运筹学第四章整数规划与分配问题.ppt
合集下载
运筹学-整数规划与分配问题PPT

但 z=13 不是最优。实际问题的
最优解为(4 , 1)这时 z*= 14。
逻辑(0-1)变量在建立数学模型中的作用
1. m 个约束条件中只有 k 个起作用
设 m 个约束条件可以表示为:
n
aijxj bi (i1, ,m)
j1
定义逻辑变量
1,假定第 i 个约束条件不起作用 yi 0,假定第 i 个约束条件起作用
第四章 整数规划与分配问题
整数规划的特点及作用 分配问题与匈牙利法 分枝定界法 割平面法 应用举例
1 整数规划的特点及应用
在实际问题中,全部或部分变量取值必须是整数。比如人 或机器是不可分割的,选择地点可以设置逻辑变量等。
在一个线性规划问题中要求全部变量取整数值的,称纯整
数线性规划或简称纯整数规划;只要求一部分变量取整 数值的,称为混合整数规划。
如果完成任务的效率表现为资源消耗,考虑的是如何分配 任务使得目标极小化;如果完成任务的效率表现为生产效 率的高低,则考虑的是如何分配使得目标函数极大化。
在分配问题中,利用不同资源完成不同计划活动的效率常
用表格形式表示为效率表,表格中数字组成效率矩阵。
例2. 有一份说明书,要分别翻译成英、日、德、俄 四种文字,交甲、乙、丙、丁四个人去完成。因各人专长 不同,使这四个人分别完成四项任务总的时间为最小。效 率表如下:
又设 M 为任意大的正数,则约束条件可以改写为:
n
aijxj
bi Myi
j1
y1 y2 ym mk
2. 约束条件的右端项可能是 r 个值中的某一个
n
即
aijxj b1或b2或或br
j1
定义逻辑变量:
yi 10, ,假 其定 它约束右端项b为 i
Chapter04分配问题与整数规划.ppt

证明思路 只证明(II)的最优解也是(I)的最优解,将cij用dij表示,注 意约束条件的特点,利用定义即可,具体过程见黑板。 [注意实际操作中ui+vj的限制]
19.03.2019
8
一个说明性的例子(构造等价效率矩阵-书P111)
dij 甲 cij 甲 乙 A 3 4 B 5 2 dij 甲 乙
A 0 2 A 0 1
B 2 0 B 3 0
乙
定理4.3 (划线法求独立零元素集合,证明略) 在效率矩阵中,覆盖零元素的最少直线数等于位于不同行 不同列的0元素的最大个数。
19.03.2019 9
※匈牙利法求解分配问题-步骤1
Step1. 效率矩阵每行减去本行的最小元素,再从每列 减去本列的最小元素 ;
7 6 5 4 3 2 1 O 1 2 3 4 5 6 7 (3.25,2.5)
例1. 一个整数线性规划求解 的例子 max z 3x1 2 x2 2 x1 3x2 14 s.t. x1 0.5 x2 4.5 x , x 0, 且均取整数值。 1 2
用凑整数的 枚举法是否 有效呢?
B 29 38 27 42 27
C 31 + 26 + 28 36 28
D 42 20 40 23 23
E 37 33 32 + 45 45
甲 乙 丙 丁 某人
+ 24
34
求解过程大家一起在黑板上完成
18
19.03.2019
整数规划 – 分枝定界法
整数线性规划的特点
① ②
可行解的集合是离散点,有限多个 x2 最优解未必在顶点达到
甲
2 15 13 4
19.03.2019
8
一个说明性的例子(构造等价效率矩阵-书P111)
dij 甲 cij 甲 乙 A 3 4 B 5 2 dij 甲 乙
A 0 2 A 0 1
B 2 0 B 3 0
乙
定理4.3 (划线法求独立零元素集合,证明略) 在效率矩阵中,覆盖零元素的最少直线数等于位于不同行 不同列的0元素的最大个数。
19.03.2019 9
※匈牙利法求解分配问题-步骤1
Step1. 效率矩阵每行减去本行的最小元素,再从每列 减去本列的最小元素 ;
7 6 5 4 3 2 1 O 1 2 3 4 5 6 7 (3.25,2.5)
例1. 一个整数线性规划求解 的例子 max z 3x1 2 x2 2 x1 3x2 14 s.t. x1 0.5 x2 4.5 x , x 0, 且均取整数值。 1 2
用凑整数的 枚举法是否 有效呢?
