焊接变形校正(火焰法)、
火焰矫正钢结构焊接变形施工方法

黧
E
i
.
t
㈩
删
n
辇 热法 ;3=m形加热法 ()i
习 卫川川
刮 。。 。 H 。
’
趱 九 上 八
冀1
影Ⅱ 沏性 lMn 岛温矫 【时不I用水冷却, 扣冲 6 l 叮 包括厚慢
毫 或淬硬倾 向较大的钠材
火焰矫正引起 的啦 与焊接 心 , 一 J 样邵是 J 不 鬟 麓 、 力
恰 的矫正产q 的内应 力‘焊接内 J J 二 j 雨 负载 J 迭加 , 璧 i H,俐牲 、 、 撑角变形 存龚缘板 L面( 埘准焊缝
誊 外) 纵向线状加热( 控制 净 60 5 ℃以下)控 制加热范同不 超过 ,
使柱 、 、 梁 撑的纵应 J _于许, . 1导致承戟友全系数 菱 趟j 亡 、 从 ^ = 』 = i 曩 的降低 一 此 在钢结构制造中 ・ 定要慎币 , 采川合理的T艺 羹
扩 触酮
焊 力, 这种方法 接内 纵向 收缩的同时仃较大的横向 减 少 收 减 少构件损伤
缩, 较堆掌握 6 35 1 4 ¨喷构件不得用水急冷. U .
蠢 j
囊j
措施 以减 少变形并 町能采 蚀矫止 不得不采用火焰 蠢
≥)‘长r 截处 j大几 善梁拱弯 线 面烤一热j个 1撑暑缝向 J由 火以l态嚣 焰翼×曲J状【状,不要 l 两】 加个x多篓 2缘旨,端I2 热改得选: 矫的挠| 13 面截的; 枷则 “ ; 积葺过 鬟 正t纵 } ) 厅f庸 ≤ ( 及 l 矫 在7』 囊 1 焊' 直 =, 薯 、与 开 一f 下 股 、 叵 卜 剐 I 正 『状 点 L _
秘
火 焰矫 正钢 结构焊 接 变 形施 工 方法
钢结构焊接变形的种类及火焰矫正操作方法

的力学性 能及 结构承 载能力; 温度过低 时, 由于产生 的压缩塑 性 影 响 。
变形量小 , 矫正效果不显著。
5 . 实 施 火 焰 矫 正 的 步 骤
工程机械常用的材料 Q 3 4 5 钢板在使用火焰矫正时, 加热温度
实施火焰矫正一般 可按 以下步骤进行 : ( I ) 对构件进行测量,
1 . 火 焰 加 热 矫 正 法 成形加工残余应力主要 是因为工件受工艺性外力而引起 , 如工件 火焰矫正是利用氧一乙炔火焰或其它气体火焰 ( 一般采用中 自由弯曲成形时不得法; 钢 板校平辗压次数少; 机加工吃刀量过大
性焰) 局部加热 时产 生压 缩塑性变形 , 使较长 的金属在冷却 后收 等等都能引起成形加工残余应力。
科技论坛 ■
钢 结 构 焊 接 变 形 的种 类及 火 焰 矫 正 操 作 方 法
卢 丽梅
( 广西景典钢结构有限公 司, 广西 南宁 5 3 0 0 2 2 )
要, 火焰矫 正法在铜结构焊接 变形的控制 中得 到 了普遍 的应 用。本文主要就钢 结构焊接 变形 的种类及火焰矫正操作 方法展 开 了探讨 , 先概 述 了火焰加热矫正法 , 接着分析 了钢结构焊接 变形 的种类和 火焰矫 正操作 方法。
键词阚 结构 ; 焊接 ; 变形 ; 火焰 ; 矫正
中图分类号 : T U 3 9 1 文献标识号 : c 文章编号 : 2 3 0 6 一 4 9 ( 2 D 3 ) ∞一 门 一 2
