(完整版)新人教版七年级数学下册提高培优题
七年级(下)数学培优试题(七)含答案,推荐文档

1.七年级(下)数学培优试题(七)含答案(时间:90分钟,满分: 100 分)、 选一选,看完四个选项后再做决定呀! (每小题3分 共 24分)1. 下列计算中, 正确的是( ) A. a 3a 2 1 3a 3 a .2 B . a b 2 a b 2 C. 2a 3 2a 3 9 4a 2 2 D . 2a b 4a 2 2ab b 24, 5这五个数中, 2•在 1, 2 , 3 , 角形( ) A. 1 种 B. 任取三个数作为三角形的边长,能围成几种不同的三 3.如果多项式x mx A. 3 B. 4.下列语句正确的是( A. 近似数 B. 近似数 C. 近似数 D.近似数 C. 3种 D. 4种 9是一个完全平方式,则 m 的值是( D. 6 C. 6 ) 0.009精确到了百分位 800精确到个位,有一个有效数字 56.7万精确到千位,有三个有效数字 5 3.670 105精确到千分位 5. 如图1, A. 4对 6. 如果两个角互为补角, A.都是锐角 C. 一个锐角一个钝角 已知AB B. 3对 AC , E 是角平分线 AD 上任意一点,则图中全等三角形有( C. 2对 D. 1对 那么这两个角()B.都是钝角 D.以上说法都不正确 )AA\Q1)F JU F K :17. 下列说法正确的个数有( (1) (2)(3)(4) A. 1个 B. 2个 C. 3个 D. 4个 &有一游泳池已经注满水,现按一定的速度将水排尽,然后进行清扫,再按相同的速度注 满清水,使用一段时间后,又按相同的速度将水排尽,则游泳池的存水量 V (立方米)随 时间t (小时)变化的大致图象可以是( ) 两个角和其中一角的对边对应相等的两个三角形全等 两条边和其中一边的对角对应相等的两个三角形全等 三个角对应相等的两个三角形全等 成轴对称的两个图形全等 B. 2个 二、填一填,要相信自己的能力(每小题 3分,共30分)请你写出一个只含有字母 m, n 的单项式,使它的系数为 2,次数为3, 2. 在 Rt △ ABC 中,/ C 90°, / A 是/ B 的 2 倍,则/ A 3. 生物学校发现一种病毒的长度约为0.000 040 5毫米,用科学计数法表示为•有&如图5,是一个正三角形的靶子,靶心为其三条对称轴的交点,则 A 部分面积占靶子面积的 ______ ,飞镖随机地掷在靶上,则投到区域 A 或区域B 的概率是 ______9•已知圆柱的底面半径为 3厘米,则圆柱的体积 (厘米3)与高h (厘米)之间的关系式是 ______ .10.观察下列每组算式,并根据你发现的规律填空:4 5 20, 5 6 30, 6 7 42, 3 618; 4 728; 5 840;已知 1222 1223 1494506,则 1221 1224 _______ 三、做一做,要注意认真审题呀! (共66分)21. (12分)已知x 2x 2,将下式先化简,再求值:2x 1 x 3 x 3 x 3 x 12. ( 12分)下面是数学课堂的一个学习片断•阅读后,请回答下面的问题: 学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰△ ABC 的/ A 等于30°,请你求出其余两角.”同学们经片刻的思考与交流后,李明同学举手讲: “其余两角是30°和120°;王华同学说:” 其余两角是75°和75° •还有一些同学也提示了不同的看法效数字是 _______ . 2 2 24 .完全平方公式有许多变形,如:a b a 2 2ab b 2,可以变形为 2 2 2 a b a b 2ab .请你再写出一个完全平方公式的变形: ______________________ 5.如图2,已知/ ABC /为 ______ DCB ,现要说明△ ABC ◎△DCB A,则还要补加一个条件 SQEdar<-i 36•某公路急转弯处设立了一面大镜子,从镜子中看到汽车的车牌号码如图 3所示,则该汽 车的号码是 _______ 7•如图4,已知DE 是AC 的垂直平分线, 为 ________ . AB(1)假如你也在课堂中,你的意见如何,为什么?(2)通过上面数学问题的讨论,你有什么感受?(用一句话表示)3.( 10分)如图6是小明用棋子摆成的字母“T”,它的主要特点是轴对称图形•请你再用棋子摆出两个轴对称图形的字母(用O代表棋子). oooooE64. ( 16分)“扫雷”是一个有趣的游戏,下图是此游戏的一部分:图7中数学2表示有以该数字为中心的8个方格中有2个地雷,小旗表示该方格已被探明有地雷,现在还剩下A B, C三个方格未被探明,其它地方为完全区(包括有数字的方格)(1 )现在还剩下几个地雷?(2) A, B, C三个方格中有地雷的概率分别是多大?5. ( 16分)某生物课外活动小组的同学举行植物标本制作比赛,结果统计如下:人数12432每人所作标本数246810根据表中提供的信息,回答下列问题:(1 )该组共有学生多少人?(2)制作标本数在6个及以上的人数在全组人数中所占比例.七年级第二学期期末综合复习数学水平测试参考答案、1 〜DC 5 〜8.BDBC(-)、1.略.答案不惟一2. 60°3. 4.0510 5;40 , 54.答案不惟一.如a2b a2b4ab5.略. 答案不惟一6. B63957. 21& 1,29.9nn10. 149450433、1.化简为:3x26x5,值为1.2.( 1)李明和王华同学的回答均不全面,应该是:“其余两角的大小是75°,75°或30°,1200”;(2)略•只要表述合理即可,如:“分类讨论的思想很重要”等.3.略.C ‘ 1 14.(1) 2 ; (2) 1, — , —•2 235.(1) 12人; (2)4。
部编数学七年级下册专题9.1不等式专项提升训练(重难点培优)2023培优(解析版)【人教版】含答案

2022-2023学年七年级数学下册尖子生培优题典【人教版】专题9.1不等式专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•滨海县月考)下列数学表达式中:①﹣3<0.②2x+3y≥0,③x=1,④x2﹣2xy+y2,⑤x≠2,⑥x+1>3中,不等式有( )A.3个B.4个C.5个D.6个【分析】根据不等式的定义,不等号有<,>,≤,≥,≠,选出即可.【解答】解:不等式是指不等号来连接不等关系的式子,如<,>,≤,≥,≠,则不等式有:①②⑤⑥,共4个.故选:B.2.(2022秋•洞头区期中)若m>n,则下列不等式中正确的是( )A.m+2<n+2B.−12m>−12nC.n﹣m>0D.﹣2m+1<﹣2n+1【分析】根据不等式的性质解答.【解答】解:A、由m>n得到:m+2>n+2,故本选项不符合题意.B、由m>n得到:−12m<−12n,故本选项不符合题意.C、由m>n得到:n﹣m<0,故本选项不符合题意.D、由m>n得到:﹣2m+1<﹣2n+1,故本选项符合题意.故选:D.3.(2022秋•苍南县期中)在数轴上表示不等式﹣1≤x<2,其中正确的是( )A.B.C.D.【分析】不等式﹣1≤x<2在数轴上表示不等式x≥﹣1与x<2两个不等式的公共部分.【解答】解:“≥”实心圆点向右画折线,“<”空心圆圈向左画折线.故在数轴上表示不等式﹣1≤x<2如下:故选:B.4.(2022春•泌阳县月考)A疫苗冷库储藏温度要求为0℃~6℃,B疫苗冷库储藏温度要求为2℃~8℃,若需要将A,B两种疫苗储藏在一起,则冷库储藏温度要求为( )A.0℃~2℃B.0℃~8℃C.2℃~6℃D.6℃~8℃【分析】将A,B两种疫苗储藏在一起,冷库储藏温度正好是A疫苗冷库储藏温度的最低度数和B疫苗冷库储藏温度的最高度数.【解答】解:∵A疫苗冷库储藏温度要求为0℃~6℃,B疫苗冷库储藏温度要求为2℃~8℃,∴A,B两种疫苗储藏在一起,冷库储藏温度要求为2℃~6℃.故选:C.5.(2022春•如东县期中)不等式0≤x<2的解( )A.为0,1,2B.为0,1C.