(完整word版)高中数学不等式知识点总结

合集下载

高中基本不等式基础知识点

高中基本不等式基础知识点

高中基本不等式基础知识点
1. 不等式的基本概念:
不等式是一种数学表达式,用来表示两个数之间的大小关系。

它由两个数和一个不等号组成,如:a>b,表示a大于b。

2. 不等式的性质:
(1)交换律:如果a>b,则b<a;
(2)结合律:如果a>b,c>d,则a+c>b+d;
(3)分配律:如果a>b,c>0,则ac>bc;
(4)反转律:如果a>b,则1/a<1/b。

3. 不等式的解法:
(1)求解一元一次不等式:
解法:将不等式中的等号两边同时除以同一个非零数,然后比较结果,即可得出解。

(2)求解一元二次不等式:
解法:将不等式中的等号两边同时除以同一个非零数,然后求出不等式的两个根,再比较结果,即可得出解。

高中不等式全套知识点总结

高中不等式全套知识点总结

高中不等式全套知识点总结一、不等式的基本概念1. 不等式定义不等式是指两个数量在大小上的关系,包含大于、小于、大于等于、小于等于四种关系。

一般用符号“>”表示大于,“<”表示小于,“≥”表示大于等于,“≤”表示小于等于。

2. 不等式的解不等式的解是指满足不等式关系的所有实数集合,解集可以是一个区间、一个集合或者一个无穷集合。

3. 不等式的性质(1)两个不等式如果左右两边分别相等,那么其关系也相等;(2)两个不等式如果相互交换左右两边,那么关系会相反;(3)不等式两边同时加或减同一个数,不等式关系不变;(4)不等式两边同时乘或除同一个正数,不等式关系不变;(5)不等式两边同时乘或除同一个负数,不等式关系反转。

二、一元一次不等式1. 线性不等式线性不等式的一般形式为 ax+b>c 或者ax+b≥c,其中a≠0。

2. 一次不等式的解法(1)基本不等式直接解法:按照不等式的性质逐步解题;(2)图像法:将不等式转化为直线或者直线段的图像,然后通过图像解题;(3)分情况讨论法:根据不等式的取值范围分情况进行讨论,再分别求解。

3. 一次不等式的应用(1)生活中常见的线性不等式问题,比如买苹果不超过20元;(2)工程建设中的线性不等式问题,比如某公式里的参数要求取值范围。

三、一元二次不等式1. 二次不等式定义二次不等式的一般形式为 ax²+bx+c>0 或者ax²+bx+c≥0,其中a≠0。

2. 一元二次不等式解法(1)解法一:配方法、图像法;(2)解法二:利用一元二次不等式的图像特点;3. 一元二次不等式的应用(1)生活中常见的二次不等式问题,比如某项业务的收入和支出之间的关系;(2)工程建设中的二次不等式问题,比如求最大值、最小值。

四、多项式不等式1. 多项式不等式的定义多项式不等式是指由多项式构成的不等式,一般形式为 f(x)>0 或者f(x)≥0。

2. 多项式不等式的解法(1)概念法:直接按照多项式不等式的定义和性质进行解题;(2)函数法:将多项式在坐标系中的图像出发,进行解题。

高中数学不等式知识点总结

高中数学不等式知识点总结

高中数学不等式知识点总结一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。

总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。

扩展资料高中数学不等式知识点总结:1、用符号〉,=,〈号连接的式子叫不等式。

2、性质:①如果x>y,那么y<z;如果yy;(对称性)②如果x>y,y>z;那么x>z;(传递性)③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则,或叫同向不等式可加性)④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法原则)⑤如果x>y,m>n,那么x+m>y+n;(充分不必要条件)⑥如果x>y>0,m>n>0,那么xm>yn;⑦如果x>y>0,那么x的.n次幂>y的n次幂(n为正数),x的n 次幂<y的n次幂(n为负数)。

或者说,不等式的基本性质有:①对称性;②传递性;③加法单调性,即同向不等式可加性;④乘法单调性;⑤同向正值不等式可乘性;⑥正值不等式可乘方;⑦正值不等式可开方;⑧倒数法则。

