBlade has its own powersupply and fan; right-sized to operateat peak efficiency at the maximumrated output power. Power/cooling isnot oversized for larger memory orCPU configurations. Efficiencies inshared architectures are lower whenthe system is not fully loaded or isoperating above the maximumrated power.(Figure 5: Vendor Power CalCulators)0.5P e r f o r m a n c e /W a t t (S p e c /W )AMD-2216,2-socket/4GBIntel 5160,2-socket/16GBAMD-8216,4-socket/32GBIntel-x53552-socket/32GBBladeFrame HP cClass IBM BCH*HP RackBladeFrame HP cClass IBM BCH*HP Rack8006005007004003002001000W a t t s /b l a d eAMD-2216,2-socket/4GBIntel 5160,2-socket/16GBAMD-8216,4-socket/32GBIntel-x53552-socket/32GB2000140012001000180016008006004002000W a t t s /b l a d e0%20%40%60%Traditional Blades: Shared Power/Cooling80%100%System Utilisation with AMD-2216, 2-socket/4GBBladeFrame: Shared Nothing Traditional Blades: Shared Power/Cool Power measurements are based on power sizing tools, which do not reflect application environments (e.g. configuration, application,ambient temperature, and other factors). A more realistic value under typical conditions is assumed to be 80% of the maximum provided, which is assumed for IBM’s power calculator results.Servers/CPUs that you don’t have are the best kind, because they don’t need to be powered or cooled. The PAN architecture reduces the number of servers/CPUs in the data centre by up to 50%. Data centres typically buy enough servers to support an application at its peak demand while ensuring high availability and disaster recovery with additional servers. This environment is often replicated for test, development, QA, production and disaster recovery. That capacity is trapped and cannot be shared between applications or departments as business demands change. The end result is data centres are filled with hundreds to thousands of servers and all the supporting infrastructure includingnetwork switches, storage networks,cables and cooling systems. Each of these components requires power, cooling and real estate, which drive up operational costs for organisations.The best way to reduce the amount of power and cooling required in the data centre is to eliminate servers, which also eliminates the resulting surrounding infrastructure. PRIMERGY BladeFrame’s data centre virtualisation architecture, simplifies the data centre and eliminates the complexity causing most of today's power and cooling challenges.This architecture enables the ability to dynamically provision resources based on business demands, provide costeffective high availability and disaster recovery. This eliminates up to 50% of the servers/CPUs supporting an application and dramatically reduces data centre complexity in the data centre by up to 80%.One BladeFrame customer has anenvironment that requires 70 production servers, of which 50% is highly available. Traditional server architectures would require 105 servers to support production with high availability. PRIMERGYBladeFrame lowers power requirements by 35% by eliminating the need for 33 of these servers.PAN lowers power by reducing server/CPU count by 50%- Servers that you don’t have, don’t need to be powered or cooled60,00050,00040,00030,00020,00010,000HP cClass BladeFrame105 ServersPRIMERGY BladeFrame's Processing Area Network (PAN) architecture combines stateless, diskless processing blades with unique virtualisation software (PAN Manager™ software) to dramatically reduce data centre complexity and deliver an agile, highly-available infrastructure. PAN Manager replaces hardware infrastructure with software and eliminates manual, resource-intensive systems administration tasks through integrated automation. Rather thantie specific operating systems and applications to a server, PAN Manager creates pools of computer storage and network resources that can be dynamically allocated as needed.In conjunction with the BladeFrame system, PAN Manager software delivers a fully virtualised computing infrastructure in an integrated, highly-available system.Through virtualisation, the PAN can repurpose servers when needed, as needed (on the fly). This reduces the need to have servers:S pecified for the intended peak capacity plus some extra overhead for comfort.C onfigured as passive standby servers or overly clustered active machines. This capability eliminates the need for servers that were provisioning only for high availability.D edicated development or UAT servers without sharing computing resources across applications.S itting idle in a DR mode and not used for development or QA environments. One system can serve as backup to production systems at multiple production data centers (N+1 DR).The role of virtual machine technologyFor less mission-critical applications –those that don’t require HA/DR or the fullcapacity of a single processing resource– consolidation using virtual machinetechnologies is often used to reducepower and cooling requirements.For example, one server hosting fourvirtual machines might draw 600 W(operating at 60% utilisation) comparedto four dedicated physical resourcesdrawing 1200 W (400W for each server,operating at 15% utilisation).PRIMERGY BladeFrame’s PANarchitecture provides the ideal platformfor managing a virtual machineenvironment. The PAN provides a singlemanagement domain for configuring,allocating, repurposing and managingboth physical and virtual servers.In addition, the PAN provides a flexiblepool of resources for delivering costeffective high availability, N+1 failover,disaster recovery, dynamic repurposingand other critical services availablethrough PAN Manager software. Whetherconsolidating hundreds of servers ontovirtual blades or deploying the mostmission-critical applications on physicalblades, the PAN provides managementand physical simplicity. Managinghypervisors within the PAN allows forservers to be right-sized, eliminating idleCPU cycles that are being cooled for noreason.in PAN SANNetworkPRIMERGY BladeFrame’s Data Centre Virtualisation ArchitectureCurrent data centers are designed for power densities of550 W/m2 to 1380 W/m2. With the rapid adoption of blades and hypervisors, rack power densities may be exceeding the data centre’s ability to cool effectively with standard HV AC systems. Increases in temperature associated with larger power consumption have been shown to reduce the reliability and efficiency of systems. Every 10 degree temperature increase over 21C can decrease the reliability of electronics by 50% (Source: Uptime Institute).Given these challenges, reducing data centre complexity in order to lower power requirements and increase the efficiency of cooling dense systems is critical. Rack-level cooling solutions can dissipate heat generated from the rack to reduce the overall room temperature and load on HV AC systems. The CoolFrame solution integrates Emerson Network Power's Liebert XD® cooling technology with the BladeFrame 400 S2 system. Adding CoolFrame to a BladeFrame 400 S2 reduces the heat dissipation of the rack to the room from as much as 20,000 watts to a maximum of 1,500 watts. Each additional server that is added to the BladeFrame results in zero watts emitted into the data centre.Business Benefits of CoolFrame23% reduction in data centre cooling energy costs of a BladeFrame 400 S2 environment83% reduction in data centre cooling load (eliminating1.5 kW of fan load per rack)D ecrease real estate requirements from 23,4 m2 to 11,9 m2 (based on quad-core 4-socket servers). Estimates for “provisioned data centre floor space” is approximately 11.000 €/m2 according to industry analysts Operational Benefits of CoolFrameN ot W ATER − refrigerants − safe and reliableN o additional power requirementsN o impact on cable management and serviceabilityN o additional footprint required − no initial planning required today for cooling requirements, changes can be made in future with no impact on real estate ordata centre operationsC ool only the servers that need additional heat dissipation − avoid overcooling the whole data centre with inefficient air cooling mechanismsCoolFrame Technology reduces Data Centre air cooling load up to 83%The Liebert XD is a waterless cooling solution that delivers focused cooling through an infrastructure that includesa pumping unit or chiller and overhead piping system with quick-connect fixtures. Flexible piping connects Liebert XD cooling modules to the infrastructure, making it easy to add modules or reconfigure the system. With the CoolFrame solution, Liebert XD cooling modules become integral to the rear of the BladeFrame 400 S2 system. A single pumping unit or chiller provides 160 kW liquid cooling capacity for up to eight BladeFrame 400 S2 systems. same footprintas BladeFrame9,250 wattsreduced to0 watts1,500 watts9,250 wattsreduced to0 wattsliebert XdCoolFramemodulesexisting building chillersliebert XdP/XdC160kw liquid coolingpump unitCan support8 BladeFramesComparing power requirements for blade configurations whereprocessor utilisation is high, demonstrates near equivalence in power consumption for similar processors.PRIMERGY BladeFrame offers a dramatic advantage of lower overall power consumption based on:P AN architecture that reduces the number of required servers/CPUs by up to 50%S hared-nothing environment that allows you to power only what you need, lowering power consumption over the typical usage period with high and low server utilisation P owerful virtualisation software that eliminates NICs, HBAs, local disks and external switch ports that contribute to power consumption.SummaryFluid Based Cooling SolutionsPAN architecture provide significant architectural and density advantages Published byFujitsu technology solutions Domagkstr. 28, 80807 Munich, GermanyCopyright: © 2009 Fujitsu Technology SolutionsContact: /contactAll rights reserved, including rights created by patent grant or registration of a utility model. All designations used in this document may be trademarks, the use of which by third parties for their own purposes could violate the rights of their owners. We reserve the right。

