扬声器保护电路
喇叭保护板 电路图

喇叭保护板喇叭保护电路图扬声器保护电路前段时间有些朋友很多朋友问我有没有做喇叭保护电路但当时没有做- - 所以后来就做了一个现在分享出来首先上电路图电路功能:开机延时启动关机瞬断中点直流保护还有一些别的附加功能一会儿说- -简单说下电路交流电经过整流桥7812 之后形成12V直流电开机瞬间经过R5给C5充电电容充电过程视为短路所以此时Q5 B极为底电平Q5Q6不工作当C5电压升高到R5 R6分得的电压值后停止充电此时C5视为断路Q5 Q6导通继电器工作喇叭接通起到延时启动的作用因此调整C5的大小可以调整开机延时时间Q1(Q2) Q3(Q4)用于检测中点开启电压约为0.5VC1(C2) C3(C4)这样接可以看作是110U的无极电容喇叭信号经过两个电阻分压给这个“110U无极电容”充电当C1(C2) +极电位超过0.5V时Q1(Q2)导通低于0.5V时Q3(Q4)导通从而使Q5B极获得低电平继电器关闭保护启动关机问题上由于电源上并联的电容很小切断电源后电容中的电会很快放光起到关机瞬断的效果下面说一下指示灯电路原理就是Q7导通C6放电C7充电放到一定程度后Q8导通C7放电C6充电然后C7放电到一定程度使Q7导通这样循环- -保护状态时LED闪烁继电器吸合时LED常亮C6 C7两个电容的大小决定闪烁的情况C6与LED亮的时间成正比C7与LED熄灭的时间成正比- -反复调整两个电容的大小可以调整闪烁的频率以及闪烁的时间在本人进行调试的时候用高亮白色LED 取到图里面所显示的参数时效果比较好PCB设计还是用我一贯的单面风格- - (貌似保护板单面不太好布线)整体结构还算美观只有两根飞线还是比较美观的地方发一下PCB 以及成品照片这次板子做的还可以正面继电器比较纠结可以使用HRS4系列以及HLS8系列继电器也可以使用欧姆龙G2R-1-E,G2R-1A-E,G2R-2, G2R-2-H,G2R-2A, G2R-2A-H,G2R-24,G2R-2A4,等电源旁边留了两个位置是12V稳压出来的引脚可以用于风扇指示灯等供电反面。
晶体管功放末级常用的保护电路(图)

晶体管功放末级常用的保护电路(图)对于大功率、大动态的音响功放,完善的末级保护电路是必不可少的。
一、过流保护晶体管功放为了保护大功率输出管及扬声器,防止其过载,一般装有过流保护电路。
1.RXE系列聚合开关扬声器过载保护电路RXE系列聚合开关(PLOYSWITCH)在功放中一般用于喇叭限流(过载)保护。
其外形如图1所示。
聚合开关制造材料为高分子PTC。
其中专用于扬声器保护的聚合开关,在常温下,其电阻(最小值)只有30mΩ,插入损耗只有0.1dB。
开关本身无任何容抗或感抗分量,在听觉频率范围内不会引起任何失真。
使用时,根据电路及扬声器参数的要求,选择合适的型号(RXE系列不同的型号对应不同的参数)接入电路。
其工作原理十分简单,即当扬声器过载时,聚合开关内部动作,动作后的阻抗比未动作之前增加几个数量级,只要有足够的驱动电压,聚合开关将保持在动作状态以保护扬声器。
喇叭保护TXE系列聚合开关,其最大耐压60V,最大中断电流40A,外形尺寸随型号有所变化,保持电流由0.1A~3.75A不等,触发电流一般为保护电流的两倍。
型号中的数字即为其保持电流,如RXE010保持电流为0—10A,RXE375保持电流为3.75A等等。
常用的有RXE050、RXE075、RXE090、RXE110等。
2.扬声器过载电子线路保护典型应用电路如图2所示。
为简单起见,只画出大功率管过流检拾电路,动作电路因可借用普通中点偏移喇叭保护电路起控,即通过驱动电路控制继电器断开喇叭负载。
