规划数学(运筹学)第三版课后习题答案-习-题-1(1)

合集下载

运筹学部分课后习题集解答1

运筹学部分课后习题集解答1

运筹学部分课后习题解答P47 1.1用图解法求解线性规划问题min z=2x 3x 2 4为 6x 2 6 a )s.t 4x i 2x 24X i ,X 2 0解:由图1可知,该问题的可行域为凸集 MABCN ,且可知线段BA 上的点3都为最优解,即该问题有无穷多最优解,这时的最优值为Z m i n =2 3 * 3 0 3P47 1.3用图解法和单纯形法求解线性规划问题max z=10x.| 5x 23x 1 4x 2 9 s.t 5x 1 2x>8x 1, x> 0解:由图1可OABCO ,且可知B 点为最优值点,小 3x-| 4x 29 即125x 1 2x 28x 1X 213,即最优解为x * 21,3v1图1单纯形法:原问题化成标准型为max z=10x15x23\ 4x2 x39 s.t 5\ 2x2 x48X i,X2,X3,X40P78 2.4已知线性规划问题:max z 2X | 4x 2 x 3 x-i 3X 2 X 4 82为 x 26 x 2 x 3 x 4 6 x | x 2 x 39XiXX, x 4求:(1)写出其对偶问题;(2)已知原问题最优解为X * (2,2,4,0),试根据对偶理论,直接求出对偶问题的最优解。

解:(1)该线性规划问题的对偶问题为:min w 8y 1 6y 2 6y 3 9y 4y 1 2y 2 y 4 2 3y 1 y 2 y 3 y 4 4 y 3 y 4 1y 1y 31%,丫2”3,丫4(2)由原问题最优解为X * (224,0),根据互补松弛性得:y 1 2y 2 y 4 2 3y 1 y 2 y w 4y a y 4 1把X *(2,2,4,0)代入原线性规划问题的约束中得第四个约束取严格不等号, 即 2 2 48 9 y 4 0 y 1 2y 22从而有3y 1 y 2 y 34所以有x *13,zmax 10 1 5I35 "2X 4y a 1/曰 4 3 “门得y i 、目2 ,y3 i,y4 05 5所以对偶问题的最优解为y* (-,3,1,0)T,最优值为W min 165 5P79 2.7考虑如下线性规划问题:(1)写出其对偶问题;min z 60为40x2 80x33为2x2x3 24x1 X2 3x3 42x1 2x2 2x3 3捲必,怡0(2 )用对偶单纯形法求解原问解:(1)该线性规划问题的对偶问题为:max w 2y1 4y2 3y33y i 4y2 2y3 602y1 y2 2y3 40 >y1 3y2 2y3 80 ,y1,y2,y3 0(2)在原问题加入三个松弛变量X4,X5,X6把该线性规划问题化为标准型max z 6 0x140X280x3x12x2X3 X4 24为x3x3 x 42x-| 2x22X3 X6 3X j 0,j 1L ,6* 52max 56 3 6 3 3P81 2.12某厂生产A、B、C三种产品,其所需劳动力、材料等有关数据见下表。

规划数学(运筹学)第三版课后习题答案 习 题 1(1)

规划数学(运筹学)第三版课后习题答案 习 题 1(1)

习 题 11 用图解法求解下列线性规划问题,并指出问题具有唯一最优解、无穷最优解、无界解还是无可行解。

⎪⎩⎪⎨⎧≥≥+≥++=0x x 42x 4x 66x 4x 3x 2x minz )a (21212121, ⎪⎩⎪⎨⎧≥≥+≤++=0x ,x 124x 3x 2x 2x 2x 3x maxz )b (21212121⎪⎩⎪⎨⎧≤≤≤≤≤++=8x 310x 512010x 6x x x maxz )c (212121⎪⎩⎪⎨⎧≥≤+-≥-+=0x ,x 23x 2x 2x 2x 6x 5x maxz )d (21212121 答案: (a)唯一解3*,)5.0,75.0(*==z X T); (b)无可行解;(c)唯一解16*,)6,10(*==z X T); (d)无界解)2 用单纯形法求解下列线性规划问题。

⎪⎩⎪⎨⎧≥≤+≤++=0x ,x 82x 5x 94x 3x 5x 10x maxz )a (21212121 ⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=0x ,x 5x x 242x 6x 155x x 2x maxz )b (212121221 答案:(a)唯一解5.17*,)5.1,1(*==z X T),对偶问题5.17*,)786.1,357.0(*==w Y T; (b)唯一解5.8*,)5.1,5.3(*==z X T),5.8*,)5.0,25.0,0(*==w Y T3 用大M 法和两阶段法求解下列线性规划问题,并指出属于哪一类解。