虚拟化和云计算构建绿色高效的数据中心

虚拟化和云计算构建绿色高效的数据中心

vCloud Partners Proprietary Clouds
Enterprise View : Desktop Computing via Cloud
应用 程序 操作 系统
主虚拟机
辅助虚拟机 新的 主虚拟机
新的辅助 虚拟机
VMware FT 为 HA 群集中的虚拟机提供零停机、 零数据损失的保护。
23
VMware整合备份(VCB)
任何时候都可以进行备份
功能
• 集中化备份无需代理的虚拟机
优势
• 减少备份代理的数量和成本
Centralized Data Mover
不可控
买IT管IT 传统x86 RAS短缺及小机价格使用户对关键性业务无所适从
其他特定小场景:
10
企业对TCO/ROI/ITSM等的认知、使用带来IT管理自动化、流程化、成本可评估的诉求
桌面管理梦魇、开发测试环境复杂设备需求、异地容灾可行性等等 每次的系统上线,每次计划内外的宕机,无不是筋疲力尽,诚惶诚恐
优化的资源管理
性能
内部云
31
扩展 – 私有云到外部云
数据中心云 外部云
虚拟云产品
云操作系统
32
扩展 – 私有云到外部云
数据中心云 外部云
虚拟云产品
虚拟 私有云
无缝
云操作系统
可信、可控、可靠、安全
灵活、高效、可扩展
33
VMware 提供的云计算架构和服务
Core IT Services via Virtual Appliances
软硬件采购时间、环境准备时间、软件部署时间、应用配置调试时间…… 同时间大批量部署呢?
设备利用率及高档低配现象