为1,2D.有无数个【分析】根据不等式的解集的定义解答即可.【解答】解:不等式0≤x<2的解有无数个.故选:D.6.(2022秋•铜梁区校级月考)已知m、n均为非零有理数,下列结论正确的是( )A.若m≠n,则|m|≠|n|B.若|m|=|n|,则m=nC.若m>n>0,则1m>1nD.若m>n>0,则﹣m<﹣n【分析】观察所给四个选项中的式子的关系,直接判断比较困难,可考虑应用特殊数法进行计算后再判断;题目中的四个选项中对m、n都有限制条件,可假设出符合条件的m、n的数值,再代入结论中进行验证;如选项A中,由于m≠n,可假设m=1,n=﹣1,再求出m、n的绝对值,根据结果判断它们的大小关系即可,接下来对其他选项进行分析.【解答】解:A、假设m=1,n=﹣1,则m≠n,但|1|=|﹣1|=1,所以选项A错误;B、假设m=1,n=﹣1,则|m|=|n|,但m≠n,所以选项B错误;C、假设m=3,n=2,则1m=13,1n=12,但1m<1n,所以选项C错误;D、由负数的大小比较方法可知选项D正确.故选D.7.(2022•义乌市开学)已知三个实数a,b,c满足ab>0,a+b<c,a+b+c=0,则下列结论一定成立的是( )A.a<0,b<0,c>0B.a>0,b>0,c<0C.a>0,b<0,c>0D.a>0,b<0,c<0【分析】根据ab>0,得到a和b同号,再由a+b<c和a+b+c=0,得到a、b为负,c为正.【解答】解:∵ab>0,∴a和b同号,又∵a+b<c和a+b+c=0,∴a<0,b<0,c>0.故选:A.8.(2022春•巩义市期末)如图所示,A,B,C,D四人在公园玩跷跷板,根据图中的情况,这四人体重从小到大排列的顺序为( )A.D<B<A<C B.B<D<C<A C.B<A<D<C D.B<C<D<A【分析】根据不等式的性质,进行计算即可解答.【解答】解:由题意得:D>A①,A+C>B+D②,B+C=A+D③,由③得:C=A+D﹣B④,把④代入②得:A+A+D﹣B>B+D,2A>2B,∴A>B,∴A﹣B>0,由③得:A﹣B=C﹣D,∵D﹣A>0,∴C﹣D>0,∴C>D,∴C>D>A>B,即B<A<D<C,故选:C.9.(2022春•开福区校级期末)若不等式组x>8x<4m无解,则m的取值范围为( )A.m≤2B.m<2C.m≥2D.m>2【分析】根据大大小小无解集得到4m≤8,即可得出答案.【解答】解:根据题意得:4m≤8,∴m≤2.故选:A.10.(2022春•罗源县期末)已知a、b、c满足3a+2b﹣4c=6,2a+b﹣3c=1,且a、b、c都为正数.设y=3a+b﹣2c,则y的取值范围为( )A.3<y<24B.0<y<3C.0<y<24D.y<24【分析】把c当作常数解方程组,再代入y,根据a、b、c都为正数,求出c的取值范围,从而求解.【解答】解:∵3a+2b﹣4c=6,2a+b﹣3c=1,∴a=2c﹣4,b=9﹣c,∴y=3a+b﹣2c=3(2c﹣4)+9﹣c+2c=3c﹣3,∵a、b、c都为正数,∴2c﹣4>0,9﹣c>0,∴2<c<9,∴3<3c﹣3<24,∴3<y<24.故选A.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022春•南关区校级期中)如图,写出下图不等式的解集 x≥﹣2 .【分析】根据用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”写出答案即可.【解答】解:该数轴上所表示的不等式的解集为:x≥﹣2.故答案为:x≥﹣2.12.(2022春•如东县期中)若a<b,则−a2 > −b2.【分析】根据不等式的性质判断即可.【解答】解:∵a<b,∴−a2>−b2.故答案为:>.13.(2022春•德化县期中)若x是非正数,则x ≤ 0.(填不等号)【分析】根据不等关系解决此题.【解答】解:由题意得,x≤0.故答案为:≤.14.(2022•南京模拟)关于a的不等式的解集在数轴上表示如图所示,则该不等式的解集为 a≤3 .【分析】根据数轴写出不等式的解集.【解答】解:∵,∴不等式的解集为a≤3,故答案为a≤3.15.(2022•萧山区开学)由不等式ax>b可以推出x<ba,那么a的取值范围是 a<0 .【分析】根据不等式性质3得到a的范围.【解答】解:∵不等式ax>b的解集为x<ba,∴a<0,即a 的取值范围为a <0.故答案为:a <0.16.(2022春•赤坎区校级期末)若关于x 的不等式组x <4x <m的解集是x <4,则P (2﹣m ,m +2)在第 二 象限.【分析】利用不等式组的解集“同小取小”得到m ≥4,进而确定点P 的横坐标与纵坐标的范围,从而得出点P 所在象限.【解答】解:∵关于x 的不等式组x <4x <m的解集是x <4,∴m ≥4.∴2﹣m <0,m +2>0,∴P (2﹣m ,m +2)在第二象限.故答案为:二.17.(2022春•浚县期末)若不等式x >y 和(a ﹣3)x <(a ﹣3)y 成立,则a 的取值范围是 a <3 .【分析】根据不等式的性质判断即可.【解答】解:∵x >y ,∴当a ﹣3<0时,(a ﹣3)x <(a ﹣3)y ,∴a <3.故答案为:a <3.18.(2021春•龙岗区校级期中)阅读以下材料:如果两个正数a ,b ,即a >0,b >0,则有下面的不等式:a b2a =b 时取到等号.则函数y =2x +3x (x <0)的最大值为 (提示:可以先求﹣y 的最小值)【分析】根据题意先求﹣y 的值,再根据不等式的性质求解即可.【解答】解:∵x <0,则2x <0,3x<0,∴﹣y =﹣(2x +3x )≥∴y ≤﹣当且仅当2x =3x ,即x =故答案为:﹣三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022春•朝天区期末)已知x >y .(1)比较9﹣x与9﹣y的大小,并说明理由;(2)若mx+4<my+4,求m的取值范围.【分析】(1)根据不等式的性质3和性质1进行变形即可;(2)不等号的方向改变了,根据不等式的性质3可知,乘以的数为负数,即m<0.【解答】解:(1)9﹣x<9﹣y,理由如下:∵x>y,∴﹣x<﹣y(不等式的性质3),∴9﹣x<9﹣y(不等式的性质1);(2)由x>y可得mx+4<my+4可知,m<0.20.(2022秋•拱墅区月考)(1)若x>y,比较﹣3x+5与﹣3y+5的大小,并说明理由;(2)若x>y,且(a﹣3)x<(a﹣3)y,求a的取值范围.【分析】(1)先求出(﹣3x+5)﹣(﹣3y+5)的值,再根据x>y判断即可;(2)根据不等式的性质3得出a﹣3<0,再求出答案即可.【解答】解:(1)﹣3x+5<﹣3y+5,理由是:∵x>y,∴y﹣x<0,∴(﹣3x+5)﹣(﹣3y+5)=﹣3x+5+3y﹣5=3y﹣3x=3(y﹣x)<0,∴﹣3x+5<﹣3y+5;(2)∵x>y,(a﹣3)x<(a﹣3)y,∴a﹣3<0,∴a<3,即a的取值范围是a<3.21.(2022春•保定期末)已知4x﹣y=1.(1)用含x的代数式表示y为 y=4x﹣1 ,(2)若y的取值范围如图所示,求x的正整数值.【分析】(1)移项即可得出答案;(2)根据y≤7得出4x﹣1≤7,解之即可.【解答】解:(1)4x﹣y=1则y=4x﹣1,故答案为:y=4x﹣1;(2)由题意可得,4x﹣1≤7,4x≤8,x≤2,故x的正整数值为1、2.22.(2022春•韩城市期末)已知实数x、y满足3x+4y=1.(1)用含有x的式子表示y;(2)若实数y满足y>1,求x的取值范围.【分析】(1)解关于y的方程即可;(2)利用y>1得到关于x的不等式−34x+14>1,然后解不等式即可.【解答】解:(1)3x+4y=1,4y=﹣3x+1,y=−34x+14;(2)根据题意得−34x+14>1,解得x<﹣1.23.(2022春•庆云县期末)已知关于x,y的二元一次方程ax+2y=a﹣1.(1)若x=2y=−1是该二元一次方程的一个解,求a的值;(2)若x=2时,y>0,求a的取值范围.