⎪⎪⎩⎪⎪⎨⎧≥≥-≥+-≥+++-=0x x x 0x 2x 2x 2x 6x x x 2x x 2x maxz )a (3,2,13231321321 ⎪⎩⎪⎨⎧≥≥+≥++++=0x ,x ,x 62x 3x 82x 4x xx 3x 2x minz )b (32121321321答案:(a)无界解;(b)唯一解8*,)0,8.1,8.0(*==z X T),对偶问题8*,)0,1(*==w Y T4已知线性规划问题的初始单纯形表(如表1-54所示)和用单纯形法迭代后得到的表(如表1-55所示)如下,试求括弧中未知数a ~l 的值。

运筹学版熊伟编著习题答案

运筹学版熊伟编著习题答案

运筹学(第3版)习题答案P36 P74 P88 P105 P142 P173 P195 P218 P248 P277 P304 品P343 P371全书420页第1章 线性规划工厂每月生产A 、B 、C 三种产品 ,单件产品的原材料消耗量、设备台时的消耗量、资源限量及单件产品利润如表1-23所示.产品 资源 A B C 资源限量 材料(kg) 4 2500 设备(台时) 3 1400 利润(元/件)101412310和130.试建立该问题的数学模型,使每月利润最大.【解】设x 1、x 2、x 3分别为产品A 、B 、C 的产量,则数学模型为123123123123123max 1014121.5 1.2425003 1.6 1.21400150250260310120130,,0Z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤≤⎪⎨≤≤⎪⎪≤≤⎪≥⎪⎩ 建筑公司需要用5m 长的塑钢材料制作A 、B 两种型号的窗架.两种窗架所需材料规格及数量如表1-24所示:型号A 型号B 每套窗架需要材料长度(m ) 数量(根)长度(m) 数量(根)A 1:2 2B 1: 2 A 2:3 B 2:23需要量(套)300400问怎样下料使得(1)用料最少;(2)余料最少. 【解 方案 一 二 三 四 五 六 七 八 九 十 需要量 B1 2 1 1 1 0 0 0 0 0 0 800 B2 2 0 1 0 0 2 1 1 0 0 0 1200 A1 2 0 0 1 0 0 1 0 2 1 0 600 A2120 2 3 900 余料(m) 0 1 1 1 01设x j (j =1,2,…,10)为第j 种方案使用原材料的根数,则 (1)用料最少数学模型为10112342567368947910min 28002120026002239000,1,2,,10jj j Z x x x x x x x x x x x x x x x x x x j ==⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩∑ (2)余料最少数学模型为2345681012342567368947910min 0.50.50.52800212002*********0,1,2,,10j Z x x x x x x x x x x x x x x x x x x x x x x x x j =++++++⎧+++≥⎪+++≥⎪⎪+++≥⎨⎪+++≥⎪⎪≥=⎩某企业需要制定1~6月份产品A 的生产与销售计划。

运筹学教程(第三版)习题答案(第一章)

运筹学教程(第三版)习题答案(第一章)
page 13 14 March 2012
b 3/2 1
c x1 0 1 0
d x2 1 0 0
0 x3 5/14
0 x4 -3/4
-2/14 10/35 -5/14d+2/14c 3/14d-10/14c
School of Management
运筹学教程
第一章习题解答
之间时最优解为图中的A点 当c/d在3/10到5/2之间时最优解为图中的 点 ; 当 在 到 之间时最优解为图中的 c/d大于 且c大于等于 时最优解为图中的 点;当c/d 大于5/2且 大于等于 时最优解为图中的B点 大于等于0时最优解为图中的 大于 小于3/10且 d大于 时最优解为图中的 点 ; 当 c/d大于 大于0时最优解为图中的 小于 且 大于 时最优解为图中的C点 大于 5/2且c小于等于 时或当 小于 小于等于0时或当 小于3/10且d小于 时最优解 小于0时最优解 且 小于等于 时或当c/d小于 且 小于 为图中的原点。 为图中的原点。
page 7 14 March 2012
School of Management
运筹学教程
第一章习题解答
对下述线性规划问题找出所有基解, 1.3 对下述线性规划问题找出所有基解,指出哪 些是基可行解,并确定最优解。 些是基可行解,并确定最优解。
max Z = 3 x1 + x 2 + 2 x 3 12 x1 + 3 x 2 + 6 x 3 + 3 x 4 = 9 8 x + x − 4 x + 2 x = 10 1 2 3 5 st 3 x1 − x 6 = 0 x j ≥ 0( j = 1, L , 6) ,
School of Management