焊接技术在建筑 中的钢 结构中得到广泛应用 。而钢结构厂 区金属 温度很高 , 金 属受热膨胀 , 但 又受到常温 金属的阻碍和抑 房的主要构件是焊接 H 型钢柱 、 梁、 撑。这些构件在制作时会发生 制 , 便产生了压缩塑性变形。结构件 的焊接变形程度与施焊时热 焊接变形 , 倘若不及时矫 正变形 , 会影 响结构整体安装, 降低工程 源 的输 入 能量 成 正 比 。 的安全可靠性 。通 常矫 正小构件的变形 时普遍应用 的是机械矫 2 . 2 残余应 力变形 。残余应力主要为焊接残余应力和成形加 正法 , 而较大的钢 结构变形普遍采用火焰矫正法矫 正。火焰矫正 工残余应 力, 当工件某 一部位施焊结束后 , 其焊缝金属 由膨胀转为 收缩 , 但其 又受 到 常 温 金 属 的 限制 , 这 时便 产 生 了焊 接 残 余应 力 。 必须控制好温度 , 才能有效控制构件更大地变形 。
钢结构焊接变形的火焰矫正方法

钢结构焊接变形的火焰矫正方法摘要 火焰矫正是钢结构制作过程中解决焊接变形常用的一种方法,本文重点介绍了钢结构焊接变形火焰矫正方法的施工工艺。
关键词 钢结构 焊接 变形 矫正1 前言在XXX 三期炼钢板坯,轨梁精整等厂房钢结构制作项目中,大部分是由宽翼缘焊接H 型钢组成梁、柱等构件。
这些构件在加工过程中存在焊接变形问题。
这些焊接变形如果不矫正,对结构的整体安装和工程的安全可靠性都存在很大的影响。
为此我主要采用了火焰矫正方法,使这些梁柱的焊接变形得到了很好矫正。
2 气体火焰矫正原理金属具有热胀冷缩的特性,机械性能也随温度而变化。
低碳钢(以Q235钢为例)的屈服极限σs 温度的关系如图1虚线所示,一般可简化为实线所示,即当温度在500οC 以下,屈服极限基本无变化;温度高于600οC 时,屈服极限接近于零。
温度在500—600οC 之间时呈线性变化。
当金属结构局部加热时,加热区的金属热膨胀受到周围冷金属的阻止,不能自由变形,某些部位的金属被塑性压缩。
冷却后,残留的局部收缩使结构获得所需要的变形。
2.1线状加热法线状加热法的原理如图2所示,钢板表面被加热后,离加热点最近的表面温度上升最快,膨胀也最快,周围所受热影响较小,膨胀也很小,加热停止后,温度向周围扩散,被加热部分开始冷却,形状也渐次恢复,但又因钢板表面与空气接触,热散较快,因而使表面被加热部分还未恢复原状就已固定下来。
随着冷却过程的持续(图2),在中性轴上侧的高温开始收缩,其收缩力使板向上弯曲,弯曲终止后,钢板两端各缩短a/2,中间却凸起a,这样总体积不变,重量也不变。
火焰沿钢板直线方向移动,同时为使加热线增宽也可作横向摆动,形成长条形加热。
2.2点状加热法对薄板进行加热时,因板较薄,表面热量很快传递到内侧,高温部分贯通至整个板的横剖面。
冷却时,上下表面冷却相同,中性轴上下侧的冷却收缩力也相同,所以加热时上下表面膨胀部分留下来,从而造成板整体缩短,但并没有弯曲。
钢结构焊接变形的火焰矫正施工方法范文(二篇)

钢结构焊接变形的火焰矫正施工方法范文一、引言钢结构在施工过程中,由于焊接产生的高温会引起结构的变形,特别是大型钢结构的焊接变形更为明显。
为了保证钢结构的稳定性和减小焊接变形,常常需要采用火焰矫正的施工方法。
本文将详细介绍钢结构焊接变形的火焰矫正施工方法,以指导工程实践。
二、火焰矫正施工方法钢结构焊接变形的火焰矫正施工方法主要包括火焰热处理和局部加热矫正。
1. 火焰热处理火焰热处理是一种通过钢结构表面加热的方法,来改变焊接区域的组织结构,从而达到减小焊接变形的目的。
具体步骤如下:(1)准备工作:确定焊接变形的部位和范围,并进行标记。