B 29 38 27 42 27
C 31 + 26 + 28 36 28
D 42 20 40 23 23
E 37 33 32 + 45 45
甲 乙 丙 丁 某人
+ 24
34
求解过程大家一起在黑板上完成
18
19.03.2019
整数规划 – 分枝定界法
整数线性规划的特点
① ②
可行解的集合是离散点,有限多个 x2 最优解未必在顶点达到
甲
2 15 13 4
运筹学——.整数规划与分配问题45页PPT

1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
运筹学——.整数规划与分配问题 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽则殆。——孔子
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
运筹学——.整数规划与分配问题 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
39、勿问成功的秘诀为何,且尽则殆。——孔子
运筹学课件第4章_整数规划与分配问题

约束 : 少于10min到达各 消防站至少存在1个
街道1 街道2 街道3 街道4 街道5 街道6 10 20 30 30 20 街道1 0 0 25 35 20 10 街道2 10 25 0 15 30 20 街道3 20 35 15 0 15 25 街道4 30 20 30 15 0 14 街道5 30 10 20 25 14 0 街道6 20
40
24
在实际中,许多要求变量取整的 数学模型,称为整数规划。本章 将讨论整数规划求解的基本思路、 0-1变量的用法、分配问题及匈 牙利法,以及利用Excel, Lingo, WinQSB求解的演示。
设 x1,x2表示两种货物装载数量 (整数),依题意有如下数学模型:
max z 5 x1 6 x2 3 x1 8 x2 ≤ 40 4 x 3 x ≤ 24 1 2 x1 , x2 ≥ 0 x , x 取整数 1 2
管理运筹学课件
2013年3月5日星期二
4.1.2 分枝定界法的基本思路*
0 1 2 3 4 5 6 7 8 x2
分枝定界法(Branch and Bound Method)用于求解整数规划问题 ,是在20世纪60年代初,由Land Doig和Dakin等人提出的。
【例4.1】 用图解法求解整数规划
x1 1 x1 令 x2 1 x2 x 1 x 3 3
目标系数升序排序 min w x2 x3 3x1 5 x1 0 2 x2 x3 x1 0 4 x2 x3 x1 2 解得 x2 1 s.t. x 0 x2 +x1 1 3 x1, x2 , x3 0或1
变量取整的 LP 整数规划
街道1 街道2 街道3 街道4 街道5 街道6 10 20 30 30 20 街道1 0 0 25 35 20 10 街道2 10 25 0 15 30 20 街道3 20 35 15 0 15 25 街道4 30 20 30 15 0 14 街道5 30 10 20 25 14 0 街道6 20
40
24
在实际中,许多要求变量取整的 数学模型,称为整数规划。本章 将讨论整数规划求解的基本思路、 0-1变量的用法、分配问题及匈 牙利法,以及利用Excel, Lingo, WinQSB求解的演示。
设 x1,x2表示两种货物装载数量 (整数),依题意有如下数学模型:
max z 5 x1 6 x2 3 x1 8 x2 ≤ 40 4 x 3 x ≤ 24 1 2 x1 , x2 ≥ 0 x , x 取整数 1 2
管理运筹学课件
2013年3月5日星期二
4.1.2 分枝定界法的基本思路*
0 1 2 3 4 5 6 7 8 x2
分枝定界法(Branch and Bound Method)用于求解整数规划问题 ,是在20世纪60年代初,由Land Doig和Dakin等人提出的。
【例4.1】 用图解法求解整数规划
x1 1 x1 令 x2 1 x2 x 1 x 3 3