【分析】(1)把方程的解代入二元一次方程,得关于a的一元一次方程,求解即可;(2)把x=2代入二元一次方程,根据y>0得关于a的不等式,求解即可.【解答】解:(1)把x=2y=−1代入二元一次方程ax+2y=a﹣1,得2a﹣2=a﹣1.∴a=1.(2)把x=2代入方程ax+2y=a﹣1得2a+2y=a﹣1,∴y=−a−12.∵y>0,∴−a−12>0.解得a<﹣1.24.(2022春•南阳期末)【阅读思考】阅读下列材料:已知“x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解:∵x﹣y=2,∴x=y+2;又∵x>1,∴y+2>1∴y>﹣1;又∵y<0,∴﹣1<y<0.①同理1<x<2.②由①+②得﹣1+1<x+y<0+2,∴x+y的取值范围是0<x+y<2.【启发应用】请按照上述方法,完成下列问题:已知x﹣y=3,且x>2,y<1,则x+y的取值范围是 1<x+y<5 ;【拓展推广】请按照上述方法,完成下列问题:已知x+y=2,且x>1,y>﹣4,试确定x﹣y的取值范围.【分析】【启发应用】先用y表示x,再根据x的大小确定不等式,求解即可;【拓展推广】先用y表示x,再根据x的大小确定不等式,求解即可.【解答】解:【启发应用】1<x+y<5.理由如下:∵x﹣y=3,∴x=y+3,∵x>2,∴y+3>2,∴y>﹣1,又∵y<1,∴﹣1<y<1.①同理可得:2<x<4.②由①+②得:﹣1+2<x+y<1+4.∴x+y的取值范围是:1<x+y<5.故答案为:1<x+y<5.【拓展推广】∵x+y=2,∴x=2﹣y,又∵x>1,∴2﹣y>1,∴y<1,又∵y>﹣4,∴﹣4<y<1,∴﹣1<﹣y<4.①同理得:1<x<6.②由①+②得:0<x﹣y<10,∴x﹣y的取值范围是:0<x﹣y<10.。
部编数学七年级下册专题6.1平方根专项提升训练(重难点培优)2023培优(解析版)【人教版】含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!2022-2023学年七年级数学下册尖子生培优题典【人教版】专题6.1平方根专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022秋•晋江市期中)3的平方根是( )A.±B.±3C.3D【分析】根据平方根的定义进行解答即可.【解答】解:3故选:A.2.(2022秋•城阳区期中)若x+4是4的一个平方根,则x的值为( )A.﹣2B.﹣2或﹣6C.﹣3D.±2【分析】依据平方根的定义得到x+4=2或x+4=﹣2,从而可求得x的值.【解答】解:∵x+4是4的一个平方根,∴x+4=2或x+4=﹣2,∴解得:x=﹣2或x=﹣6.故选:B.3.(2022秋•温州校级期中)下列计算结果正确的是( )A.2B±2C2D−4【分析】根据平方根、算术平方根的定义逐项进行判断即可.【解答】解:A.=±2,因此选项A不符合题意;B=2,因此选项B不符合题意;C=2,因此选项C符合题意;D=4,因此选项D不符合题意;故选:C.4.(2022春•藁城区校级月考)下列说法:(1)±3是9的平方根;(2)9的平方根是±3;(3)3是9的平方根;(4)9的平方根是3,其中正确的是( )A.3个B.2个C.1个D.4个【分析】根据平方根的定义逐个进行判断即可.【解答】解:由于9的平方根有两个,是3和﹣3,因此(1)±3是9的平方根,是正确的;(2)9的平方根是±3是正确的;(3)3是9的平方根是正确的;(4)9的平方根是3是错误的;综上所述正确的有:(1)(2)(3),共3个,故选:A.5.(2022秋•薛城区校级月考)一个自然数的一个平方根是a,则与它相邻的上一个自然数的平方根是( )A.B.a﹣1C.a2﹣1D.【分析】由一个自然数的一个平方根是a,可得出这个自然数是a2,进而得到与这个自然数相邻的上一个自然数是a2﹣1,再根据平方根的定义得出答案即可.【解答】解:∵一个自然数的一个平方根是a,∴这个自然数是a2,∴与这个自然数相邻的上一个自然数是a2﹣1,故选:D.6.(2022秋•=101,则A.1.01B.10.1C.﹣1.01D.﹣10.1【分析】根据“被开方数扩大100倍,其算术平方根就扩大10倍”进行解答即可.【解答】解:===−10110=−10.1,故选:D.7.(2022春•新洲区校级月考)若n n的最小值( )A.1B.2C.3D.12【分析】将n从最小的正整数开始,逐个代入计算,直至结果为整数即可.【解答】解:当n=1=当n=2=当n=3=6,故选:C.8.(2021春•武汉月考)一块边长为a厘米的正方形纸片,若沿着边的方向裁出一块面积为120平方厘米的长方形纸片,使它的长宽之比为4:3,在尽可能节约材料的前提下,a的值可能是( )A.12B.13C.14D.15【分析】根据长宽之比为4:3,设长为4x,宽为3x,根据面积为120平方厘米,列出方程,解出未知数的值并得到长方形的长和宽,再求出a的值.【解答】解:设长方形纸片的长为4x厘米,宽为3x厘米,则有4x•3x=120,整理得,12x2=120,化简得,x2=10,解得,x=±故长方形纸片的长为由于该长方形纸片是从一块正方形纸片上沿着边的方向剪下来的,故正方形的边长至少是=1213,且题干中要求“尽可能节约材料”,故正方形的边长应该在满足条件的前提下尽可能取小的数,故a的值可能是13,故选:B.9.(2022秋•兰考县月考)若一个正数的平方根为3a﹣6和10﹣4a,则a的值是( )A.1B.2C.4D【分析】根据平方根的定义,列方程求解即可.【解答】解:∵一个正数的平方根为3a﹣6和10﹣4a,∴3a﹣6+10﹣4a=0,解得a=4,故选:C.10.(2022秋•铁岭月考)有一个数值转换器,原理如图所示:当输入的x=64时,输出的值是( )A.2B.8C D.【分析】根据流程图、算术平方根的定义即可求出答案.【解答】解:当x=64时,=8,是有理数,=∴输出的值是故选:D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022秋•雁塔区校级期中)±= ±7 ; 2 .【分析】根据算术平方根、平方根的定义解决此题.【解答】解:±±7;=4,2.故答案为:±7,2.12.(2022秋•深圳校级期中)若|3x−1|=0,则xy的算术平方根是 1 .【分析】根据绝对值和算术平方根的非负数的性质可得x、y的值,再根据算术平方根的定义即可得出答案.【解答】解:∵|3x−1|=0,|3x﹣1|≥00,∴3x﹣1=0,y﹣3=0,解得x=13,y=3,∴xy=13×3=1,∴xy1.故答案为:1.13.(2022秋•慈溪市期中)已知实数x,y满足|x−4|+0,求式子x﹣y的值 9 .【分析】根据非负数的性质求出x和y的值,代入计算即可.【解答】解:根据题意得:x﹣4=0,y+5=0,解得x=4,y=﹣5,所以:x﹣y=4﹣(﹣5)=4+5=9.故答案为:9.14.(2022秋•0.1732≈0.5477≈1.732 5.477,≈17.3254.77.(1 173.2 ;(20.7071 2.236 0.2236 .【分析】(1)根据二次根式的乘法法则解决此题.(2)根据二次根式的除法法则解决此题.【解答】解:(1≈1.732,≈173.2.故答案为:173.2.(2 2.236,==110×=0.1×0.2236.故答案为:0.2236.15.(2022秋•房山区期中)若实数a ,b (b−5)2=0,则a +b 的值为 4 .【分析】根据算术平方根和偶次方的非负数的性质可得a 、b 的值,再代入所求式子计算即可.+(b−5)2=00,(b ﹣5)2≥0,∴a +1=0,b ﹣5=0.解得a =﹣1,b =5,∴a +b =﹣1+5=4.故答案为:4.16.(2022秋•章丘区期中)一个正数a 的两个平方根是2b ﹣1和b +4,则a 为 9 .【分析】根据一个正数的两个平方根互为相反数列出方程,求解即可得出b 的值,再求得两个平方根中的一个,然后平方可得a 的值.