土壤 阳离子交换性能的分析
土壤阳离子交换量测定方法

土壤阳离子交换量测定方法本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March土壤阳离子交换量测定方法一、测定目的土壤的阳离子交换性能是由土壤胶体表面性质所决定,由有机质的交换基与无机质的交换基所构成,前者主要是腐殖质酸,后者主要是粘土矿物。
它们在土壤中互相结合着,形成了复杂的有机无机胶质复合体,所能吸收的阳离子总量包括交换性盐基(K+、Na+、Ca++、Mg++)和水解性酸,两者的总和即为阳离子交换量。
其交换过程是土壤固相阳离子与溶液中阳离子起等量交换作用。
阳离子交换量的大小,可以作为评价土壤保水保肥能力的指标,是改良土壤和合理施肥的重要依据之一。
二、方法原理EDTA—铵盐快速法不仅适用于中性、酸性土壤,并且适用于石灰性土壤阳离子交换量测定的。
采用LEDTA与1mol/L的醋酸铵混合液作为交换剂,在适宜的pH条件下(酸性土壤,石灰性土壤,这种交换络合剂可以与二价钙离子、镁离子和三价铁离子、铝离子进行交换,并在瞬间即形成为电离度极小而稳定性较大的络合物,不会破坏土壤胶体,加快了二价以上金属离子的交换速度。
同时由于醋酸缓冲剂的存在,对于交换性氢和一价金属离子也能交换完全,形成铵质土,再用95%酒精洗去过剩的铵盐,用蒸馏法测定交换量。
对于酸性土壤的交换液,同时可以用作为交换性盐基组成的待测液用。
三、仪器及设备架盘天平(500g)、定氮装置、开氏瓶(150ml)、电动离心机(转速3000—4000转/分);离心管(100ml);带橡头玻璃棒、电子天平(1/100)。
四、试剂配制(1)LEDTA与1mol/L醋酸铵混合液:称取化学纯醋酸铵克及克,加水溶解后一起冼入1000ml容量瓶中,再加蒸溜水至900ml左右,以1:1氢氧化铵和稀醋酸调至pH至或,然后再定容到刻度,即用同样方法分别配成两种不同酸度的混合液,备用。
其中的混合液用于中性和酸性土壤的提取,的混合液仅适用于石灰性土壤的提取用。
土壤的阳离子交换量实验数据

土壤的阳离子交换量实验数据阳离子交换量是土壤的一个重要指标,它反映了土壤中可供植物吸收的阳离子量。
阳离子交换量的大小直接影响了土壤对植物的养分供应能力。
因此,了解土壤的阳离子交换量对于合理施肥和提高土壤肥力具有重要意义。
本文将通过实验数据分析土壤的阳离子交换量,探讨影响土壤阳离子交换量的因素,以及如何合理调节土壤阳离子交换量提高土壤肥力。
一、实验数据展示我们进行了一项针对不同土壤样品的阳离子交换量实验,具体数据如下:样品编号土壤类型阳离子交换量(cmol/kg)1砂壤土10.22黏壌土15.63红壤土12.44黄壤土18.35棕壤土14.8从上表可以看出,不同土壤类型的阳离子交换量存在明显差异,而且阳离子交换量与土壤类型之间存在一定的关联性。
接下来,我们将分析影响土壤阳离子交换量的因素。
二、影响土壤阳离子交换量的因素1.土壤类型实验数据显示,不同土壤类型的阳离子交换量存在一定的差异。
这是因为不同土壤类型的矿物成分和有机质含量不同,导致土壤的交换容量和交换能力不同。
2.土壤pH值土壤pH值对土壤的阳离子交换量有着重要影响。
通常来说,酸性土壤的阳离子交换量较低,而中性土壤和碱性土壤的阳离子交换量较高。
这是因为酸性土壤中氢离子较多,占据交换位置,阻碍了阳离子的吸附和交换。
3.土壤有机质含量土壤中的有机质对阳离子交换量有着重要影响。
有机质能够提高土壤的离子交换能力,增加阳离子的吸附能力,从而提高土壤的阳离子交换量。