清华_第三版_运筹学教程_课后答案~(_第一章_第五章部分)

清华_第三版_运筹学教程_课后答案~(_第一章_第五章部分)

清华第三版 运筹学 答案[键入文字] [键入文字] [键入文字]运筹学教程1. 某饲养场饲养动物出售,设每头动物每天至少需700g 蛋白质、30g 矿物质、100mg 维生素.现有五种饲料可供选用,各种饲料每kg 营养成分含量及单价如表1所示. 表1要求确定既满足动物生长的营养需要,又使费用最省的选用饲料的方案。

解:设总费用为Z.i=1,2,3,4,5代表5种饲料.i x 表示满足动物生长的营养需要时,第i 种饲料所需的数量.则有:⎪⎪⎩⎪⎪⎨⎧=≥≥++++≥++++≥++++++++=5,4,3,2,1,01008.022.05.0305.022.05.07008623..8.03.04.07.02.0min 54321543215432154321i x x x x x x x x x x x x x x x x t sx x x x x Z i2. 某医院护士值班班次、每班工作时间及各班所需护士数如表2所示。

每班护士值班开始时间向病房报道,试决定:(1) 若护士上班后连续工作8h ,该医院最少需要多少名护士,以满足轮班需要; (2) 若除22:00上班的护士连续工作8h 外(取消第6班),其他班次护士由医院排定上1~4班的其中两个班,则该医院又需要多少名护士满足轮班需要.表2解:(1)设i x 第i 班开始上班的人数,i=1,2,3,4,5,6⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=≥≥+≥+≥+≥+≥+≥++++++=且为整数6,5,4,3,2,1,0302050607060..min 655443322161654321i x x x x x x x x x x x x x t s x x x x x x Z i 解:(2)在题设情况下,可知第五班一定要30个人才能满足轮班需要。

则设设i x 第i 班开始上班的人数,i=1,2,3,4。

⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=≥=+++=≥+++=+++=≥+++=+++=≥+++=+++=≥+++++++=4,3,2,1,1002150216021702,160..30min i44434241444443342241143433323133443333223113242322212244233222211214131211114413312211114321j i y x y y y y y x y x y x y x y y y y y y x y x y x y x y y y y y y x y x y x y x y y y y y y x y x y x y x y t s x x x x Z ij 变量,—是,,,第四班约束,,第三班约束,,第二班约束,第一班约束3. 要在长度为l 的一根圆钢上截取不同长度的零件毛坯,毛坯长度有n 种,分别为ja (j=1,2,…n )。

清华版《运筹学》(第三版)课后习题详解、...

清华版《运筹学》(第三版)课后习题详解、...

解:用决策变量 x1, x2 , x3 , x4 , x5 , x6 分别表示 2:00~6:00, 6:00~10:00 ,10:00~14:
00 ,14:00~18:00,18:00~22:00, 22:00~ 2:00 时间段的服务员人数。
其数学模型可以表述为: min Z = x1 + x2 + x3 + x4 + x5 + x6
x1 + x6 >= 3 x1 + x2 >= 9 x2 + x3 >= 12 x3 + x4 >= 5 x4 + x5 >= 18 x5 + x6 >= 4 x1, x2 , x3, x4 , x5 , x6 ≥ 0
3、现要截取 2.9 米、2.1 米和 1.5 米的元钢各 100 根,已知原材料的长度是 7.4 米,问应如 何下料,才能使所消耗的原材料最省。试构造此问题的数学模型。
(0, 0, 0, 5, 2, 6)T ,Z=5。
初始单纯行表为:
cj
2
-1
1
1
CB
XB
x1
x2
x3
x4
1
x4
-1
1
1
1
0
x5
1
1
0
0
0
0
b
x5
x6
0
0
5
1
0
2
0
x6
2
1
1
0
0
1
6
σj
3
-2
0
0
0
0 z=0
(2)非基变量 x2 , x3 仍然取零, x1 由 0 变为 1,即 x1 =1, x2 =0, x3 =0,代入约束条件得一个可 行解 X= (1, 0, 0, 6,1, 4)T 。其目标函数值为 Z=8