目标系数升序排序 min w x2 x3 3x1 5 x1 0 2 x2 x3 x1 0 4 x2 x3 x1 2 解得 x2 1 s.t. x 0 x2 +x1 1 3 x1, x2 , x3 0或1
变量取整的 LP 整数规划
运筹第四章整数规划与分配问题

x1 ≤ 4 + y1 M x2 ≥ 1 − y1 M x1 > 4 − y2 M x ≤ 3+ y M 2 2 y1 + y2 = 1
i=1,2
则问题可以表示为
4 用以表示含固定费用的函数 总费用
K j + c j x j ( x j > 0) Cj(xj ) = ( x j = 0) 0
则上述条件可以表示成
r n ∑ aij x j ≤ ∑ b; y + ... + y = 1 m 2 1
3、 两组条件中满足其中的一组 、
若 x1 ≤ 4, 则 x2 ≥ 1
若 x1 > 4, 则 x2 ≤ 3
定义
1 第i组条件不起作用 yi = 0 第i 组 条件 起作 用
0 0 X = 1 0 0 0 1 1 0 0 0 0 0 0 1 0
用矩阵形式表示为: 用矩阵形式表示为: 解矩阵
一般分配问题 设有n项任务 需有n个人去完成 项任务, 个人去完成, 设有 项任务,需有 个人去完成,每个人只能完成一 项任务,每项任务只能由一个人去完成,设第i人完成 项任务,每项任务只能由一个人去完成,设第 人完成 项任务需要的时间是a 第j 项任务需要的时间是 ij , 问如何分配才能使完成任 务的总时间最少? 务的总时间最少? 设
2. 整数规划问题的特征与性质
特征—变 特征 变量整数性要求 来源 问题本身的要求 引入的逻辑变量的需要 性质—可 性质—可行域是离散集合
3. 整数规划的分类
纯整数规划 要求全部决策变量的取值都为整数, 要求全部决策变量的取值都为整数 则称为纯整数规划 (All IP); ; 混合整数规划 仅要求部分决策变量的取值为整数,则称为混合整数规 仅要求部分决策变量的取值为整数, 划(Mixed IP); ; 0-1整数规划 整数规划 要求决策变量只能取0或 值 则称为0-1规划 规划(0-1 要求决策变量只能取 或1值,则称为 规划 Programming)。 。
i=1,2
则问题可以表示为
4 用以表示含固定费用的函数 总费用
K j + c j x j ( x j > 0) Cj(xj ) = ( x j = 0) 0
则上述条件可以表示成
r n ∑ aij x j ≤ ∑ b; y + ... + y = 1 m 2 1
3、 两组条件中满足其中的一组 、
若 x1 ≤ 4, 则 x2 ≥ 1
若 x1 > 4, 则 x2 ≤ 3
定义
1 第i组条件不起作用 yi = 0 第i 组 条件 起作 用
0 0 X = 1 0 0 0 1 1 0 0 0 0 0 0 1 0
用矩阵形式表示为: 用矩阵形式表示为: 解矩阵
一般分配问题 设有n项任务 需有n个人去完成 项任务, 个人去完成, 设有 项任务,需有 个人去完成,每个人只能完成一 项任务,每项任务只能由一个人去完成,设第i人完成 项任务,每项任务只能由一个人去完成,设第 人完成 项任务需要的时间是a 第j 项任务需要的时间是 ij , 问如何分配才能使完成任 务的总时间最少? 务的总时间最少? 设
2. 整数规划问题的特征与性质
特征—变 特征 变量整数性要求 来源 问题本身的要求 引入的逻辑变量的需要 性质—可 性质—可行域是离散集合
3. 整数规划的分类
纯整数规划 要求全部决策变量的取值都为整数, 要求全部决策变量的取值都为整数 则称为纯整数规划 (All IP); ; 混合整数规划 仅要求部分决策变量的取值为整数,则称为混合整数规 仅要求部分决策变量的取值为整数, 划(Mixed IP); ; 0-1整数规划 整数规划 要求决策变量只能取0或 值 则称为0-1规划 规划(0-1 要求决策变量只能取 或1值,则称为 规划 Programming)。 。
运筹学基础及应用第4章-整数规划与分配问题

整数规划的特点及应用
解:对每个投资项目都有被选择和不被选择两种可能,因此 分别用0和1表示,令xj表示第j个项目的决策选择,记为:
j投 资 1 对 项 目 xj ( j 1,2,..., n) j不 投 资 0 对 项 目
投资问题可以表示为:
max z
c
j 1
n
j
xj
n a j x j B j 1 x2 x1 s .t x 3 x4 1 x5 x6 x7 2 ) x j 0或者1 (j 1, 2, L n
B1 B2 B3 B4 年生产能力
A1
A2 A3 A4 年需求量
2
8 7 4 350
9
3 6 5 400
3
5 1 2 300
4
7 2 5 150
400
600 200 200
工厂A3或A4开工后,每年的生产费用估计分别为1200万或1500万元。 现要决定应该建设工厂A3还是A4,才能使今后每年的总费用最少。
0-1型整数线性规划:决策变量只能取值0或1的整数线性 规划。
整数规划的特点及应用
整数规划的典型例子
例4.1 工厂A1和A2生产某种物资。由于该种物资供不应求,故需要 再建一家工厂。相应的建厂方案有A3和A4两个。这种物资的需求地 有B1,B2,B3,B4四个。各工厂年生产能力、各地年需求量、各厂至各 需求地的单位物资运费cij,见下表:
例4.3 设整数规划问题如下
max Z x1 x 2 14x1 9 x 2 51 6 x1 3 x 2 1 x , x 0且 为 整 数 1 2
首先不考虑整数约束,得到线性规划问题(一般称为松弛问 题)。
运筹学基础及应用_(第四章_整数规划与分配问题)

号与7号必须同时开采;
(d) 8
(e)1号、
4号、6号、9号开采时不能超过两个,试表示上
述约束条件。
Next
基础教研室
(a)当x8=1 当x8=0 ∴ x8 x6
x6=1,x6≠0 x6=1,x6=0
(b)当x5 =1 当x5 =0 ∴ x5 + x3 1
x3=0, x3 ≠1 x3=0, x3 =1
基础教研室
【例1】求下述整数规划的最优解
Max z= 3x1 + 2x2 st . 2x1 + 3x2 14 x1 + 0.5x2 4.5 x10,x20,且为整数
基础教研室
x2 x1+0.5x2=4.5
4
(3.25, 2.5) 2 2x1+3x2=14
2
4
6
x1
3x1+2x2=6
二、整数规划的求解方法
1 -选择电网供应 设 y1 0 -不选择电网供应
10 d j x j f (1 y1 ) M j 1 10 0.3d j x j p (1 y2 ) M j 1 y1 y2 1 y1 , y2 0或1
基础教研室
【例3】投资决策问题 某公司准备1000万元资金在10个地点中选择若干个建立 工厂(工厂名称用地点名来命名),有关数据如下:
由于各个工厂之间有配套和协作关系,因此必须满足条件: 1、 建工厂1就必须同时建工厂2; 2、 若建工厂2就不允许建工厂3; 3、 工厂4和工厂5至少建一个; 4、 工厂6,7,8恰好建2个; 5、 工厂8,9,10最多建2个; 6、 建工厂4或者建工厂6,就不能建工厂8,反过来也一样; 7、 条件2,3,5最多满足2个。 问选择哪几个地点建厂最有利? Next
(d) 8
(e)1号、
4号、6号、9号开采时不能超过两个,试表示上
述约束条件。
Next
基础教研室
(a)当x8=1 当x8=0 ∴ x8 x6
x6=1,x6≠0 x6=1,x6=0
(b)当x5 =1 当x5 =0 ∴ x5 + x3 1
x3=0, x3 ≠1 x3=0, x3 =1
基础教研室
【例1】求下述整数规划的最优解
Max z= 3x1 + 2x2 st . 2x1 + 3x2 14 x1 + 0.5x2 4.5 x10,x20,且为整数
基础教研室
x2 x1+0.5x2=4.5
4
(3.25, 2.5) 2 2x1+3x2=14
2
4
6
x1
3x1+2x2=6
二、整数规划的求解方法
1 -选择电网供应 设 y1 0 -不选择电网供应
10 d j x j f (1 y1 ) M j 1 10 0.3d j x j p (1 y2 ) M j 1 y1 y2 1 y1 , y2 0或1
基础教研室
【例3】投资决策问题 某公司准备1000万元资金在10个地点中选择若干个建立 工厂(工厂名称用地点名来命名),有关数据如下:
由于各个工厂之间有配套和协作关系,因此必须满足条件: 1、 建工厂1就必须同时建工厂2; 2、 若建工厂2就不允许建工厂3; 3、 工厂4和工厂5至少建一个; 4、 工厂6,7,8恰好建2个; 5、 工厂8,9,10最多建2个; 6、 建工厂4或者建工厂6,就不能建工厂8,反过来也一样; 7、 条件2,3,5最多满足2个。 问选择哪几个地点建厂最有利? Next
运筹学 第4章 整数规划与分配问题

匈牙利法思路:若能在 [Cij] 中找出 n 个位于
不同行不同列的0元素(称为独立0元素),则
令解矩阵[xij]中对应这n个独立0元素的元素
取值为 1 ,其他元素取值为 0 ,则它对应目
标函数zb=0是最小的。这就是以[Cij]为系数
矩阵分配问题的最优解,也得原问题的最
优解。
定理1 若从分配问题效率矩阵[cij]的每一行元素中分别减去 (或加上)一个常数ui(称为该行的位势),从每一列分别减去 (或加上)一个常数vj(称为该列的位势),得到一个新效率矩阵 [bij],若其中bij=cij-ui-vj,则[bij]的最优解等价于[cij]的最优解
第1步:找出效率矩阵每行的最小元素,并分别从每行
中减去。
第2步:再找出矩阵每列的最小元素,并分别从各列中 减去。
2 10 9 7 2 15 4 14 8 4 13 14 16 11 11 4 15 13 9 4
0 8 7 5 11 0 10 4 0 3 5 0 0 11 9 5
表明m个约束条件中有(m-k)个的右端项为( bi+M ),不起约 束作用,因而,只有k个约束条件起作用。 ② 约束条件的右端项可能是r个值b1 , b2 ,, br 中的某一个 即: 定义:
n
aij x j b1 或b2或或br
j 1
1 假定约束右端项为 bi yi 否则 0
现用下例来说明: max z=40x1+90x2 9x1+7x2≤56 7x1+20x2≤70 x1,x2≥0 x1,x2整数 ① ② ③ ④ ⑤
解:先不考虑条件⑤,即解相应的线性规划B,①~④(见图5-2), 得最优解x1=4.81,x2=1.82,z0=356
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则分配问题的数学模型为
mm
min z
a ij x ij
i1 j1
m
x ij 1 ( i 1 , 2 ,...,
m)
j1
m
x ij 1 ( j 1 , 2 ,...,j
0或
1,( i ,
j
1 , 2 ,...,
m)
2-2 匈牙利法 定理1.如果从分配问题效率矩阵(aij)的每一 行元素中分别减去(或加上)一个常数ui (称为该行的位势);从每一列中分别减去 (或加上)一个常数 vj (称为该列的位 势);得到一个新的效率矩阵bij,其中bij= aij - ui - vj ,则aij的最优解等价于bij的 最优解。
决策变量全部取整数,约束系数和约束常数项 可取非整数的整数线性规划。
纯整数线性规划可化为全整数线性规划。 3. 混合整数线性规划
决策变量中有一部分取整数值,另一部分可取 非整数值的整数线性规划。 4. 0-1整数线性规划
决策变量只能取0或1的整数线性规划。
三、0-1变量(或称逻辑变量)在模型中 的应用
第四步 为产生m个位于不同行不同列的0元素, 用定理一对效率矩阵进行调整,使之生成新的0 元素。方法: 1. 在效率矩阵未被直线覆盖的元素中找出最小 元素k; 2. 效率矩阵未被直线覆盖的行都减k; 3. 效率矩阵被直线覆盖的列都加k; 4. 转回第三步。
2-3 特殊情况的处理 1. 人数多于任务数,加虚拟任务。 设有n人,m项任务,n>m,则增加n-m项任务。 2. 人数少于任务数,加虚拟人员。 设有n人,m项任务,n<m,则增加m-n项任务。
3. 对求最大值问题的处理
设目标函数为
mm
maxz
aijxij
可将其变换为
i1 j1 mm
minz'
(aij)xij
i1 j1
此时,效率矩阵的元素全成为负值,不符合要
求,根据定理1,令 Mma aijx