虚拟化打造绿色数据中心,管理成本可减40%

虚拟化打造绿色数据中心,管理成本可减40%

虚拟化打造绿色数据中心管理成本可减少40%数据中心顾名思义是一个能够存放大量数据的Centre,然而随着计算机技术的不断进步,政府、机关、企事业单位等,都在极力打造属于自己的数据中心,信息化时代的到来给人类带来了空前的数据处理效率。

人们重视的是如何建设自己的具有竞争力的数据中心,却忽视了一个环保问题,看似没有任何污染的数据中心的背后却是能源的大量消耗。

据权威机构调查称,一个数据中心所消耗的能源与一个中型城镇的耗费相当。

因此,任何能够降低能耗的举措都将对环境产生巨大影响。

Gartner估计,电脑的能耗约占全球二氧化碳排放量的2%,相当于整个航空工业的二氧化碳排放量。

可持续性数据中心可持续性发展简单定义:指既满足现代人的需求以不损害后代人满足需求的能力。

在不考虑可持续性的情况下,数据中心管理者的主要目标有三个:满足其组织机构在计算能力方面的需求、保持计算的可靠性、满足财务预算目标。

实现“绿色化”是一个良好的附加考虑,但通常不是首要目标。

负责交换机、安全与数据中心产品线拓展的Cisco副总裁表示,她相信下一代的数据中心(数据中心3.0)将会为企业提供更好的灵活性,并帮助他们降低资本性支出与运营成本。

数据中心3.0有三大主题,即整合、虚拟化与自动化。

数据中心的未来趋势是将企业中多个数据中心整合,以减少数量。

能耗、冷却、空间,以及大量闲置的服务器是推动这一趋势发展的主导力量。

我们的整合目标是提供绿色化的数据中心,并改善资本性支出与运营成本。

最简单的方法就是减少能源消耗,但是实现上,方法有很多种。

您可以从设备着手,企业可以在满足日益增长的需要的同时减少能耗,同时保证其电力供应能够有80%的效率,而不是通常情况下的60%~70%.处理器如果在得到电力供应前效率已经降低,处理器的功效再高也是没有意义的。

一般企业内的服务器仅能达到15%~30%的系统处理能力,绝大部分的服务器负载都低于40%,大部分的服务器处理能力并没有得到利用,IT投资回报率偏低。

智能绿色数据中心实施方案

智能绿色数据中心实施方案

智能绿色数据中心实施方案随着信息技术的飞速发展,数据中心作为信息基础设施的核心,承载着越来越多的数据和应用程序。

然而,数据中心的高能耗、高排放已经成为了一个不容忽视的问题。

为了应对这一挑战,智能绿色数据中心实施方案应运而生。

首先,智能化是实施方案的核心。

通过引入智能化的管理系统,可以实现对数据中心设备的智能监控和调度,从而提高能源利用效率,降低能耗。

此外,智能化系统还可以对数据中心的运行状态进行实时监测和预测,及时发现问题并进行处理,有效提升数据中心的稳定性和可靠性。

其次,绿色能源的利用是实施方案的重要环节。

传统的数据中心主要依靠传统能源,而这些能源的使用不仅会导致能源浪费,还会产生大量的碳排放。

因此,引入绿色能源,如风能、太阳能等,成为了数据中心实施绿色化的重要手段。

通过利用绿色能源,不仅可以降低数据中心的能耗,还可以减少对传统能源的依赖,从而降低碳排放,实现数据中心的绿色化发展。

此外,优化数据中心的布局和设计也是实施方案的重要内容。

合理的布局和设计可以有效提升数据中心的能源利用效率。

通过采用高效的制冷系统、优化的空调系统等技术手段,可以降低数据中心的能耗,提高能源利用效率。

同时,合理的布局和设计还可以提升数据中心的运行效率,降低运维成本,实现数据中心的可持续发展。

最后,智能绿色数据中心实施方案还需要注重数据中心设备的绿色化更新。

传统的数据中心设备通常存在能耗高、效率低的问题,因此需要引入高效节能的设备进行更新。

例如,采用节能型服务器、高效节能的存储设备等,可以有效降低数据中心的能耗,提高能源利用效率,实现数据中心的绿色化发展。

综上所述,智能绿色数据中心实施方案是一个综合性的工程,需要从智能化管理、绿色能源利用、布局设计优化以及设备绿色化更新等多个方面进行综合考虑和实施。

只有全面推进智能绿色数据中心实施方案,才能实现数据中心的可持续发展,为信息社会的发展做出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档