4.土壤粘粒含量土壤中的粘粒含量对土壤的阳离子交换量也有着重要影响。
通常情况下,粘粒含量较高的土壤阳离子交换量较大,因为粘粒能够提供更多的交换位置。
5.盐分含量土壤中的盐分含量对土壤的阳离子交换量也有影响。
盐分含量过高会影响土壤的结构稳定性,导致阳离子难以释放,从而降低了土壤的阳离子交换量。
三、合理调节土壤阳离子交换量了解了影响土壤阳离子交换量的因素之后,我们可以采取一些措施来合理调节土壤的阳离子交换量,提高土壤肥力。
土壤阳离子交换性能的分析

土壤阳离子交换性能的分析1.1概述土壤中阳离子交换作用,早在19世纪50年代已为土壤科学家所认识。
当土壤用一种盐溶液(例如醋酸铵)淋洗时,土壤具有吸附溶液中阳离子的能力,同时释放出等量的其它阳离子如Ca2+、Mg2+、K+、Na+等。
它们称为交换性阳离子。
在交换中还可能有少量的金属微量元素和铁、铝。
Fe3+ (Fe2+)一般不作为交换性阳离子。
因为它们的盐类容易水解生成难溶性的氢氧化物或氧化物。
土壤吸附阳离子的能力用吸附的阳离子总量表示,称为阳离子交换量[cation exchange capacity,简作(Q)],其数值以厘摩尔每千克(cmol·kg-1)表示。
土壤交换性能的分析包括土壤阳离子交换量的测定、交换性阳离子组成分析和盐基饱和度、石灰、石膏需要量的计算。
土壤交换性能是土壤胶体的属性。
土壤胶体有无机胶体和有机胶体。
土壤有机胶体腐殖质的阳离子交换量为200~400cmol·kg-1。
无机胶体包括各种类型的粘土矿物,其中2:1型的粘土矿物如蒙脱石的交换量为60~100cmol·kg-1,1:1型的粘土矿物如高岭石的交换量为10~15cmol·kg-1。
因此,不同土壤由于粘土矿物和腐殖质的性质和数量不同,阳离子交换量差异很大。
例如东北的黑钙土的交换量为30~50cmol·kg-1,而华南的土壤阳离子交换量均小于10cmol·kg-1,这是因为黑钙土的腐殖质含量高,粘土矿物以2:1型为主;而红壤的腐殖质含量低,粘土矿物又以1:1型为主。
阳离子交换量的测定受多种因素影响。
例如交换剂的性质、盐溶液的浓度和pH等,必须严格掌握操作技术才能获得可靠的结果。
作为指示阳离子常用的有NH4+、Na+、Ba2+,亦有选用H+作为指示阳离子。
各种离子的置换能力为Al3+> Ba2+>Ca2+> Mg2+> NH4+> K+> Na+。
土壤阳离子交换性能、可溶性盐测定

阴离子的测定
氯离子的测定----硝酸银滴定法
用AgNO3标准溶液滴定Cl-是以K2CrO4为指 示剂,AgCl和Ag2CrO4虽然都是沉淀,但在室温 下,AgCl的溶解度比Ag2CrO4的溶解度小,所以 当溶液中加入AgNO3时, Cl-首先与Ag+作用形 成白色AgCl沉淀,当溶液中Cl-全被Ag+沉淀后, 则 Ag+ 就 与 K2CrO4 指 示 剂 作 用 , 形 成 棕 红 色 的 Ag2CrO4沉淀,此时即达终点。
阳离子的测定
钙和镁的测定-EDTA滴定法
EDTA能与许多金属离子Mn、Cu、Zn、Ni、 Co、Ba、Sr、Ca、Mg、Fe、Al等起配合反应, 形成微离解的无色稳定性配合物。但在土壤水溶 液中除Ca2+和Mg2+外,能与EDTA配合的其它金 属离子的数量极少,可不考虑。因而可用EDTA 在pH10时直接测定Ca2+和Mg2+的数量。
在操作程序中,用醇洗去多余的NaOAc时, 交换性钠倾向于水解进入溶液而损失,因此洗涤 过头将产生负误差;减少淋洗次数,则因残留交 换剂而提高交换量。只有当两个误差互相抵消, 才能得到良好的结果。试验证明,醇洗3次,一 般可使误差达到最低值。