变换后的效率矩阵每行都加M即可。
作业:P127 4.8(a) 第三节 分枝定界法 一、分枝定界法的基本思想
设原整数规划问题为IP,其松弛问题为L0。 用单纯形法求L0,若L0无可行解,则IP也无可 行解,计算停止。若求得L0为整数解,则得IP 的最优解,停止。否则,转下一步; 第二步 分枝与定界
在L0的解中,任选一个不满足整数条件的 变量xi,设xi = bi ,则做两个子问题
作业:P126 4.1 4.2 4.3(a) 4.4
第四章 整数规划与分配问题
第一节 整数规划的特点及应用
一、整数规划的一般形式 定义:一部分或全部决策变量必须取整数 值的规划问题称为整数规划。不考虑整数 条件,由余下的目标函数和约束条件构成 的规划问题称为该整数规划的松弛问题。 若松弛问题是线性规划,则该整数规划称 为整数线性规划。
整数线性规划的一般形式: n max(或min)z cj xj j 1
n
aij xj ( 或 )bi (i 1,2,...m)
j 1
xj 0( j 1,2,...n),且部分或全部取整数
例1.求下述整数规划问题的最优解
max z 3x1 2x2
2x1 3x2 14 x1 0.5x2 4.5 x1, x2 0,且均取整数值
定理2. 若效率矩阵A的元素可分成0与非0两 部分,则覆盖所有0元素的最少直线数等于位 于不同行不同列的0元素的最大个数。
匈牙利法的步骤: 第一步 效率矩阵每行都减去该行的最小元素; 第二步 效率矩阵每列都减去该列的最小元素;
此时,效率矩阵的每行每列都有0元素。
第三步 寻找位于不同行不同列的0元素,也就是 寻找能覆盖所有0元素的最少直线数。 方法: 1. 从只有一个0元素的行开始,对0元素打上( ) 号,然后对打( )的0元素所在列画一条直线, 依次进行到最后一行; 2. 从只有一个0元素的列开始,对0元素打上( ) 号, 然后对打( )的0元素所在行画一条直线, 依次进行到最后一列;
先不考虑整数解的限制,用单纯形法求 解其松弛问题,如果求得的解恰好是整数解, 则得整数规划最优解,停止计算。否则,将 松弛问题分解为两个子问题(也称后继问 题),每个子问题都是在原松弛问题的基础 上增加一个变量取整数的约束条件,这样就 缩小了原来的可行域,然后用单纯形法求解, 直至得到最终结果。
二、分枝定界法的步骤(最大值问题) 第一步 寻找替代问题并求解
不考虑整数要求时, 最优解为: X=(3.25 ,2.5)T Z=13 (见下页图解法) 考虑整数要求时,最优解为: X=(4 ,1)T Z=14 凑整 (3,2)可行,非最优,Z=13。
(4,3),(4,2),(3,3) 不可行
二、整数规划的分类 1. 全整数线性规划
决策变量全部取整数,约束系数和约束常数项 也取整数的整数线性规划。 2. 纯整数线性规划
整数规划模型对研究管理问题有重
要意义。很多不能归结为线性规划数学 模型的管理问题,却可以通过设置逻辑 变量建立起整数规划数学模型。
第二节 分配问题(指派问题)与匈牙利法 2-1 问题的提出及数学模型
假设有m项任务分配给m个人去完成,并 指定每个人完成其中一项,每项任务也只由 一个人完成,问应如何分配任务,才能使总 效率最高?(或总费用最少,花费的总时间 最少等等。)
设每个人完成不同任务的耗费见下面的 效率矩阵,通常要求aij≥0。
a11 a12 ... a1m
A
aij
mm
a21 ...
a22 ...
...
a2m
... ...
am1 am2 ... amm
又 x ij 设 1 0 ,, 分 不i人 配 分 i人 去 第 配 去 j项 j项 完 第 完 任 任 ( 成 i,j成 务 1 ,2 务 第 ,.第 m .; ).。 ,
3. 重复1.、2.两个步骤,可能出现三种情况: (1)若能找到m个位于不同行不同列的0元素(即 带( )的0元素),则令(0)处的xij=1,求解结 束; (2)若有形成闭回路的0元素,则任选一个打 ( ),然后对每个间隔的0元素打( ),同时 对打( )的0元素所在行(或列)画一条直线。 (3)若位于不同行不同列的0元素[即带( )的0 元素]少于m,转第四步。