【解答】解:∵一个正数a 的两个平方根是2b ﹣1和b +4,∴2b ﹣1+b +4=0,∴b =﹣1.∴b +4=﹣1+4=3,∴a =9.故答案为:9.17.(2022秋•萧山区期中)如图所示的是一个数值转换器.(1)当输入的x值为7时,输出的y值为 (2)当输入x值后,经过两次取算术平方根运算,输出的y x值为 25 ;(3)若输入有效的x值后,始终输不出y值,所有满足要求的x的值为 0或1 .【分析】(1)根据运算规则即可求解;(2)根据两次取算术平方根运算,输出的y x的值;(3)根据0和1的算术平方根分别是0和1,可得结论.【解答】解:(1)当x=7时,则y=(2)当y=2=5,52=25,则x=25;故答案为:25;(3)当x=0,1时,始终输不出y值,∵0,1的算术平方根是0,1,一定是有理数,∴所有满足要求的x的值为0或1.故答案为:0或1.18.(2022秋•苍南县期中)如图,把一张面积为25的正方形纸片剪成五块(其中⑤是一个小正方形),然后恰好拼成一个长方形,则这个拼成的长方形周长为【分析】根据拼图可知直角三角形的“长直角边”等于“短直角边”的2倍,设未知数,求出直角三角形的直角边,再根据长方形周长与“直角边”的关系进行计算即可.【解答】解:由拼图可知,直角三角形的“长直角边”等于“短直角边”的2倍,设短直角边为x,则长直角边为2x,由题意得,x 2+(2x )2=25,解得x =x =,拼成的长方形的长为5x ,宽为x ,所以周长为(5x +x )×2=12x =故答案为:三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022秋•莲湖区校级月考)求下列各式中x 的值.(1)9x 2﹣25=0;(2)(x ﹣1)2=36.【分析】根据等式的性质和平方根的定义进行计算即可.【解答】解:(1)移项得,9x 2=25,两边都除以9得,x 2=259,由平方根的定义得,x =±53;(2)(x ﹣1)2=36,由平方根的定义得,x ﹣1=±6,即x =7或x =﹣5.20.(2022春•鼓楼区期中)一个正数b 的两个平方根分别是a ﹣2与1﹣2a .(1)求ab 的值;(2)求关于x 的方程2ax 2+5=﹣3的解.【分析】(1)根据平方根的性质进行计算即可;(2)将原方程化为x 2=4,再根据平方根的定义进行计算即可.【解答】解:∵一个正数b 的两个平方根分别是a ﹣2与1﹣2a ,∴a ﹣2+1﹣2a =0,解得a =﹣1,当a =﹣1时,a ﹣2=﹣3,∴b =9,∴ab =﹣9,答:ab 的值为﹣9;(2)当a =﹣1时,原方程可变为﹣2x 2+5=﹣3,即x2=4,∴x=±±2,答:关于x的方程2ax2+5=﹣3的解为x=±2.21.(2022春•交城县期中)(1)已知3a﹣1的平方根,3是3a+2b﹣3的算术平方根,求a+2b的平方根;(2)已知正数x的平方根是m和m+n,若m2x+(m+n)2x=10,求x的值.【分析】(1)根据题意求出3a﹣1=5,3a+2b﹣3=9,解出a,b的值代入a+2b中即可求解;(2)根据正数有两个平方根可得m2=x,(m+n)2=0,再将m2x+(m+n)2x=10化简即可求解.【解答】解:(1)∵3a﹣1的平方根,∴3a−1=(±2,3a﹣1=5,解得:a=2,∵3是3a+2b﹣3的算术平方根,∴3a+2b﹣3=9,解得:b=3,当a=2,b=3时,∴a+2b=8,∴a+2b的平方根为±(2)∵正数x的平方根是m和m+n,∴m2=x,(m+n)2=x,则方程m2x+(m+n)2x=10可化为x2+x2=10,解得:x=±∵x为正数,∴x=22.(2022秋•李沧区期中)某新建学校计划在一块面积为256m2的正方形空地上建一个面积为150m2的长方形花园(长方形花园的边与正方形空地的边平行),要求长方形花园的长是宽的2倍.请你通过计算说明该学校能否实现这个计划.【分析】分别求出长方形的长,正方形的边长比较即可判断.【解答】解:长方形花坛的宽为xm,长为2xm.∵建一个面积为150m2的长方形花园,∴2x•x=150,∴x2=75,∵x>0,∴x=2x=∵正方形的面积为256m2,∴正方形的边长为16m,∵16,∴当长方形的边与正方形的边平行时,学校不能实现这个愿望.23.(2022春•武昌区期中)(1)如图1,分别把两个边长为1cm的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为;(2)若一个圆的面积与一个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆< C正(填“=”或”<”或“>“号)(3)如图2,若正方形的面积为400cm2,李明同学想沿这块正方形边的方向裁出一块面积为300cm2的长方形纸片,使它的长和宽之比为5:4,他能裁出吗?请说明理由?【分析】(1)根据算术平方根的定义求解即可;(2)分别求出圆的半径,正方形的边长,进而求出圆周长,正方形的周长,比较得出答案;(3)求出长方形的长、宽以及正方形的边长,比较长方形的长与正方形边长的大小,得出结论.【解答】解:(1)由题意得,大正方形的面积为2cm2,(2)设圆的半径为rcm,则πr2=2π,∴r=∴圆的周长为2π×(cm),设正方形的边长为a,∴a∴正方形的周长为4a=cm),∵==π<4,即<也就是C圆<C正方形,故答案为:<;(3)能,理由如下:设长方形的长为5xcm,则宽为4xcm,由题意可得,5x•4x=300,∴x即长为,宽为,而面积为400cm2,∵=∴能裁出一块面积为300cm2的长方形纸片.24.(2022•南京模拟)在一次活动课中,虹烨同学用一根绳子围成一个长宽之比为3:1,面积为75 cm2的长方形.(1)求长方形的长和宽;(2)她用另一根绳子围成一个正方形,且正方形的面积等于原来围成的长方形面积,她说:“围成的正方形的边长与原来长方形的宽之差大于3cm”,请你判断她的说法是否正确,并说明理由.【分析】(1)根据题意设长方形的长为3xcm,宽为xcm,则3x⋅x=75,再利用平方根的含义解方程即可;(2)设正方形的边长为y,根据题意可得,y2=75,利用平方根的含义先解方程,再比较与3的大小即可.【解答】解:(1)根据题意设长方形的长为3xcm,宽为xcm,则3x•x=75,即x2=25,∵x>0,∴3x=15,答:长方形的长为15cm,宽为5cm.(2)设正方形的边长为ycm,根据题意可得,y2=75,∵y>0,∴y∵原来长方形的宽为5cm,,即89,∴3<4,所以她的说法正确.。
(人教版)北京七年级数学下册第七单元《平面直角坐标系》提高卷(提高培优)

一、选择题 1.如图是北京市地图简图的一部分,图中“故宫”、“颐和园”所在的区域分别是( )D E F 6颐和园 奥运村 7故宫 日坛 8天坛 A .D7,E6 B .D6,E7 C .E7,D6 D .E6,D7 2.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)- 3.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定 4.若点P(3a+5,-6a-2)在第四象限,且到两坐标轴的距离相等,则a 的值为( ) A .-1 B .79- C .1 D .25.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交6.在平面直角坐标系中,点P (−1,23)在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.将点()1,2P 向左平移3个单位后的坐标是( )A .()2,2-B .()1,1-C .()1,5D .()1,1-- 8.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上9.