交换性钠的测定
CaCO3-CO2交换中和滴定法
在 加 有 足 量 CaCO3 的 土 壤 与 水 的 分 散 体 系 中 , 通 人 CO2气体产生大量的Ca(HCO3)2,并解离出Ca2+与土壤吸 附 态 Na+ 相 互 交 换 。 过 量 的 Ca(HCO3)2 与 交 换 产 物 Na(HCO3)2在加热的情况下发生变化,将干固物溶解过滤, 滤液中仅有Na2CO3残存。用标准酸滴定,计算交换性钠。
土壤阳离子交换量测定

实验四土壤阳离子交换量的测定土壤是环境中污染物迁移、转化的重要场所,土壤胶体以其巨大的比表面积和带电性,而使土壤具有吸附性。
在土壤胶体双电层的扩散层中,补偿离子可以和溶液中相同电荷的离子以离子价为依据作等价交换,称为离子交换。
土壤的吸附性和离子交换性能又使它成为重金属类污染物的主要归宿。
土壤阳离子交换性能,是指土壤溶液中的阳离子与土壤固相的阳离子之间所进行的交换作用。
它是由土壤胶体表面性质所决定。
土壤胶体指土壤中粘土矿物与腐殖酸以及相互结合形成的复杂的有机矿物质复合体,其所吸收的阳离子包括K+、Na+、Mg2+、NH4+、H+、Al3+等。
土壤交换性能对于研究污染物的环境行为有重大意义,它能调节土壤溶液的浓度,保证土壤溶液成分的多样性,因而保持了土壤溶液的“生理平衡”,同时还可以保持各种养分免于被雨水淋失。
土壤交换性能的分析包括阳离子交换量的测定、交换性阳离子分析及盐基饱和度的计算。
阳离子交换量(Cation Exchange Capacty,简称CEC),是指土壤胶体所能吸附的各种阳离子的总量,以每千克土壤的厘摩尔数表示(cmol/kg)。
阳离子交换量的大小,可作为评价土壤保肥能力的指标。
阳离子交换量是土壤缓冲性能的主要来源,是改良土壤和合理施肥的重要依据。
因此,对于反映土壤负电荷总量及表征土壤性质重要指标的阳离子交换量的测定是十分重要的。
土壤阳离子交换量的测定受多种因素的影响,如交换剂的性质、盐溶液浓度和pH、淋洗方法等,必须严格掌握操作技术才能获得可靠的结果。
联合国粮农组织规定用于土壤分类的土壤分析中使用经典的中性乙酸铵法或乙酸钠法。
中性乙酸铵法也是我国土壤和农化实验室所采用的常规分析方法,适于酸性和中性土壤。
最近的土壤化学研究表明,对于热带和亚热带的酸性、微酸性土壤,常规方法由于浸提液pH值和离子强度太高,与实际情况相差较大,所得结果较实际情况偏高很多。
新方法是将土壤用BaCl2饱和,然后用相当于土壤溶液中离子强度那样浓度的BaCl2溶液平衡土壤,继而用MgSO4交换Ba测定酸性土壤阳离子交换量。
土壤阳离子交换性能、可溶性盐测定

pH是土壤溶液中氢离子活度的负对数 ,用水 ( 或 0.01mol/L CaCl2溶液)处理土壤制成悬浊液,测定悬浊液 的pH值。
pH的测定可分为比色法、电位法两大类。电位法 有准确(0.001pH)、快速、方便等优点。比色法有简便、 不需要贵重仪器、受测量条件限制较少、便于野外调查 使用等优点,但准确度低。目前也有多种适合于田间或 野外工作的微型pH计,准确度可达0.01pH单位。
在操作程序中,用醇洗去多余的NaOAc时, 交换性钠倾向于水解进入溶液而损失,因此洗涤 过头将产生负误差;减少淋洗次数,则因残留交 换剂而提高交换量。只有当两个误差互相抵消, 才能得到良好的结果。试验证明,醇洗3次,一 般可使误差达到最低值。
交换性钠的测定
CaCO3-CO2交换中和滴定法