3、分类:①一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

②一元一次不等式组:a.关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

b.一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

高中《不等式》知识点总结(可编辑修改word版)

高中《不等式》知识点总结(可编辑修改word版)

2一、不等式及其解法:《不等式》知识点1. 一元二次不等式: 化标准式(即二次项系数为正) ⇒ “大于取两边,小于取中间”如:解不等式(1) x 2 + 2x - 3 ≤ 0 ;(2) - x 2 + 2x + 1 ≤ 0 解:(1)原不等式等价于 (x + 3)(x - 1) ≤ 0 , 方程(x + 3)(x - 1) = 0 的根为- 3 ,1 故解集为{x }- 3 ≤ x ≤ 1}. (2)原不等式等价于 x 2 - 2x - 1 ≥ 0 , 方程 x 2 - 2x - 1 = 0 的根为1+ ,1 - ,故解集为{x }x ≤ 1 - 2或x ≥ 1 + 2}.2. 高次不等式:“穿根法”. 化标准式(即每一项的 x 系数为都为正) ⇒ 穿根 (从右上方出发,依次穿过每个根,如遇“重根”,奇穿偶回)(x + 2)(x - 1)(x - 1)2 如:解不等式(1) x (x + 1)(x - 1) ≤ 0 ; (2) x - 3≥ 0 ; (3) (x + 1)(x + 2) < 0 解:(1)解集为{x x < -1或0 ≤ x ≤ 1}; (2)解集为{x - 2 ≤ x ≤ 1或x > 3; (3)解集为[-2,-1]3. 分式不等式:移项⇒ 通分. 如:解不等式 2 ≤ 1. 解:移项后 2 - 1 ≤ 0 ,通分后 2 - x≤ 0 ,化标准式为 x - 2 ≥ 0 ,故解集为{x x < 0或x ≥ 2} x x x x4. 绝对值不等式: x < a (a > 0) 的解集为{x - a < x < a };x > a (a > 0) 的解集为{x x > a 或x < -a } 二、1.重要不等式: a 2 + b 2 ≥ 2ab (a , b ∈ R ) ,当且仅当 a = b 时,等号成立变形: ab ≤ a 2 + b 2 2应用: a 2 + b 2 为定值时,求 ab 的最大值.2.基本不等式: ≤ a + b 2(a > 0, b > 0) 当且仅当 a = b 时,等号成立 变形一: a + b ≥ 2 a + b 变形二: ab ≤ ( )2 2应用: ab 为定值时,求 a + b 的最小值.应用: a + b 为定值时,求 ab 的最大值. 注:利用基本不等式求最值的条件:一正、二定、三相等.三、线性规划问题 1. 能画出二元一次不等式组表示的平面区域.2. 相关概念:约束条件、目标函数、可行域、可行解、最优解.3. 目标函数常见类型:(1) 求线性目标函数 z = Ax + By 的最值时,先令 z = 0 ,画出直线l : Ax + By = 0 ,①若 B > 0 ,则l 向上平移, z 变大,向下平移, z 变小;②若 B < 0 ,则l 向上平移, z 变小,向下平移, z 变大y - b (2) “斜率型”目标函数 z =x - a , z 表示可行域内动点(x , y ) 与定点(a , b ) 连线的斜率.(3)“距离型”目标函数 z = (x - a )2 + ( y - b )2 = ( 的距离的平方. (x - a )2 + ( y - b )2 )2 , z 表示可行域内动点(x , y ) 到定点(a , b )2 ab ab。

(完整word)一元一次不等式知识点总结,推荐文档

(完整word)一元一次不等式知识点总结,推荐文档

一元一次不等式知识点一:不等式的概念1. 不等式:用“<”(或“≤”),“>”(或“≥”)等不等号表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.要点诠释:(1)不等号的类型:①“≠”读作“不等于”,它说明两个量之间的关系是不等的,但不能明确两个量谁大谁小;②“>”读作“大于”,它表示左边的数比右边的数大;③“<”读作“小于”,它表示左边的数比右边的数小;④“≥”读作“大于或等于”,它表示左边的数不小于右边的数;⑤“≤”读作“小于或等于”,它表示左边的数不大于右边的数;(2) 等式与不等式的关系:等式与不等式都用来表示现实世界中的数量关系,等式表示相等关系,不等式表示不等关系,但不论是等式还是不等式,都是同类量比较所得的关系,不是同类量不能比较。