清理焊接区域,确保表面光洁。
(2)施工准备:选择合适的气焰喷枪,调节好气焰的大小和温度。
(3)加热过程:用气焰喷枪在焊接区域进行均匀加热,避免过热或不均匀加热。
根据具体情况可采用局部或全面加热。
(4)冷却过程:在加热达到一定程度后,逐渐停止加热,让焊接区域自然冷却。
2. 局部加热矫正局部加热矫正是通过对焊接变形较大的区域进行局部加热,来减小焊接变形。
具体步骤如下:(1)准备工作:确定焊接变形的部位和范围,并进行标记。
清理焊接区域,确保表面光洁。
(2)施工准备:选择合适的焊割设备,调节好焊割电流和气体流量。
(3)加热过程:用焊割设备对焊接区域进行加热,一般采用割炬的集中热源进行加热。
加热的温度和时间要根据具体情况进行调整。
(4)冷却过程:在加热达到一定程度后,逐渐停止加热,让焊接区域自然冷却。
三、施工注意事项在进行钢结构焊接变形的火焰矫正施工时,需要注意以下事项:1. 安全第一:在进行火焰矫正施工时,必须严格遵守安全操作规程,采取必要的防护措施,防止事故的发生。
2. 环境保护:在进行火焰矫正施工时,要注意环境保护,避免对周围环境造成污染。
3. 控制加热温度:在进行火焰矫正施工时,要控制好加热的温度,避免过热引起其他问题。
4. 施工过程监控:在进行火焰矫正施工时,应定期对焊接区域进行监测和测量,以确保矫正效果。
薄板焊接变形的火焰矫正

薄板焊接变形的火焰矫正摘要:常规的风电机舱罩多采用复合材料制成,具有重量轻、易成形等优点,但同时也存在着成本高、壳体易变形、材料无法回收利用等缺点。
因此德阳东汽电站机械制造有限公司对风力发电机组机舱罩采用金属材料进行了优化设计。
金属机舱罩设计采用内部骨架支撑、外部包裹薄板的形式,保证了机舱罩强度。
关键词:薄板;焊接变形;火焰矫正1 引言这种薄板焊接结构易出现波浪变形,如果火焰矫正方法使用不当,选择同厚板一样任意火烤捶打矫正,还会出现斑点状态的表面。
金属机舱罩制作的难点在于如何有效控制焊接变形,因此生产过程中不仅需要正确的火焰矫正方法,也需要设计各类工装来保证精度。
2 薄板焊接变形的矫正方法火焰圆点加热和线状加热产生残余的压缩塑性变形,使其弯曲的纵横纤维得到收缩,恢复至直线形,则薄板的波浪变形得到矫正。
(1)圆点加热法圆点加热法是火焰在构件上加热为圆点形面积的一种火焰矫正方法。
在板件上加热一个圆点形面积,沿板厚温度分布,可构成圆柱体或圆锥体(即为加热体),如图1所示,其边界框架与未加热部分构成刚性固定,则加热体同两端刚性固定的钢棒加热冷却产生的变形与应力为同一个道理。
加热体受边界框架的制约。
当加热温度至200℃以上时,冷却后会沿加热体圆柱的径向产生残余的压缩塑性变形和应力,可使波浪变形减小。
由加热体本身冷却受边界框架制约产生拉应力,边界框架以外产生压应力,形成新的应力平衡。
图1 圆点加热框架加热体加热圆点的面积大小根据板厚决定,如薄板加热圆点直径取较大些,加热温度600℃以上屈服点较低,其热膨胀受边界框架的制约;若加热圆点选择凸向变形位置,则产生的挤压应力可分为切向应力和法向应力。
切向应力使加热体产生压缩塑性变形,因加热体较薄易失稳。
法向应力使加热体和边界框架凸起成疱状[1]。
但如加热圆点直径过小,冷却后沿加热体圆柱径向产生残余的压缩塑性变形和应力也较小,因此火焰矫正的效果也不明显。
经过长期的生产实践,总结出钢板的厚度与加热圆点直径的关系,见表1。
钢结构焊接变形的火焰矫正施工方法