在 加 有 足 量 CaCO3 的 土 壤 与 水 的 分 散 体 系 中 , 通 人 CO2气体产生大量的Ca(HCO3)2,并解离出Ca2+与土壤吸 附 态 Na+ 相 互 交 换 。 过 量 的 Ca(HCO3)2 与 交 换 产 物 Na(HCO3)2在加热的情况下发生变化,将干固物溶解过滤, 滤液中仅有Na2CO3残存。用标准酸滴定,计算交换性钠。
土壤交换性钾和钠的测定
1mol/L乙酸铵溶液交换-火焰光度法 (GB7866—87)
用 1mol/L 乙 酸 铵 溶 液交换的土壤浸出液直接 在火焰光度计上测定钾和 钠,从工作曲线上查出相 应的浓度(mg/L)。
钾和钠的标准溶液必 须用1mol/L乙酸铵溶液配 制。
土壤活性酸(pH)的测定 电位法
土壤阳离子交换性能的测定

BaCl2-三乙醇胺(TEA)(pH 8.2): Ba2+在CaCO3颗粒表面形成BaCO3膜,从而克制 了CaCO3旳继续溶解,降低了Ca2+旳浓度,使交 换完全。
NaOAc-NaCl法:对石膏、石灰溶解少,适于干旱 地域石灰性土壤,尤其是含石膏多旳土壤。
(NH4)2C2O4-NH4Cl迅速法:属一次平衡互换法,生 成旳CaC2O4 包在CaCO3颗粒表面,降低了平衡液 中Ca2+旳浓度,增进互换完全。
石灰性土壤:是盐基饱和土壤,Ca2+、Mg2+含量接 近CEC,所以一般只测CEC。
盐碱土:除CEC外,一般只测互换性Na+(K+极少), 以求碱化度。
第三节 土壤阳离子互换性能旳测定
土壤阳离子互换性能旳测定,是用互换剂(也叫饱 和剂)把土壤胶粒上吸附旳离子互换下来,然后进 行测定。此互换反应是等物质量进行旳,其互换是 否完全则决定于所选择旳互换剂及互换措施。
土壤分散; c、互换到土壤上旳NH4+,测定措施多(蒸馏、比
色等),简便。
注意:含蛭石多旳土壤能固定NH4+,使测值偏低, 所以不能用NH4OAc法,可改用其他互换剂-如Na+、 Ba2+旳盐溶液。 *NH4OAc互换剂不适合于石灰性土壤,因为它对 石灰质溶解性大(如对CaCO3、MgCO3)。
(2) 石灰性土壤: 此类土壤含CaCO3、MgCO3多,测定时旳最大困 难是互换剂对石灰质(CaCO3、MgCO3)旳溶解, 因为Ca2+、Mg2+一直在互换液中参加互换平衡, 阻 碍了互换性Ca、Mg被互换完全,所以应该选择能 克制石灰质溶解旳互换剂。
酸性土:可测H+、Al3+或Ca2+、Mg2+,两者任测 一项,即:
土壤酸性土交换性酸的测定和阳离子交换性能的测定精要

土壤酸性土交换性酸的测定和阳离子交换性能的测定简述实验目的与意义土壤交换性盐基成分是指交换性Ca2+、Mg2+、K+、Na+等,NH4+、Zn2+、Cu2+等也常以交换态存在,但因其数量极少,通常<0.03cmol(+)/kg,因而没有计入交换性盐基。
测定交换性盐基成分的意义和必要性是因土而异的。
酸性土壤中,交换性Ca2+的含量是影响植物根际营养的重要元素,同时这些交换性盐基成分实际上也是作物所必需的营养元素,因而,在培养土壤肥力上具有重要意义。
一般测定交换性盐基成分都以1mol/LNH4Ac作为交换剂;中性和酸性土用pH7NH4Ac:石灰性土或碱性土用pH9的NH4Ac-NH4OH;盐土则用乙醇洗去游离盐分后再用pH9的NH4Ac-NH4OH醋酸铵交换。
本次实验测定酸性土交换性阳离子盐基成分,以pH7,1mol/LNH4Ac作为交换剂进行测定。
土壤交换性酸是指土壤酸性表现的强弱程度。
土壤交换性酸又称为“土壤潜在(性)酸”,它由胶体所吸附的H+和Al3+构成。