(3) 要正确用不等式表示两个量的不等关系,就要正确理解“非负数”、“非正数”、“不大于”、“不小于”等数学术语的含义。

2.不等式的解:能使不等式成立的未知数的值,叫做不等式的解。

要点诠释:由不等式的解的定义可以知道,当对不等式中的未知数取一个数,若该数使不等式成立,则这个数就是不等式的一个解,我们可以和方程的解进行对比理解,要判断一个数是否为不等式的解,可将此数代入不等式的左边和右边利用不等式的概念进行判断。

3.不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集。

求不等式的解集的过程叫做解不等式。

如:不等式x-4<1的解集是x<5. 不等式的解集与不等式的解的区别:解集是能使不等式成立的未知数的取值范围,是所有解的集合,而不等式的解是使不等式成立的未知数的值.二者的关系是:解集包括解,所有的解组成了解集。

要点诠释:不等式的解集必须符合两个条件:(1)解集中的每一个数值都能使不等式成立;(2)能够使不等式成立的所有的数值都在解集中。

知识点二:不等式的基本性质基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。

高中不等式知识点总结

高中不等式知识点总结

高中不等式知识点总结摘要:一、不等式的基本概念1.不等式的定义2.不等式的符号表示二、不等式的基本性质1.对称性2.传递性3.可加性4.乘法原则三、常见不等式的解法1.作差比较法2.作商比较法3.韦达定理四、实际应用1.生活中的应用2.数学中的应用正文:一、不等式的基本概念不等式是数学中的一种基本概念,用于表示两个数的大小关系。