钢结构焊接变形的火焰矫正施工方法钢结构焊接变形是在焊接过程中由于热量的作用造成的,在焊接过程中,焊接件受热部分会膨胀,而冷却后又会收缩,从而引起焊接变形。
为了使焊接结构达到设计要求,需要对焊接变形进行矫正。
火焰矫正是一种常用的矫正方法,下面将详细介绍钢结构焊接变形的火焰矫正施工方法。
首先,进行焊缝分析。
在进行焊接变形矫正前,需要对焊接变形进行分析,了解焊接变形的类型和程度,从而确定矫正的方案和措施。
一般来说,焊接变形可分为弯曲变形、扭曲变形和拉伸变形。
不同的变形需要采取不同的矫正方法。
其次,确定火焰矫正位置。
在进行火焰矫正前,需要确定焊接变形的局部位置,即变形较为严重的部位。
在确定矫正位置时,应尽量选择焊接变形边缘,以避免矫正后引起新的变形。
然后,进行火焰矫正前的准备工作。
在进行火焰矫正前,需要进行一系列的准备工作。
首先,对焊接变形较大的部位进行清理,确保焊接表面无杂质。
其次,将焊接件固定在矫正工作台上,以保证焊接件在矫正过程中不发生位移。
最后,对焊接件进行加热处理,以提高焊接件的可塑性和变形矫正效果。
接下来,进行火焰矫正。
在进行火焰矫正时,需要使用氧乙炔焊割设备,通过加热焊接件,使其恢复原来的形状。
在进行矫正过程中,应注意控制火焰温度和加热时间,以避免焊接件的过热和烧伤现象。
此外,还要根据焊接变形的类型采取相应的矫正方法。
对于弯曲变形,可以采取对侧矫正法,即对焊接变形后的另一侧进行加热。
对于扭曲变形,可以采取对角矫正法,即对变形较大的两个对角线进行加热。
对于拉伸变形,可以采取法线矫正法,即对变形较大的法线方向进行加热。
最后,进行矫正后的处理。
在完成火焰矫正后,应及时对焊接件进行冷却处理,以稳定焊接件的形状。
同时,还要对焊接件进行检查,确保矫正效果符合设计要求。
如果发现矫正效果不理想,可以对焊接件进行重新矫正,直到达到要求为止。
综上所述,钢结构焊接变形的火焰矫正是一种有效的矫正方法。
通过合理的矫正方案和施工措施,可以有效地消除焊接变形,提高焊接件的质量和稳定性,从而确保钢结构的工程安全。
钢结构构件变形的矫正-火焰矫正法

钢结构构件变形的矫正-火焰矫正法广东省六建集团有限公司钢结构工程分公司张健良[摘要] 着重论述火焰矫正法的工作原理和其不同的加热方式所适用的不同变形矫正,以及控制矫正效果的主要因素。
[关键词] 钢结构构件变形火焰矫正法加热钢结构工程的施工一般都可以分成两个主要施工步骤:首先是结构各类部件的预制加工,然后是钢构件的现场拼接安装。
钢构件的预制加工工作是钢结构施工过程中重要的基础部分,此项工作完成的质量对下一步的现场安装施工起着决定性的影响。
但是钢结构加工过程中构件的变形是经常出现的,其起因主要包括钢结构材料本身的变形、焊接过程中产生的变形以及构件移动堆放碰撞而产生的变形等。
针对不同的变形,可以有不同的矫正方法:如人工矫正、机械矫正、火焰矫正和混合矫正等方法。
在实际施工中如能合理地采用这些方法,将对提高工作效率、保证钢结构加工质量有着重要的作用。
本人自参加工作以来,一直从事钢结构方面的项目,经过多年的实践,发觉火焰矫正法是各矫正方法中操作要求最高、工艺最复杂的方法,也是施工中所采用的主要矫正手段。
对于加工中焊接成型的工字钢、角钢的变形以及薄板、中板由于焊接收缩而产生的凸凹变形的矫正,都是采用了火焰矫正法,火焰矫正变形一般只用于低碳钢。