如图,在坐标平面内,依次作点()3,1P -关于直线y x =的对称点1P ,1P 关于x 轴对称点2P ,2P 关于y 轴对称点3P ,3P 关于直线y x =对称点4P ,4P 关于x 轴对称点5P ,5P 关于y 轴对称点6P ,…,按照上述变换规律继续作下去,则点2019P 的坐标为( )A .()1,3-B .()1,3C .()3,1-D .()1,3- 10.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 11.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P 的坐标是( )A .(2021,0)B .(2020,1)C .(2021,1)D .(2021,2) 12.若点(1,)A n -在x 轴上,则点(1,1)B n n +-在( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 13.若点P (﹣m ,﹣3)在第四象限,则m 满足( )A .m >3B .0<m≤3C .m <0D .m <0或m >3 14.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m 15.在平面直角坐标系中,点A (0,a ),点B (0,4﹣a ),且A 在B 的下方,点C(1,2),连接AC ,BC ,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为( )A .﹣1<a ≤0B .0<a ≤1C .1≤a <2D .﹣1≤a ≤1二、填空题16.如图,平面直角坐标系xOy 中,点A(4,3),点B(3,0),点C(5,3),OAB ∆沿AC 方向平移AC 长度的到ECF ∆,四边形ABFC 的面积为_________.17.在平面直角坐标系中,若点(1, 2)M m m -+与点(23, 2)N m m ++之间的距离是5,则m =______.18.到x 轴距离为2,到y 轴距离为3的点的坐标为___________.19.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.20.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),…,则坐标为(﹣505,﹣505)的点是______.21.在平面直角坐标系中,点A(2,0)B(0,4),作△BOC,使△BOC和△ABO全等,则点C坐标为________22.如图,在平面直角坐标系中,三角形ABC经过平移后得到三角形A′B′C′,且平移前后三角形的顶点坐标都是整数.若点P(12,﹣15)为三角形ABC内部一点,且与三角形A′B′C′内部的点P′对应,则对应点P′的坐标是_____.23.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按下图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边"OA1→A1A2→A 2A3→A3A4→A4A5…."的路线运动,设第n秒运动到点P n(n为正整数);则点P2021的横坐标为_______24.已知点A (﹣3,2),AB ∥坐标轴,且AB =4,若点B 在x 轴的上方,则点B 坐标为__.25.在平面直角坐标系中,点()3,1A -在第______象限.26.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题27.观察图形回答问题:(1)所给坐标分别代表图中的哪个点?(﹣3,1): ;(1,2): ; (2)图形上的一些点之间具有特殊的位置关系,请按如下要求找出这样的点,并说明所找点的坐标之间有何关系:①连接点 与点 的直线平行于x 轴,这两点的坐标的共同特点是 ; ②连接点 与点 的直线是第一、三象限的角平分线,这两点的坐标的共同特点是 .28.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将ABC 经过一次平移后得到A B C ''',图中标出了点B 的对应点B '.''';(1)在给定方格纸中画出平移后的A B C(2)画出AB边上的中线CD和BC边上的高线AE;''的面积是多少?(3)求A B C29.如图,在平面直角坐标系中,点A(0,12),点B(m,12),且B到原点O的距离OB=20,动点P从原点O出发,沿路线O→A→B运动到点B停止,速度为每秒5个单位长度,同时,点Q从点B出发沿路线B→A→O运动到原点O停止,速度为每秒2个单位长度.设运动时间为t.(1)求出P、Q相遇时点P的坐标.(2)当P运动到AB边上时,连接OP、OQ,若△OPQ的面积为6,求t的值.30.三角形ABC(记作△ABC)在8×8方格中,位置如图所示,A(-3,1),B(-2,4).(1)请你在方格中建立直角坐标系,并写出C点的坐标;(2)把△ABC向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A1B1C1,若△ABC内部一点P的坐标为(a,b),则点P的对应点P1的坐标是.(3)在x轴上存在一点D,使△DB1C1的面积等于3,求满足条件的点D的坐标.。
七年级数学下学期期末培优强化训练8 新人教版

数学培优强化训练(八)1.甲、乙两汽车,甲从A 地去B 地,乙从B 地去A 地,同时相向而行,1.5小时后两车相遇.相遇后,甲车还需要2小时到达B 地,乙车还需要89小时到达A 地.若A 、B 两地相距210千米,试求甲乙两车的速度.2.先读懂古诗,然后回答诗中问题.巍巍古寺在山林,不知寺内几多僧.三百六十四只碗,看看用尽不差争.三人共食一碗饭,四人共吃一碗羹.请问先生明算者,算来寺内几多僧.3.牛奶和鸡蛋所含各种主要成分的百分比如下表.又知每1g 蛋白质、脂肪、碳水化合物产生和热量分别为16.8J 、37.8J 、16.8J .当牛奶和鸡蛋各取几克时,使它们质量之比为3:2,且产生1260J 的热量? 成分蛋白质 脂肪 碳水化合物 水份及其他品名(%)(%)(%)(%)牛奶3.5 3.8 4.9 87.8鸡蛋13.2 10.7 1.8 74.34.某学校社会实践小分队走访100户家庭,发现一般洗衣水的浓度以0.2%-0.5%为合适,即100kg洗衣水里含200-500g的洗衣粉比较合适,因为这时表面活性最大,去污效果最好.现有一个洗衣缸可容纳15kg洗衣水(包括衣服),已知缸中的已有衣服重4kg,所需洗衣水的浓度为0.4%,已放了两匙洗衣粉(1匙洗衣粉约为0.02kg)问还需加多少kg洗衣粉,添多少kg水比较合适?5.“利海”通讯器材市场,计划用60000元从厂家购进若干部新型手机,以满足市场需求.已知该厂家生产三种不一同型号的手机,出厂价分别为甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完.请你帮助商场计算一下如何购买?(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号的手机购买数量不少于6部且不多于8部,请你求出每种型号手机的购买数量.数学培优强化训练(八)答案1、 解:设甲车的速度为x 千米/时,乙车的速度为y 千米/时,由题意得x y y x 892= 得x y 34= 210)(5.1=+y x 210)34(5.1=+x x 8060343460=⨯===x y x 答:甲车的速度为60千米/时,乙车的速度为80千米/时.2、 解:设寺内有x 名僧人,由题意得 62436443==+x x x答:寺内有624名僧人.3、 解:设取牛奶3x 克,取鸡蛋2x 克,由题意得12060221806033601260)2%8.13%9.4(8.16)2%7.103%8.3(8.37)2%2.133%5.3(8.16=⨯==⨯=≈=⨯+⨯⨯+⨯+⨯⨯+⨯+⨯⨯x x x x x x x x x答:约取牛奶180g ,鸡蛋120g .4、 解:设还需加洗衣粉xkg,由题意得 996.0%4.0202.0415004.0154%4.0202.0%4.0=-⨯--==+⨯+x x x 答:还需加0.004kg 的洗衣粉,添加0.996kg 的水.5、 解:(1)分甲乙组合;乙丙组合;甲丙组合三种情况.