解答-运筹学-第一章-线性规划及其单纯形法习题

解答-运筹学-第一章-线性规划及其单纯形法习题

项目 X1 X2 X3 X4
X5
X4 6 (b) (c) (d) 1 0
X5 1 -1
3 (e) 0 1
Cj-ZJ
(a) -1 2
00
X1 (f) (g) 2 -1 1/2 0
X5 4 (h) (i) 1 1/2 1
Cj-ZJ
0
-7A (j) (k) (l)
25
首先由于x1、x5为基变量,故g=1, h=0, l = 0
检验数j
14M 4M-2 6M-3 2M-1 -M -M
A
0
0
18
Cj
-2 -3 -1 0 0 -M -M 比
CB XB
b x1 x2 x3 x4 x5 x6 x7 值
-M x6 8 1 4 2 -1 0 1 0 2
-M x7 6 3 2 0 0 -1 0 1 3
检验数j 14M 4M-2 6M-3 2M-1 -M -M 0 0
5 x2 15
s
t
.
6
x1 x1
2 x2 x2
24 5
x 1 , x 2 0
A
10
Cj
10 5 0 0 比
CB XB
b
x1
x2
x3
x4

0 x3
9
3
4
1
0 9/3=3
0 x4
8
5
20
1
8/5
检验数j 0 10 5 0 0
0 x3 21/5 0 14/5 1 -3/5 3/2
10 x1 8/5 1 2/5 0 1/5
4
x
2
12
x 1, x 2 0 无可行解
m ax Z x1 x2

运筹学教程(第三版)习题答案(第一章)

运筹学教程(第三版)习题答案(第一章)

x1 0 0 0 0.75
maxZ 3x1 x2 2x3
12x1 3x2 6x3 3x4 9
(1)
st
8x1 3x1
x2 x6
4x3 0
2x5
10
xj 0( , j 1, ,6)
基可行解
x2
x3
x4
x5
x6
3 0 0 3.5 0
0 1.5 0 8 0
00350
0 0 0 2 2.25
运筹学教程
第一章习题解答
讨论cl.,5d的上值题如(1何)中变,化若,目使标该函问数题变可为行m域ax的Z每=个cx顶1 +点d依x2, 次使目标函数达到最优。
解:得到最终单纯形表如下:
Cj→
c
CB 基 b x1
d x2 3/2 0
c x1 1 1
j
0
d
0
0
x2
x3
x4
1
5/14
-3/4
0
-2/14
X 0是 max Z CX 的最优解,故
CX 0 CX * 0;
X *是 max Z C * X 的最优解,故
C * X * C * X 0 0;
(C * C )( X * X 0 )
C(X 0 X *) C*(X * X 0) 0
page 24 5/25/2020
School of Management
C T X ( 2 ) , 所以 X 也是最优解。
page 23 5/25/2020
School of Management
运筹学教程
第一章习题解答
1.10 线性规划问题max Z=CX,AX=b,X≥0,设 X0为问题的最优解。若目标函数中用C*代替C后,问题 的最优解变为X*,求证
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习 题 11 用图解法求解下列线性规划问题,并指出问题具有唯一最优解、无穷最优解、无界解还是无可行解。

⎪⎩⎪⎨⎧≥≥+≥++=0x x 42x 4x 66x 4x 3x 2x minz )a (21212121, ⎪⎩⎪⎨⎧≥≥+≤++=0x ,x 124x 3x 2x 2x 2x 3x maxz )b (21212121⎪⎩⎪⎨⎧≤≤≤≤≤++=8x 310x 512010x 6x x x maxz )c (212121⎪⎩⎪⎨⎧≥≤+-≥-+=0x ,x 23x 2x 2x 2x 6x 5x maxz )d (21212121 答案: (a)唯一解3*,)5.0,75.0(*==z X T); (b)无可行解;(c)唯一解16*,)6,10(*==z X T); (d)无界解)2 用单纯形法求解下列线性规划问题。

⎪⎩⎪⎨⎧≥≤+≤++=0x ,x 82x 5x 94x 3x 5x 10x maxz )a (21212121 ⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+=0x ,x 5x x 242x 6x 155x x 2x maxz )b (212121221 答案:(a)唯一解5.17*,)5.1,1(*==z X T),对偶问题5.17*,)786.1,357.0(*==w Y T; (b)唯一解5.8*,)5.1,5.3(*==z X T),5.8*,)5.0,25.0,0(*==w Y T3 用大M 法和两阶段法求解下列线性规划问题,并指出属于哪一类解。