关于中点偏移喇叭保护电路的工作原理,将在后面介绍,故此处省略了该起控原理图。
本电路的工作原理:BG5、BG6基极分别接入两只大功率管的发射极。
在输出信号的正、负半周分别监测其中一只输出管的发射极电流。
当发射极电流超过规定的电流(本电路中为15A)时,BG7、BG8的集电极电位下降到一定程度,并通过D1、D2检测,使中点偏移喇叭保护电路中的继电器工作,切断喇叭负载。
音箱保护电路

奇声AV-388D后级功放音箱喇叭保护电路图及原理详解奇声AV-388D后级功放电路及原理详解图3是奇声AV-388D后级功放的保护触发、驱动电路。
直流检出电路由D4~D7组成的桥式整流电路,再由Q15、Q14加以放大,推动施密特触发器工作。
无论左右声道出现正的或负的电压都可能使Qi5、Q14导通驱动后级释放继电器,使功放和音箱得到保护。
图奇声AV-388D后级功放电路(可另存至本地电脑放大观看)图中。
保护驱动电路是一个以Q13、Q12为核心的施密特触发器。
选择合适的R28、R27、R26的电阻值,保证Qi2基极起始状态为高电平,Q12饱和导通。
此时,Q12的射极电流流过R26时,在R26两端形成电压,使Q13发射极(即触发器的入端)无高控制电压时.Qi3处于截止状态,实现第一稳态.继电器处于吸合状态,功放进行正常的输出。
当检测电路或开机延时电路输出的高电平(此电平必须高于触发器的触发门电平)加到Ot3的基极时,Q13由截止翻转到导通状态,同时出现正反馈过程:UQl3b↑→IQl3b↑→IQl3c↑→UQl3c↓→LIQl2b↓→IQl2e↓→IR26↓→UR26↓→IQl3b↑。
Q13迅速地饱和导通,其集电极电压几乎O,使Q12由饱和导通变为截止,触发器的输出翻转为第三稳态,继电器释放,进入保护状态。
当触发器输入端的保护电压下降(如:开机延时保护结束或过载状态解除),达到关门电平时,Q13退出饱和,并引发另一次与第一稳态过程相反的正反馈。
Q12由截止再次变为饱和导通,电路又返回到第一稳态,继电器吸合,保护取消。
电路中R43为限流电阻,D3为继电器反电动势释放二极管,以防反电动势损坏Q12。
另外.由于继电器需要的吸合启动电流较大,该电路在电阻R43两端电路并联了电容C22。
继电器吸合启动前,电容被R43放电;Q12饱和导通瞬间,由于C22两端电压不能突变,启动电流绕过R43的阻碍,经C22直通,使继电器迅速吸合。
speaker 保护电路

三、扬声器保护电路目前几乎所有的功放电路(特别是大功率的功放电路)都采用 OCL(或BTL)电路,即采用直接耦合输出级(其输出端无耦合电容)。
由于 OCL功放电路的输出端与功放电路直接相连,一旦功放电路出现中点直流偏位,直流电压直接加至音箱,低音扬声器则可能被烧毁。
扬声器保护电路在功放出现直流偏位时立即断开音箱,达到保护的目的。
AV放大器的扬声器保护电路一般还具有开机静噪和输出级过流保护功能,如图3所示:图3 (1)中点保护功能当放大器正常工作时,其输出只有交流信号而无明显的直流分量,桥式检测器不工作,保护电路不启动,继电器吸合。
当某声道出现正、负直流电压时,被R4(R5)及C1、C2低通滤波后加至桥式检测器的A点与地端,若直流偏位绝对值大于2V,T3获得正偏而导通,T4、T5导通,T6截止,继电器释放,D2截止,T7、T8组成的单稳态电路工作,LED1闪烁,电路处于保护状态。
(2)开机静噪功能接通电源瞬间,C3近似于短路,+15V经 R7、 R9、T5的b-e、R13为 T5提供正向基极偏流,T5迅速导通,T6截止,继电器不吸合,扬声器未接入放大器,避免了开机时浪涌电流对扬声器的冲击。