方案一:甲乙组合:设买甲种手机x 部,则买乙种手机(40-x )部,由题意得10403060000)40(6001800=-==-+x x x x方案二:乙丙组合:设买乙种手机y 部,则买丙种手机(40-y )部,由题意得)(2060000)40(1200600舍去不合题意,y y y -==-+方案三:甲丙组合:设买甲种手机z 部,则买丙种手机(40-z )部,由题意得20402060000)40(12001800=-==-+z z z z综上所述,可以买甲种手机30部,乙种手机10部或买甲种手机和丙种手机各20部.(2)分乙种手机买6部、7部、8部三种情况买乙种手机6部:设买甲种手机x 部,则买丙种手机(40-6-x )部,由题意得186402660000)640(120060061800=--==--+⨯+x x x x买乙种手机7部:设买甲种手机x 部,则买丙种手机(40-7-x )部,由题意得167402760000)740(120060071800=--==--+⨯+x x x x买乙种手机8部:设买甲种手机x 部,则买丙种手机(40-8-x )部,由题意得148402860000)840(120060081800=--==--+⨯+x x x x综上所述,可以买甲乙丙三种型号的手机的数量分别为26部,6部,18部或27部,7部,16部或28部,8部,14部.。
最新人教版七年级(下册)实数数学试卷培优试题

一、选择题1.定义一种新运算“*”,即()*23m n m n =+⨯-,例如()2*322339=+⨯-=.则()6*3-的值为( ) A .12 B .24 C .27 D .30 2.若29x =,|y |=7,且0x y ->,则x +y 的值为( ) A .﹣4或10B .﹣4或﹣10C .4或10D .4或﹣10 3.若9﹣13的整数部分为a ,小数部分为b ,则2a +b 等于( ) A .12﹣13B .13﹣13C .14﹣13D .15﹣134.如示意图,小宇利用两个面积为1 dm 2的正方形拼成了一个面积为2 dm 2的大正方形,并通过测量大正方形的边长感受了2dm 的大小. 为了感知更多无理数的大小,小宇利用类似拼正方形的方法进行了很多尝试,下列做法不能实现的是( )A .利用两个边长为2dm 的正方形感知8dm 的大小B .利用四个直角边为3dm 的等腰直角三角形感知18dm 的大小C .利用一个边长为2dm 的正方形以及一个直角边为2dm 的等腰直角三角形感知6dm 的大小D .利用四个直角边分别为1 dm 和3 dm 的直角三角形以及一个边长为2 dm 的正方形感知10dm 的大小5.已知n 是正整数,并且n -1<326+<n ,则n 的值为( ) A .7B .8C .9D .106.有下列说法:①在1和2之间的无理数有且只有2,3这两个;②实数与数轴上的点一一对应;③两个无理数的积一定是无理数;④2π是分数.其中正确的为( ) A .①②③④B .①②④C .②④D .②7.如图,点A 表示的数可能是( )A 21B 6C 11D 178.有一个数阵排列如下:1 2 4 7 11 16 22 3 5 8 12 17 23 6 9 13 18 24 10 14 19 2515 20 2621 2728则第20行从左至右第10个数为( ) A .425B .426C .427D .4289.如图,数轴上的点E ,F ,M ,N 表示的实数分别为﹣2,2,x ,y ,下列四个式子中结果一定为负数是( )A .x +yB .2+yC .x ﹣2D .2+x10.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间二、填空题11.对于任意有理数a ,b ,规定一种新的运算a ⊙b =a (a +b )﹣1,例如,2⊙5=2×(2+5)﹣1=13.则(﹣2)⊙6的值为_____ 12.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕=__________.13.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是__________.14.如图,按照程序图计算,当输入正整数x 时,输出的结果是161,则输入的x 的值可能是__________.15.如图所示为一个按某种规律排列的数阵:根据数阵的规律,第7行倒数第二个数是_____.16.我们可以用符号f (a )表示代数式.当a 是正整数时,我们规定如果a 为偶数,f (a )=0.5a ;如果a 为奇数,f (a )=5a +1.例如:f (20)=10,f (5)=26.设a 1=6,a 2=f (a 1),a 3=f (a 2)…;依此规律进行下去,得到一列数:a 1,a 2,a 3,a 4…(n 为正整数),则2a 1﹣a 2+a 3﹣a 4+a 5﹣a 6+…+a 2013﹣a 2014+a 2015=_____.17.220a b a --=,则2+a b 的值是__________; 18.1x -(y +1)2=0,则(x +y )3=_____. 19.材料:一般地,n 个相同因数a 相乘:n a a a a a⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 20.规定:用符号[x ]表示一个不大于实数x 的最大整数,例如:[3.69]=3,3=2,[﹣2.56]=﹣3,[3=﹣2.按这个规定,[131]=_____.三、解答题21.观察下来等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, ……在上面的等式中,等式两边的数字分别是对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”. (1)根据以上各等式反映的规律,使下面等式成为“数字对称等式”: 52×_____=______×25;(2)设这类等式左边的两位数中,个位数字为a ,十位数字为b ,且2≤a +b≤9,则用含a ,b 的式子表示这类“数字对称等式”的规律是_______. 22.新定义:对非负数x“四舍五入”到个位的值记为<x>, 即当n 为非负数时,若1122n x n -≤<+,则<x>=n . 例如<0>=<0.49>=0,<0.5>=<(1)49>=1,<2>=2,<(3)5>=<(4)23>=4,… 试回答下列问题:(1)填空:<9.6>=_________;如果<x>=2,实数x 的取值范围是________________.(2)若关于x 的不等式组24130x x m x -⎧≤-⎪⎨⎪->⎩的整数解恰有4个,求<m>的值;(3)求满足65x x =的所有非负实数x 的值. 23.数学中有很多的可逆的推理.如果10b n =,那么利用可逆推理,已知n 可求b 的运算,记为()b f n =,如210100=, 则42(100);1010000f ==,则4(10000)f =.①根据定义,填空:(10)f =_________,()310f =__________.②若有如下运算性质:()()(),()()n f mn f m f n f f n f m m⎛⎫=+=- ⎪⎝⎭. 根据运算性质填空,填空:若(2)0.3010f =,则(4)f =__________;(5)f =___________; ③下表中与数x 对应的()f x 有且只有两个是错误的,请直接找出错误并改正.24.11,将这个数减去其整数部分,差∵23223<<,即23<<,∴的整数部分为2,小数部分为)2。
人教版初一数学下册提升训练(附答案)

〔1〕T〔1,-1〕=-2,T〔4,2〕=1.