Al3+因水解作用产生H+,因此,又称为“水解(性)酸”。
Al3++3H2O→Al(OH)3+3H+土壤交换性H+、Al3+含量多少,在一定程度上体现了土壤矿物胶体化学风化程度的深浅和土壤淋溶作用的强弱。
而交换性H+和Al3+在土壤中的转化关系经实验证明土壤pH值≤5.5时,才会有水解性酸存在,也就是说,只有相当量的交换性H+存在时,才有交换性Al3+的出现。
但对于强酸性土壤来说,交换性Al3+是占主导地位的。
一、酸性土交换性阳离子盐基成分的测定1.实验原理(1)土壤样品的交换处理用pH7、1mol/LNH4Ac作为交换剂处理土壤,土壤的交换性阳离子与交换剂中指示性阳离子(NH4+)实现交换平衡,交换反应式如下:土粒[Ca2+、Mg2+、K+、Na+]+nNH4Ac→土粒[6 NH4+]+(n-6)NH4Ac+(Ca2+、Mg2+、K+、Na+)若不断将交换出来的溶液分离开来,并加入新的交换剂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、交换方法:
1、多次淋洗或离心交换法: • 根据化学平衡移动规律,用交换剂多次淋 洗(或离心)土壤,使交换完全。此法交 换程度完全,但费时。 2、一次平衡交换法(快速测定法): • 土样加入交换剂,振荡后过滤,此法交换 不完全,但简便、快速,可满足一般分析 的要求。
二、交换剂的选择
1、影响CEC测定的因素: 交换剂性质 不同交换剂阳离子交换土壤阳离子的能力不同: Al3+>Ba2+>Mg2+>H+>NH4+>K+>Na+ 交换剂盐浓度: 越高,交换能力越强 交换剂pH值 (1) CEC由土壤胶体表面净负电荷总量决定,无机、有机 胶体官能团产生的正负电荷和数量常因溶液pH改变而改变。 (2)酸性土壤中,一部分负电荷可能为带正电荷的铁、铝 氧化物所掩蔽,一旦溶液pH升高,铁、铝氧化物沉淀而增 强土壤胶体负电荷。
因此,测量土壤CEC时交换剂常具有一定的pH缓冲性能。
2、交换剂的选择
(1)酸性和中性土壤: 一般用pH 7.0的1 mol/L NH4OAc作交换剂。 优点: a、土壤中NH4+含量很少,不干扰测定; b、NH4+易除去,在淋洗多余的NH4+时,不易引起土壤分散; c、交换到土壤上的NH4+,测定方法多(蒸馏、比色等),简 便。 注意: 含蛭石多的土壤能固定NH4+,使测值偏低,所以不能用 NH4OAc法,可改用其它交换剂,如Na+、Ba2+的盐溶液。 NH4OAc交换剂不适合于石灰性土壤,因为它对石灰质溶 解性大(如对CaCO3、MgCO3)。
H+
Al3+
H+
Soil Clay
Al3+ Ca2+ 2+ 2+ Mg Mg Ca2+ Soil Solution NH4+ NH4+ K+ + + + K Na Na
(三)交换性H+、Al3+: 酸性土壤中H+、Al3+较多,根据其含量可以计算盐 基不饱和度。 交换性H+、Al3+(cmol/kg) 盐基不饱和度% = ——————————— 100 阳离子交换量(cmol/kg) (四)交换性Na+: 在盐碱土上分析,由此计算土壤碱化度。 交换性Na+(cmol/kg) 碱化度% = —————————— 100 (ESP) 阳离子交换量(cmol/kg)
Al3+
H+
Soil Clay
Ca2+ Mg2+
Soil Solution
NH4+ K+ Na+
Na+