延时数秒后, C3两端已建立了较高的上正下负直流电压,此时 C3等效于开路,T5失去偏流转为截止。
+15电源经 R10、Rll和 R12分压为T6提供偏流,T6转为导通,继电器吸合,扬声器与放大器连通进入正常工作。
与此同时,因 T6导通,其集电极电位降低,+15V经LEDl、 R17、 D2、 T6的c-e、 R13构成回路,LED1点亮,由 T7、T8及其外围元件构成的多谐振荡器停振。
(3)功放输出过流保护功能当功放输出电流超过一定限度(由输出管发射极电阻及T1基极回路电阻参数决定)时,T1导通,引起T4、T5导通,T6截止,继电器释放,负载(音箱)被断开,使过流不至持续持续下去。
四、输出级的偏置电路为了减小交越失真,功放输出必须设置偏置电路。
otl电路输出电容的作用

otl电路输出电容的作用OTL电路输出电容的作用概述OTL(Output Transformerless)电路是指没有输出变压器的放大器电路,常见于耳放、功放等音频设备中。
OTL电路输出电容是指连接在输出端口的电容,其作用主要是防止直流信号通过放大器输出到扬声器上,造成扬声器损坏。
作用1. 阻止直流信号通过OTL电路中,由于没有输出变压器,因此需要在输出端口加上一个输出电容。
这个电容的主要作用是阻止直流信号通过。
如果没有这个电容,当输入端口有直流信号时,会被放大并传递到输出端口,最终导致扬声器损坏。
2. 分离交流和直流信号除了阻止直流信号通过外,OTL电路中的输出电容还可以将交流和直流信号分离开来。
在音频设备中,通常只需要传递交流信号到扬声器上即可。
而直流信号则会对扬声器造成损害。
因此,在这种情况下,输出电容可以起到分离交、直流信号的作用。
3. 增强低频响应在音频设备中,低频响应往往比高频响应更为重要。
输出电容可以帮助增强低频响应,使得音质更加饱满、自然。
4. 保护扬声器在OTL电路中,输出电容可以起到保护扬声器的作用。
当输入端口有直流信号时,输出电容会将其阻止,从而避免扬声器因此而受损。
5. 提高设备的安全性由于输出电容可以防止直流信号通过,因此也可以提高设备的安全性。
如果没有这个电容,直流信号可能会对放大器和扬声器造成损害,并且可能会对用户造成伤害。
总结OTL电路输出电容在音频设备中起到非常重要的作用。
它不仅可以防止直流信号通过、分离交、直流信号、增强低频响应、保护扬声器和提高设备的安全性等多方面发挥作用。
因此,在设计和使用音频设备时,需要注意输出电容的选择和设置。
功放喇叭保护电路

功放喇叭保护电路This model paper was revised by the Standardization Office on December 10, 2020功放喇叭保护电路大功率的家用功放的主声道均采用了OCL电路作功率放大。
这种电路出现故障时,其输出端的直流电位常常会偏离零电平,出现较高的正或负的直流电压。
输出的直流电流流过扬声器的音圈时,轻者会产生固定磁场,使音圈移位,难以恢复,重者会将其烧毁。
另外。
在部分特大功率功放中,由于输出功率非常大,在用户操作不当时,可能会持续输出数安培甚至十几安培的峰值电流,使该声道的最大输出功率远远超过功放的额定输出功率,致使扬声器烧毁。
本文以奇声AV-713功放的扬声器保护电路为例介绍其工作原理。
功放扬声器保护电路原理框图如图1所示,图中含有了三种保护方式。
(1)直流保护:当功率放大电路发生故障,其输出端出现的直流电压的绝对值超过设计限度时,保护电路中的直流检测电路即把它检测出来,变成控制信号。