⎪⎪⎩⎪⎪⎨⎧≥≥-≥+-≥+++-=0x x x 0x 2x 2x 2x 6x x x 2x x 2x maxz )a (3,2,13231321321 ⎪⎩⎪⎨⎧≥≥+≥++++=0x ,x ,x 62x 3x 82x 4x x x 3x 2x minz )b (32121321321 答案:(a)无界解;(b)唯一解8*,)0,8.1,8.0(*==z X T),对偶问题8*,)0,1(*==w Y T4已知线性规划问题的初始单纯形表(如表1-54所示)和用单纯形法迭代后得到的表(如表1-55所示)如下,试求括弧中未知数a ~l 的值。

表1-54 初始单纯形表表1-55基变量x 1列向量⎪⎪⎭⎫⎝⎛=0'1p ,所以g=1,h=0(2)初始表 ,,j p b 某步表j p B b B11,--有已知表查出⎪⎪⎭⎫⎝⎛=-12/102/11B,341612/102/141=⇒⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⇒⎪⎪⎭⎫ ⎝⎛=-f f f b B201112/102/10111=⇒⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⇒⎪⎪⎭⎫ ⎝⎛=-b b p B Θ5,42312/102/1221==⇒⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⇒⎪⎪⎭⎫ ⎝⎛=-i c i c i p B Θ2,21112/102/11131=-=⇒⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⇒⎪⎪⎭⎫ ⎝⎛-=-e d e d p B Θ (3)初始表主元行×(-主元检验数/主元)加到检验数行得下一步表的检验数行。

表1-54第一行系数×(-a/b )+表1-54检验数行=表1-54检验数行即:0,21,2,712=-==+-=--l a k j a a故:0,23,5,3=-===l k j a 。

5某厂生产Ⅰ、Ⅱ、Ⅲ三种产品,都分别经A 、B 两道工序加工。

设A 工序可分别在设备A 1或A 2上完成,有B 1、B 2、B 3三种设备可用于完成B 工序。

已知产品Ⅰ可在A 、B 任何一种设备上加工;产品Ⅱ可在任何规格的A设备上加工,但完成B工序时,只能在B1设备上加工;产品Ⅲ只能在A2与B2设备上加工。

加工单位产品所需工序时间及其他各项数据见下表1-56,试安排最优生产计划,使该厂获利最大。

表1-56 产品的有关数据表6 一家糖果商店出售三种不同品牌的果仁糖,每个品牌含有不同比例的杏仁、核桃仁、胡桃仁。

为了维护商店的质量信誉,每个品牌中所含有的果仁的最大、最小比例是必须满足的,如下表1-57所示:商店希望确定每周购进杏仁、核桃仁、腰果仁、胡桃仁的数量,使周利润最大。

建立数学模型,帮助该商店管理人员解决果仁混合的问题。

7 写出下列线性规划问题的对偶问题。

⎪⎪⎩⎪⎪⎨⎧≥=+≤++≥++++=无约束321321321321321x 0,x ,x 53x 4x x 33x x 2x24x 3x x 4x 2x 2x minz )a ( ⎪⎪⎪⎩⎪⎪⎪⎨⎧+=<=≥+==<=≤=∑∑∑===)n ,,1n j (x )n n ,,1j (0x )m ,,1m i (b x a )m m ,,1i (b x a x c maxz )b (1j1j 1i n 1j j ij 1i n 1j j ij n1j jj ΛΛΛΛ无约束 答案: (a )⎪⎪⎩⎪⎪⎨⎧≥=++≤++≤++++=ω无约束321321321321321x 0,x ,x 43x 3y 4y 24y y 3y2y 2y y 5y 3y 2y max (b )⎪⎪⎪⎩⎪⎪⎪⎨⎧+=<=≥+==+<=≥++=ω∑∑∑∑∑∑=+==+=+==)m ,,1i (v )n ,,1i (0u )n ,...,1n j (c v a u a )n n ,,1j (c v a u a v b u b min 1i1i 1j m 1i m1m i iij i ij 1j m 1i m 1m i i ij i ij m1m i ii m 1i i i 111111ΛΛΛm m 无约束8 已知线性规划问题:⎪⎩⎪⎨⎧≥≤-+-≤++-+=0x x x 1x x 2x 2x x x x x maxz 32132132121,,试应用对偶理论证明上述线性规划问题最优解为无界。