其基本操作过程是先在钢构件变形处用火焰加热升温,之后通过缓慢冷却或采用大锤敲打矫正变形。
按火焰加热方式的不同,可分成三种形式:点状加热、线状加热和三角加热,分别使用于矫正各类不同形式的变形。
其矫正原理如下:根据金属热胀冷缩的物理性能,当钢材受热时将会在1.2×10-5℃的线膨胀率向各个方向伸长,当冷却到原来温度时,除收缩到未加热时的长度外,钢材还将会继续按 1.48×10-6℃的收缩率继续收缩一部分于是导致收缩后的长度比加热前有所缩短。
因而通过对变形的凸面处适当位置进行火焰加热升温,利用冷却时产生的内部强大的冷缩应力,促使材料的内部纤维受拉生塑性收缩,从而矫正变形。
火焰矫正的规范

1.火焰矫正的基本参数火焰矫正基本参数主要有:加热温度、氧气与丙烷火焰燃烧比、加热速度、冷却速度和火焰能率等。
1.1火焰加热温度火焰矫正根据材质、板厚和加热方法等不同情况,选择不同的加热温度。
可分为低温加热、中温加热和高温加热。
1)低温加热加热温度为500~600℃。
适宜加热板厚小于6mm的钢板。
适宜含碳量大于0.25%的碳素钢(Q235B)和低合金高强度钢(Q345B)火焰矫正。
2)中温加热(45#)723℃。
20mm11.3火焰矫正的加热速度和冷却速度1)火焰矫正加热速度2)冷却速度火焰矫正的冷却速度有两种:一种是空冷(近似于热处理正火);二是喷水冷却(近似于淬火热处理)。
⑴空冷含碳量大于0.25%的钢或合金钢,如果加热超过723℃以上,必须空冷。
⑵喷水冷却水冷用于低温矫正和中温矫正,对于含碳量小于0.25%的低碳钢高温矫正也可采用喷水冷却。
对于含碳量大于0.25%的碳素钢和低合金高碳钢,中温加热和高温加热严禁采用喷水冷却。
1.4火焰能率和烤嘴角度1)火焰能率火焰能率根据每小时丙烷的消耗量(L/h)来确定,而气体消耗量取决于烤嘴的大小。
所以一烤嘴与加①根据构件波浪变形的技术要求,使用平尺测量划出矫正范围。
②在矫正区划出行格图和加热圆点面积。
火焰110mm121)利用加热线横向收缩矫正弯曲变形采用构件中性轴一侧火焰,垂直于中性轴横向线状加热,则加热冷却产生的横向压缩塑性收缩变形使构件向另一侧弯曲。
可在梁、柱外有内筋板腹板焊缝处及中性轴以下横向火焰加热,并在盖板对应处也横向加热,可矫正构件的弯曲变形;另一方面可矫正有构件内筋板横向焊缝引起的角变形及波浪变形。
2)利用线状加热纵向收缩矫正构件弯曲变形梁或柱向下挠曲,可在下盖板上沿二条纵向角焊缝方向线状加热,使梁向上拱曲。
2.5三角形加热法⒈)三角形加热法操作方法三种形式:直线加热、环形加热和曲线加热排列形成加热面积。
三角形加热构件要加热透和均匀,否则易引起翘曲变形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢结构焊接变形的火焰校正方法
钢结构焊接变形的火焰校正方法
目前,钢结构已在厂房建筑中得到广泛的应用。
而钢结构厂房的主要构件是焊接H型钢柱、梁、撑。
这些构件在制作过程中都存在焊接变形问题,如果焊接变形不予以矫正,则不仅影响结构整体安装,还会降低工程的安全可靠性。
焊接钢结构产生的变形超过技术设计允许变形范围,应设法进行矫正,使其达到符合产品质量要求。
实践证明,多数变形的构件是可以矫正的。
矫正的方法都是设法造成新的变形来达到抵消已经发生的变形。
在生产过程中普遍应用的矫正方法,主要有机械矫正、火焰矫正和综合矫正。