控制信号经放大后控制触发器翻转,驱动保护继电器动作,断开功率输出电路,使扬声器得到保护。
同时,控制信号还启动指示电路工作,使保护指示灯闪烁报警。
(2)过载保护:当输出电流超过额定输出电流的1倍左右时,过载检测电路输出保护控制信号,控制输出电路断开,保护扬声器及功放。
(3)开机延时接通保护:通过开机延时电路控制继电器驱动电路的工作状态,使继电器在开机时延时1—4秒钟接通扬声器,以避免开机过程中产生的浪涌电流冲击扬声器。
使其音圈移位。
具体电路如图2所示。
该电路以Q4、Q5为中心,组成了直流电压取样检测电路。
图中的Q1、Q2等系右声道功率输出电路(左声道功率输出电路图中未画出)。
右声道的直流电压取样信号经由R6(左声道取样信号经由R21)衰减、隔离,C2、C3滤波,送往Q4、Q5、R7组成的互补式直流检测电路进行监测。
当右(或左)声道的功率输出电路出现正极性的较大的直流失调电压时,电流经R6(或R21)、Q4的be结到地,Q4导通,其集电极输出控制电平,经R8、D2送Q7放大后,输往R-S触发器。
经典的扬声器保护电路原理

经典的扬声器保护电路原理扬声器保护电路是经典的电子电路之一,用于保护扬声器不受过载、短路、过热等情况影响。
它主要由功率放大电路、比较电路、触发电路和保护电路等部分组成。
下面将详细介绍扬声器保护电路的原理。
扬声器保护电路的基本原理是在输入与输出之间建立一个反馈回路,通过该回路对扬声器进行保护。
具体来说,当输入信号经过功率放大电路放大后,进入比较电路。
比较电路会将输入信号与参考电压进行比较,一旦输入信号过大或其它异常情况发生,比较电路会产生一个错误信号,将其送至触发电路。
触发电路接收到错误信号后,会根据错误信号的类型,产生相应的控制信号。
这些控制信号经过保护电路进行处理,最终通过功率放大电路回路控制输出信号,从而实现对扬声器的保护。
在具体的实现过程中,扬声器保护电路采用了多种技术手段,下面将介绍常用的几种。
第一种是过载保护,也称为功率限制保护。
当输入信号过大,超出扬声器的额定功率范围时,保护电路会自动将电流限制在一个安全范围内,避免扬声器因功率过大而受损。
第二种是短路保护。
当扬声器发生短路情况时,保护电路会自动切断电流,防止扬声器因过大的电流而受损。
第三种是过热保护。
当扬声器工作时间过长或环境温度过高时,保护电路会通过温度传感器检测到扬声器温度的变化,并产生相应的控制信号,将扬声器的输出功率降低或关闭扬声器,以防止扬声器因过热而受损。
此外,扬声器保护电路还可以增加直流偏置保护和电源过压保护等功能。
直流偏置保护主要是避免由于电流直流偏置过大而导致扬声器变形,同时也有助于减少功耗。
电源过压保护则是在电源电压异常高的情况下,切断电源以保护扬声器。
总的来说,扬声器保护电路通过建立反馈回路,对扬声器的输入信号进行检测和比较,并根据检测结果产生相应的控制信号,从而实现对扬声器的保护。
它能有效避免扬声器因过载、短路、过热等异常情况而损坏,提升了扬声器的可靠性和使用寿命。
功放扬声器保护电路原理

功放扬声器保护电路原理1.过载保护:过载保护是指当输入信号过大时,功放电路将自动降低放大倍数或者关闭输出,以防止过大的电信号通过扬声器,从而保护扬声器免受损坏。
过载保护的实现通常使用一个比较器,该比较器检测输出信号是否超过了设定的幅值限制。
当输出信号超过限制时,比较器将触发保护电路,使功放电路停止工作,直到输入信号归于安全范围。
这种方式保证了功放和扬声器在超载情况下的安全工作。