①求a,b的值;
②假设关于m的不等式组 恰好有3个整数解,求实数p的取值范围;
〔2〕假设T〔*,y〕=T〔y,*〕对任意实数*,y都成立〔这里T〔*,y〕和T〔y,*〕均有意义〕,则a,b应满足怎样的关系式?
12."保护好环境,拒绝冒黑烟〞.*市公交公司将淘汰*一条线路上"冒黑烟〞较严重的公交车,方案购置A型和B型两种环保节能公交车共10辆,假设购置A型公交车1辆,B型公交车2辆,共需400万元;假设购置A型公交车2辆,B型公交车1辆,共需350万元.
〔1〕求购置A型和B型公交车每辆各需多少万元?
〔2〕 预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.假设该公司购置A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?
试题解析:〔1〕①根据题意得:T〔1,-1〕= =-2,即a-b=-2;
T=〔4,2〕= =1,即2a+b=5,解得:a=1,b=3;
②根据题意得: ,由①得:m≥- ;由②得:m< ,
∴不等式组的解集为- ≤m< ,
∵不等式组恰好有3个整数解,即m=0,1,2,∴2< ≤3,解得:-2≤p<- ;
试题解析:〔1〕、假设人均年产值"1〞,则年产值"100〞,设分派到新生产线的人数为*人,由题意可知:
解得: ∴ ,且*为整数
∴*=13或14或15或16
(完整版)七年级(下)数学培优试题(九)含答案,推荐文档

七年级(下)数学培优试题(九)含答案(考试时间:120分钟满分:150分)题号一二三四五总分总分人得分一、选择题:(本大题10个小题,每小题4分,共40分)每个小题都给出了代号为 A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入题后的括号中.1.数学考试中,每一个选择题都给出了代号为 A、B、C、D的四个答案,但其中只有一个是正确的.如果同学们不加思考就在四个答案中随便选一个,则()A.选对的可能性大 B.选错的可能性大C.选对、选错的可能性一样大 D.说不清楚2.下列几何体属于柱体的个数是()A.3B.4C.5D.63.下列几个事件中,不确定事件的个数是()①抛出的蓝球会下落②掷一枚均匀的骰子,骰子停止转动后偶数点朝上③在正常情况下,将水加热1000C到时,水会沸腾④任意买一张电影票,座位号是奇数A.1 B.2 C.3 D.44.袋中装有4只红球、3只黑球、2只白球、1只黄球,这些球除颜色外都相同.现从袋中任意摸出一球,则摸到可能性最大的是()A.红球B.黑球C.白球D.黄球5.下列说法正确的是()A.若两个数的绝对值相等,则这两个数相等 B.有理数的绝对值一定比0大C.互为相反数的两个数的绝对值相等D.有理数的相反数一定比0小6.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的图形是()得分评卷人7.某班共有x 个学生,其中女生人数占%45,则男生人数是( )A .x %45B .%45xC .x %)451(-D .%451-x8.下列计算正确的是( )A .x x x 257=-B .xy y x 633=+C .971622=-y yD .1091922=-ab b a9. 信用卡上的号码由14位数字组成,每一位数字写在下面的方格中,如果任何相邻的 三个数字之和都等于20,则x 的值等于( )A.3B.4C.5D.6 10.下列各式一定成立的个数是( )①22)(a a -= ②33)(a a -= ③22a a -=- ④33a a = A. 4 B. 3 C.2 D. 1二、填空题:(本大题6个小题,每小题4分,共24分)请将正确答案直接填写在题中的横线上.11.如果零上5ºC 记作+5ºC ,那么零下3ºC 记作 . 12.已知5=x 是方程a ax +=-208的解,则=a . 13.用科学记数法表示:1300000000= .14.如图,若D 是AB 的中点,E 是BC 的中点,且8=AC ,3=EC ,则AD =_____.15.用火柴棒按如图所示的方式搭图形,按照这样的规律搭下去,填写下表:图形编号 (1)(2)(3)…n火柴根数得分 评卷人14题图EDCB A16.从3-,2-,1-,4,5中任意取出三个不同的数,将其可能得到的最小乘积填在下面的□中,可能得到的最大乘积填在下面的○中,并将下式计算的结果填在等号右边的横线上: .三、解答题:(本大题4个小题,每小题6分,共24分) 下列各题解答时必须给出必要的演算过程或推理步骤.17.计算:)43(27)56(13-++-+ 18.化简:)2()35(b a b a a ---+19.如图,已知A 、B 、C 、D 是平面内四个点,请根据下列要求在所给图中作图. ①画直线AB ; ②画射线AC ; ③画线段AD ; ④画DBC ∠; ⑤线段AD 与DBC ∠的边BC 交于点O ; ⑥过点O 作线段BD OE ⊥于E .20.下图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图.主视图 左视图四、解答题:(本大题4个小题,每小题10分,共40分) 下列各题解答时必须给出必要的演算过程或推理步骤.21.解下列方程(每小题5分,共10分)(1)3)20(34=--x x ; (2)1615312=--+x x . 得分 评卷人得分 评卷人19题图22.先化简,再求值(每小题5分,共10分) (1))32(36922x x x x --+,其中2-=x ;(2))1(2)1(2)(22222+---+ab b a ab b a ,其中2,2=-=b a .23.一所中学准备搬迁到新校舍,在迁入新校舍之前,同学们就该校300名学生如何到校问题进行了一次调查,并得到以下数据:请根据以上数据在如下指定的图中分别制作条形统计图、折线统计图、扇形统计图,并填写扇形统计图相关数据表.步行 骑自行车 坐公共汽车 其他 60人100人130人10人24.某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,其中成人票每张8元,学生票每张5元,筹得票款6950元.求成人票与学生票各售出多少张?(请按下列两种不同的设未知数方法,完成后续解题过程,每种解法5分)解法1:设售出的成人票为x张,则根据题意列方程:解法2:设所得的成人票款为y元,那么所得的学生票款为()元,则根据题意列方程:得分评卷人五、解答题:(本大题2个小题,25题10分,26题12分,共22分)解答时必须给出必要的演算过程或推理步骤.25. 利用正方形、圆、三角形、平行四边形设计一个图案,并说明你想表现什么.(要求:每种图形都要用到,且其中两种及两种以上图形要用到2次及2次以上)3⨯方阵图,每行的三个数、每列的三个数,每斜对角的三个数相加的26.图1是一个3和均相等.的和均相等,是我们祖先早就在研究的问题.古代的“洛书”、汉朝徐岳的“九宫算”就揭示出祖先们得到的神奇填写方法.图1显示出把4-,3-,2-,1-,0,1,2,3,4填入一个33⨯方阵,使每行、每列、每斜对角的三个数相加的和均相等的一种方法.同学们,你能正确填写吗?马上试一试:(1)请观察图1中数字的填写规律,然后将下列各数组中的9个数分别填入图2 、图3、图4所示的9个空格中,使得每行的三个数、每列的三个数,每斜对角的三个数相加的和均相等;(图2、3、4填对一个得2分,共6分) ①6,5,4,3,2,1,0,1-,2- ②9,8,7,6,5,4,3,2,1 ③8-,6-,4-,2-,0,2,4,6,8(2)拓展探究:在图5所示 9个空格中,填入5个2和4个2-,使得每行、每列、每斜对角的三个数的乘积都是8;(3分)(3)拓展再探究:将25,24,23,22,21,20,19,18,17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1这25个数分别填入图 6所示25个空格中,使得每行、每列、每斜对角的五个数相加的和均相等.