(一)土壤阳离子交换量 1. 概念:Cation Exchange Capacity, CEC: 土壤吸附的阳离子的总量, 单位:cmol.kg-1 2. CEC的大小: 土壤交换性能是土壤胶体的属性,不同类型土壤胶体的 CEC大小不同: 有机胶体腐殖质CEC为200-400 cmol.kg-1 2:1型粘土矿物如蒙脱石CEC为60-100 cmol.kg-1 1:1型粘土矿物如高岭石CEC为10-15 cmol.kg-1 土壤胶体组成不同,其CEC大小不同,如: 东北黑钙土含腐殖质多,其CEC为30-50cmol.kg-1 华南红壤含腐殖质少,1:1型粘土矿物多,其CEC均小 于10cmol.kg-1
常用交换剂:
1 mol/L NaOAc(pH 8.2)
三、测定方法介绍
1、酸性和中性土壤: pH7.0的NH4OAc法是最普遍使用的常规方法 (1)特点: • 溶液具有强缓冲性能,保证交换过程中pH恒 定。 • 可以连续测定CEC、交换性离子组成、交换 性盐基总量。
3、交换剂的选择
(2) 石灰性土壤: 测定的难点:
土壤含CaCO3、MgCO3多,交换剂易溶解这些物质。所以应当
选择能抑制石灰质溶解的交换剂。 交换剂选择依据:石灰性土壤在大气CO2分压下的平衡pH值 接近8.2,此时许多交换剂对石灰质的溶解量很低,所以常 选用pH 8.2的缓冲溶液作石灰性土壤的交换剂。
第二节 土壤阳离子交换性能的测定
• 土壤阳离子交换性能的测定,是用交换剂把土壤 胶粒上吸附的离子交换下来,然后进行测定。 • 此交换反应是等物质量进行的,其交换是否完全 则决定于所选择的交换剂及交换方法。
H+ Al3+ H+
Soil Clay
Al3+ Ca2+ 2+ 2+ Mg Mg Ca2+ Soil Solution NH4+ NH4+ K+ K+ Na+ Na+
第八章析的意义: • 土壤阳离子交换性能在农业上是一种很 重要的土壤特性,它是土壤胶体的一种 物理化学吸收性能,使土壤具有供应和 保蓄养分的能力和缓冲性能,污染物有 一定的净化能力。
第一节 概述
二、土壤交换性能分析项目: • 土壤阳离子交换量 • 交换性阳离子组成 • 交换性盐基总量 H+ 3+ Al • 盐基饱和度 Mg2+ Ca2+ • 交换性H+、Al3+ + NH 4 • 交换性Na+ K+
NaOAc-NaCl法:对石膏、石灰溶解少,适于干旱地区石灰性
土壤,尤其是含石膏多的土壤。
3、交换剂的选择
(3)盐碱土:
这类土壤都是盐基饱和土壤,多数含CaCO3和易溶盐,
所以选择交换剂时应避免和减少CaCO3的溶解,并先除去 易溶盐。
除易溶盐时不能用极性溶剂,以保证盐分以分子状态
存在,免去参与离子交换,一般用乙醇(60-70%)溶液洗 盐。
(二)交换性盐基组成 1.交换性盐基组成: 包括:H+、Al3+及Ca2+、Mg2+、K+、 Na+、NH4+等交换性阳离子。 石灰性土壤中以Ca2+、Mg2+为主; 酸性土壤中H+、Al3+较多; 盐碱土中Na+多。 2.交换性盐基总量: 指除交换性H+、Al3+以外的其它 交换性阳离子的总量。 3.盐基饱和度: 交换性盐基总量占CEC的百分 数。 是土壤改良利用和土壤分类 的重要依据。
3、交换剂的选择
(2 ) 石灰性土壤:
常用交换剂: 1 mol/L NaOAc(pH 8.2):该交换剂对MgCO3溶解较多,使 交换性Mg测值偏高,所以含MgCO3多的土壤应考虑使用。 BaCl2-三乙醇胺(TEA)(pH 8.2): Ba2+在CaCO3颗粒表面形成BaCO3膜,从而抑制了CaCO3的继 续溶解,降低了Ca2+的浓度,使交换完全。