答案:显然T(0,0,0)X =为该问题的可行解, 其对偶问题为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥-≥+≥--+=0y y 0y y 1y y 12y y y y 2min 2121212121,ω显然第一个约束与变量非负要求矛盾,故对偶问题无可行解。

由无界性该问题最优解为无界。

9 已知线性规划问题:⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≤++≤++≤+≤+++++=)4,,1j (0x )4(9x x x )3(6x x x )2(6x 2x )1(8x 3x x x x 4x 2x maxz j 321432214214321Λ 要求:(1)写出其对偶问题;(2)已知原问题最优解为X *=(2,2,4,0)T ,试根据对偶理论求出对偶问题最优解。

答案: 对偶问题⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥≥+≥++≥+++≥+++++=)4,,1j (0y (4)1y y (3)1y y (2)4y y y 3y (1)2y 2y y 9y y 66y 8y min j 314343214214321Λω 设对偶问题的最优解为),,,(*4*3*2*1*y y y y Y=将X *=(2,2,4,0)T 代入原问题,约束(4)为严格不等式(即x *S1,x *S2,x *S3)0),由互补松弛性,y *4=0。

又因为x *1 =2,x *2 =2,x *3 =4都大于0,由互补松弛性,对偶问题对应(1)--(3)约束为等式,(即y *S1= y *S2 =y *S3=0)故有⎪⎪⎩⎪⎪⎨⎧=+=++=+(3)1y (2)4y y 3y (1)22y y ****1*2*3321, 解得对偶问题的最优解为)0,1,5/3,5/4(*y Y =。

10 已知线性规划问题:⎪⎩⎪⎨⎧≥≤+-≤+++-=0x ,x ,x 42x x 6x x xx x 2x maxz 32121321321先用单纯形法求出最优解,再分析在下列条件单独变化的情况最优解的变化。

(1)目标函数变为321x 3x 2x m ax z ++=; (2)约束右端项由⎥⎦⎤⎢⎣⎡46变为⎥⎦⎤⎢⎣⎡43;(3)增添一个新的约束条件:22x x 31≥+-。

答案:该问题的最优解TX )10,0,0,0,6(*=,最优值1262*=⨯=z 对偶问题的最优解)2,1,3,0,2(*=Y ,最优值1226*=⨯=ω (1)目标函数中非基变量2x 的系数2c 由-1变为3 重新计算2x 的检验数2σ0131)02(3'22>=⎪⎪⎭⎫⎝⎛-=-=jB pC c σ最优解发生变化,将2x 的检验数12=σ,系数3c 2=代入最终表,用单纯形法求解之,见下表该问题的最优解TX )0,0,0,3/10,3/8(*=,最优值3463103382*=⨯+⨯=z对偶问题的最优解)3/4,0,0,3/1,3/7(*=Y ,最优值346314376*=⨯+⨯=ω(2)037324331313132'1>⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=-b B ,故最优基不变最优解为TX )0,0,0,3/7,3/2(*=,最优值325373322*=⨯+⨯=z (3)最优解TX )10,0,0,0,6(*=不满足新加的约束 将约束化为等式,选松弛变量作为基变量得-2x 2x x 631=+-将其添加到最终表得过渡表,然后将第一行乘-1加到第三行将基变量x 1的系数列向量化为单位向量新的最优解T X )3/22,0,3/8,0,3/10(*=,最优值328332*=+⨯=z11 用分支定界法求解下列整数规划问题:(1) ⎪⎩⎪⎨⎧≥≤+≤++=,且为整数,0x x 369x 4x 357x 5x 3x 2x maxz 21212121 (2) ⎪⎩⎪⎨⎧≥≤+≤++=且为整数,0x ,x 305x 6x 165x 2x x x maxz 2121212112 用隐枚举法求解下列0-1规划问题:⎪⎪⎩⎪⎪⎨⎧==≥-+-≤++≤+++++--+=)5,,1j (10x 35x 3x 6x 11x 83x 4x -3x 7x 4x 2x x x x 3x 2x 5x 2x 3x maxz j 542154315432154321Λ或 x j =0 或1,j = 1,2,3,4,513 某航运公司承担六个港口城市A 、B 、C 、D 、E 、F 的四条固定航线的物资运输任务已知各条航线的起点、终点城市及每天航班数见表1-59。

假定各条航线使用相同型号的船只,又各城市之间的航程天数见表1-60。

又知每条船只每次装卸货物的时间各需1天,则该航运公司至少应配备多少条船,才能满足所有航线的运货需求? 建立模型并用软件求解。

相关文档
最新文档