(3分)七年级数学试题参考答案及评分意见一、选择题:BDB A C ,DCABD试题出处:2题(课本P5)、3题(课本P204)、4题(课本P240)、5题(课本P50)、7题(课本P109)、8题(课本P119)、10题(课本P100)二、填空题: 11. C ︒-3(填3-扣1分)12.7=a 13.9103.1⨯ 14.1;15. 7,12,17,25+n 16.-60,30,-2. 试题出处:11题(课本P40)、12题(课本P196)、13题(课本P200)、14题(课本P141改)15题(课本P105) 三、解答题:(共24分)17.(课本P58)解:原式=)]43()56[()2713(-+-++-----------2分 =)99(40-+-----------------------4分 =59-.------------- ----------- ---6分 18.(课本P121)解:原式=b a b a a 235+--+-----------2分=)23()5(b b a a a +-+-+------4分 =b a -5.-----------------------6分19.画对一个得1分,共6分.20.(课本P26)画对主视图和左视图各3分共6分 四、解答题:(本大题4个小题,每小题10分,共40分) 21.解下列方程:20题左视图20题主视图(1)(课本P175)解:去括号得:33604=+-x x .-----------------2分 移项得:60334+=+x x .-----------------3分合并同类项得:637=x .------------------------4分 两边同除以7得:9=x .------------------------5分(2)(课本P178)解:去分母得:6)15()12(2=--+x x .----------1分去括号得:61524=+-+x x .--------------2分移项得:21654--=-x x .-------------3分合并同类项得:3=-x .-----------------------4分 两边同除以1-得:3-=x .--------------------5分22.(1)(课本P130) 解:原式=222369x x x x +-+-----------------1分 =286x x +.--------------------------2分当2-=x 时,原式=2)2(8)2(6-⨯+-⨯----------------3分=3212+--------------------------4分=20.----------------------- -------5分(2)(课本P130) 解:原式=2222222222--+-+ab b a ab b a ------------2分 =)22()22()22(2222-+-+-ab ab b a b a -----3分=0. ---------------------4分 当2,2=-=b a 时,原式=0.--------------------5分 23.(课本P212)图如下.条形统计图3分,折线统计图3分;扇形统计图有关数据表2分,扇形统计图2分. (所作条形统计图、折线统计图、扇形统计图中无“步行、骑自行车、坐公共汽车和其他”说明,每个图扣1分)24.(课本P189)解法1:设售出的成人票为x 张,则根据题意列方程: 了 69508)1000(5=+-x x .------------2分 解这个方程得:650=x .3501000=-x .----------------4分答:售出成人票650张,学生票350张.----------5分解法2:设所得的成人票款为y 元,则根据题意列方程:1000856950=+-yy .--------------2分 解这个方程得:5200=y .6508=y , 35056950=-y.----4分 答:售出成人票650张,学生票350张.----------5分25. (课本P242)本题属于开放性试题,可根据美观程度和与欲表现吻合程度参照以下标准给分:优秀:四种图形都用到,且其中有两种及两种以上图形用到2次及以上,图案与欲表现意图非常吻合,图案漂亮、美观、大气.---------10分良好:四种图形都用到,且其中只有一种图形用到2次及以上,图案与欲表现意图吻合,图案简洁、漂亮、美观.-----------------8分及格:四种图形都用到且只用到1次,图案与欲表现意图吻合,图案简洁、漂亮、美观.-----------------------------6分 不合格:四种图形未用完.-----0分 26.(1)(课本P60、P65、P65)图2填写过程如下:(填法不唯一,图3中只要按由小到大,斜角填写均可)图3、4填写过程如下:(填法不唯一,在图3中只要按由小到大,斜角填写均可)(2)图5填写如图:(3)图6填写过程如下:(填法不唯一,图3中只要按由小到大,斜角填写均可)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014新人教版七年级数学下册提高培优题
1、已知:如图,∠1 =∠2,∠3 =∠4,∠5 =∠6.求证:ED//FB.
2、如图,于点,于点,.请问:
平分吗?若平分,请说明理由.
3、如图, ∥,分别探讨下面四个图形中∠与∠,∠的关系,请你从所得的关系中任意选取一个加以说明.
4、已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4。
求证:AD∥BE。
5、已知△ABC中,点A(-1,2),B(-3,-2),C(3,-3)①在直角坐标系中,画出△ABC
②求△ABC的面积
6、在平面直角坐标系中,用线段顺次连接点A (,0),B(0,3),C(3,3),D (4,0).
(1)这是一个什么图形;(2)求出它的面积;(3)求出它的周长.
7、在平面直角坐标系中描出下列各点A(5,1),B(5,0),C(2,1),D(2,3),并顺次连接,且将所得图形向下平移4个单位,写出对应点A'、B'、C'、D'的坐标。
8、已知,求的平方根.
9、已知关于x,y 的方程组与的解相同,求a,b的值.
10、A、B两地相距20千米,甲、乙两人分别从A、B 两地同时相向而行,两小时后在途中相遇.然后甲返回A地,乙继续前进,当甲回到A地时,乙离A地还有2千米,求甲、乙两人的速度.
11、荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨。
已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同。
(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?
(2)若荣昌公司计划此次租车费用不超过5000元,通过计算求出该公司有几种租
车方案?请你设计出来,并求出最低的租车费用。
12、若,求的平方根.
13、已知+|2x-3y-18|=0,求x-6y的立方根.14、若不等式组的解是,求不等式的解集。
15、解不等式组并把解集在数轴表示出来.(5分)
16、某工厂现有甲种原料280kg,乙种原料190kg ,计划用这两种原料生产两种产品50
件,已知生产一件产品需甲种原料7kg、乙种原料3kg,可获利400元;生产一件产品需甲种原料3kg,乙种原料 5kg,可获利350元.
(1)请问工厂有哪几种生产方案?
(2)选择哪种方案可获利最大,最大利润是多少?
17、李大爷一年前买入了相同数量的A、B两种种兔,目前,他所养的这两种种兔数量仍然相同,且A种种兔的数量比买入时增加了20只,B种种兔比买入时的2倍少10只.
(1)求一年前李大爷共买了多少只种兔?
(2)李大爷目前准备卖出30只种兔,已知卖A种种兔可获利15元/只,卖B种种兔可获利6元/只.如果要求卖出的A种种兔少于B种种兔,且总共获利不低于280元,那么他有哪几种卖兔方案?哪种方案获利最大?请求出最大获利.。