但火焰矫正是一门较难操作的工作,方法掌握、温度控制不当还会造成构件新的更大变形。
因此,火焰矫正要有丰富的实践经验。
本文对钢结构焊接变形的种类、矫正方法作了一个粗略的分析。
1 钢结构焊接变形的种类与火焰矫正
钢结构的主要构件是焊接H型钢柱、梁、撑。
焊接变形经常采用以下三种火焰矫正方法:(1)线状加热法;(2)点状加热法;(3)三角形加热法。
下面介绍解决不同部位的施工方法。
以下为火焰矫正时的加热温度(材质为低碳钢)
低温矫正500度~600度冷却方式:水
中温矫正600度~700度冷却方式:空气和水
高温矫正700度~800度冷却方式:空气
注意事项:火焰矫正时加热温度不宜过高,过高会引起金属变脆、影响冲击韧性。
16M n在高温矫正时不可用水冷却,包括厚度或淬硬倾向较大的钢材。
1.1翼缘板的角变形
矫正H型钢柱、梁、撑角变形。
在翼缘板上面(对准焊缝外)纵向线状加热(加热温度控制在650度以下),注意加热范围不超过两焊脚所控制的范围,所以不用水冷却。
线状加热时要注意:(1)不应在同一位置反复加热;(2)加热过程中不要进行浇水。
这两点是火焰矫正一般原则。
1.2柱、梁、撑的上拱与下挠及弯曲
一、在翼缘板上,对着纵长焊缝,由中间向两端作线状加热,即可矫正弯曲变形。
为避免产生弯曲和扭曲变形,两条加热带要同步进行。
可采取低温矫正或中温矫正法。
这种方法有利于减少焊接内应力,但这种方法在纵向收缩的同时有较大的横向收缩,较难掌
握。
二、翼缘板上作线状加热,在腹板上作三角形加热。
用这种方法矫正柱、梁、撑的弯曲变形,效果显著,横向线状加热宽度一般取20—90mm,板厚小时,加热宽度要窄一些,加热过程应由宽度中间向两边扩展。
线状加热最好由两人同时操作进行,再分别加热三角形三角形的宽度不应超过板厚的2倍,三角形的底与对应的翼板上线状加热宽度相等。
加热三角形从顶部开始,然后从中心向两侧扩展,一层层加热直到三角形的底为止。
加热腹板时温度不能太高,否则造成凹陷变形,很难修复。
注:以上三角形加热方法同样适用于构件的旁弯矫正。
加热时应采用中温矫正,浇水要少。
1.3 柱、梁、撑腹板的波浪变形
矫正波浪变形首先要找出凸起的波峰,用圆点加热法配合手锤矫正。
加热圆点的直径一般为50~90mm,当钢板厚度或波浪形面积较大时直径也应放大,可按d=(4δ+10)mm(d为加热点直径;δ为板厚)计算得出值加热。
烤嘴从波峰起作螺旋形移动,采用中温矫正。
当温度达到600~700度时,将手锤放在加热区边缘处,再用大锤击手锤,使加热区金属受挤压,冷却收缩后被拉平。
矫正时应避免产生过大的收缩应力。
矫完一个圆点后再进行加热第二个波峰点,方法同上。
为加快冷却速度,可对Q235钢材进行加水冷却。
这种矫正方法属于点状加热法,加热点的分布可呈梅花形或链式密点形。
注意温度不要超过750度。
2 结语
火焰矫正引起的应力与焊接内应力一样都是内应力。
不恰当的矫正产生的内应力与焊接内应力和负载应力迭加,会使柱、梁、撑的纵应力超过允许应力,从而导致承载安全系数的降低。
因此在钢结构制造中一定要慎重,尽量采用合理的工艺措施以减少变形,矫正时尽量可能采用机械矫正。
当不得不采用火焰矫正时应注意以下几点:
1、烤火位置不得在主梁最大应力截面附近;
2、矫正处烤火面积在一个截面上不得过大,要多选几个截面;
3、宜用点状加热方式,以改善加热区的应力状态;
4、加热温度最好不超过700度。