2.短路保护:短路保护是指当扬声器线路发生短路时,功放电路能够迅速切断输出,从而避免大电流通过短路回路,造成功放和扬声器的严重损坏。
短路保护的原理通常是通过检测输出电流是否超过了设定的阈值来实现的。
当输出电流超过设定阈值时,保护电路会立即断开功放电路的输出,以保护功放和扬声器。
3.过热保护:过热保护是指在功放电路工作过程中,由于过大的功率消耗引起的电路温度过高时,保护电路将自动降低功放电路的输出功率或者停止工作,以防止功放电路和扬声器因过热损坏。
过热保护通常使用温度传感器来检测电路温度,并通过比较器来触发保护电路。
当温度超过设定的阈值时,比较器将触发保护电路,使功放电路停止工作直到温度降低。
这种方式保证了功放和扬声器在过热状态下的安全工作。
综上所述,功放扬声器保护电路通过过载保护、短路保护和过热保护等手段,有效地保护功放和扬声器免受损坏。
这种保护电路可以在功放工作时自动监测输出信号、输出电流和电路温度,并在超过设定的阈值时触发保护动作。
通过这些保护措施,功放扬声器的使用寿命得到延长,同时还能提高设备的可靠性和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扬声器保护电路
一、工作原理扬声器保护电路如图1所示。
主要由中点电位检测电路、延时电路及继电器等组成。
电路工作过程是:在接通音响电源的瞬间,因电容C3两端电压不能突变,可视为短路,则时基电路555的②、⑥脚电位高于2/3 Vcc,故555处于复位状态,③脚输出低电平,晶体管VT2截止,继电器JK常开触点不动作。
同时+12 V电压通过电阻R4向电容C3充电,延时约5s(秒钟)后555的②、⑥脚电位降低至1/3Vcc,555被触发置位,③脚由低电平变为高电平,晶体管VT2导通,继电器JK得电,常闭触点闭合,从而实现了延迟一段时间将扬声器接入功放,彻底消除了开机时大电流对扬声器的冲击;关闭音响电源时,+12电压很快消失,但功放输出信号并没有立即消失,同样避免了关机过程产生的冲击噪声;当功放工作异常或者意外损坏而导致中点电位过高(高于 V)时,直流电压经R1、R2限流,送至C1、C2滤波及D1~D4整流,约1~2s(秒),晶体管VT1导通,555的④脚由高电平变低电平,555被直接复位,③脚输出低电平,晶体管VT2截止,继电器JK失电,常开触点跳开,将扬声器与功放电路断开,有效地保护了扬声器不受损坏。
改变R4、C3的参数,可调整扬声器保护电路开机延迟时间的长短,一般设为5 s(秒)即可。
二、元件选择 555一定要选用功耗很低的CMOS时基电路。
VT1、VT2用9014、C1815型小功率塑封晶体管,要求电流放大倍数β>100。
D1~D5均用1N4148型硅开关二极管,D6用于电源接反保护,可选用1N4001~1N4007型硅整流二极管。
R1~R5均用 W五色环金属膜电阻。
C1、C2用优质铝电解电容,C3要选用漏电小、精度高的钽电解电容,否则将影响延时精度。
JK选用12 V/7 A双联型继电器(左、右声道各用一组),如JZC-22F。
三、制作与调试图
2为扬声器保护电路的PCB板图。
其实际尺寸约5O×43 mm。
具体制作如下:先把功放输出端与音箱的引线切断,按图2所示电路将引线头a、b分别接功放的两组输出端,c、d分别接左、右声道音箱:扬声器保护电路的电源只能从收放机中获取,不可直接从汽车12 v电源中获取,否则不起开/关机保护作用;若是柴油车所配置的收放机(使用24 V电源),则要求增加一个降压电路(见图3所示),给扬声器保护电路供电,以免电源电压过高损坏IC。