不等式的定义很简单,就是一个比较式,用符号">"或"<"来表示大小关系。

例如,x > y表示x大于y,x < y表示x小于y。

二、不等式的基本性质不等式有许多基本性质,这里我们介绍四个常见的性质。

1.对称性:如果x > y,则y < x。

这就是说,不等式两边同时改变符号,不等式的方向不会改变。

2.传递性:如果x > y,且y > z,则x > z。

这就是说,如果一个数大于另一个数,而另一个数又大于第三个数,那么第一个数一定大于第三个数。

3.可加性:如果x > y,且a > 0,则x + a > y + a。

这就是说,如果一个数大于另一个数,而加上的一个正数,那么第一个数一定大于第二个数。

4.乘法原则:如果x > y,且m > 0,则x * m > y * m。

这就是说,如果一个数大于另一个数,而乘上的一个正数,那么第一个数一定大于第二个数。

三、常见不等式的解法有许多方法可以解不等式,这里我们介绍三种常用的方法。

1.作差比较法:如果x > y,则x - y > 0。

我们可以通过作差来比较两个数的大小。

2.作商比较法:如果x > y,则x / y > 1。

我们可以通过作商来比较两个数的大小。

3.韦达定理:如果x > y,则(x + y) / 2 > (x - y) / 2。

我们可以通过韦达定理来比较两个数的大小。

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结

完整版)高中数学不等式知识点总结1、不等式的基本性质不等式有以下基本性质:①对称性:a>b等价于b<a。

②传递性:a>b。

b>c则a>c。

③可加性:a>b等价于a+c>b+c,其中c为任意实数。

同向可加性:a>b,c>d,则a+c>b+d。

异向可减性:a>b,cb-d。

④可积性:a>b,c>0则ac>bc,a>b,c<0则ac<bc。

⑤同向正数可乘性:a>b>0,c>d>0则ac>bd。

异向正数可除性:a>b>0,0bc。

a>b>0,则a^n>b^n,其中n为正整数且n>1.⑦开方法则:a>b>0,则√a>√b。

⑧倒数法则:a>b>0,则1/a<1/b。

2、几个重要不等式以下是几个重要的不等式:a/b+b/a>=2,当且仅当a=b时取等号。

a^2+b^2>=2ab,当且仅当a=b时取等号。

a+b/2>=√ab,当且仅当a=b时取等号。

a+b+c/3>=∛abc,当且仅当a=b=c时取等号。

a^2+b^2+c^2>=ab+bc+ca,当且仅当a=b=c时取等号。

a+b+c>=3√abc,当且仅当a=b=c时取等号。

a/b+b/c+c/a>=3,当且仅当a=b=c时取等号。

a-b|<=|a-c|+|c-b|,对任意实数a,b,c成立。

3、几个著名不等式以下是几个著名的不等式:a-b|<=√(a^2+b^2),对任意实数a,b成立。

a+b)/2<=√(a^2+b^2),对任意实数a,b成立。

a+b/2<=√(a^2+1)√(b^2+1),对任意实数a,b成立。

a+b)/2<=√(a^2-ab+b^2),对任意实数a,b成立。

a+b)/2>=√ab,对任意正实数a,b成立。

(word完整版)高中不等式所有知识及典型例题(超全).docx

(word完整版)高中不等式所有知识及典型例题(超全).docx

一.不等式的性 :二.不等式大小比 的常用方法 : 1.作差:作差后通 分解因式、配方等手段判断差的符号得出 果; 2.作商(常用于分数指数 的代数式) ; 3.分析法; 4.平方法; 5.分子(或分母)有理化;6.利用函数的 性; 7. 找中 量或放 法 ;8. 象法。

其中比 法(作差、作商)是最基本的方法。

三.重要不等式2 21. ( 1)若 a,bR , a 2b 22ab (2) 若 a, bR , abab (当且 当 ab 取“ =”)22. (1) 若a, b* ,a b ab(2)若a, b R *, ab2 ab (当且 当a b取“ ”)R2=a 2*, abb( 当且 当 ab 取“ =”)(3) 若 a, b R23. 若 x0 ,x1 2 (当且 当x1 取“ ”) ;x=1若 x0 ,x2 (当且 当x1 取“ ”)x=若 x11 1-2(当且 当 ab 取“ =”)0, x2即 x2或 xxxx若 ab0 ,ab 2( 当且 当 ab 取“ =”)ba若 ab0 ,ab 2即ab 2或 ab -2(当且 当a b 取“ ”)bababa=224. 若 a,bR , (ab 2ab(当且 当 ab 取“ =”))22注:(1)当两个正数的 定植 ,可以求它 的和的最小 ,当两个正数的和 定植 ,可以求它 的 的最小 ,正所 “ 定和最小,和定 最大” .( 2)求最 的条件“一正,二定,三取等”(3)均 定理在求最 、比 大小、求 量的取 范 、 明不等式、解决 方面有广泛的 用.5.a 3+b 3+c 3≥3abc ( a,b,cR +) ,a+b+c≥ 3 abc (当且 当 a=b=c 取等号);31na 1a 2 L a n (a+12 ni1 2n222≥ab+bc+ca; ab ≤( a+b 2+≤ a+b+c 3 +式: a +b +c) (a,b) (a,b,c R )2 R ) ; abc (32aba+b a 2+b 2 a ≤a+b≤ ab ≤2 ≤2≤b.(0<a ≤ b)b -n b b+m7. 度不等式: a -n < a < a+m ,a>b>n>0,m>0;用一:求最例 1:求下列函数的 域(1)y =3x 2+ 12( ) = +12x2 yxx技巧一:凑项例 1:已知 x5,求函数 y 4 x 21的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修 4--5 知识点1、不等式的基本性质①(对称性) a b b a同向可加性)a b,c⑧(倒数法则)2、几个重要不等式用基本不等式求最值时(积定和最小,和定积最大) 三相等” .a b c 时取到等号)④ (可积性)a b ,cac bca b ,c 0 acbc⑤ (同向正数可乘性) a b 0,c d 0 acbdb 0,0cdab(异向正数可除性) cd⑥ (平方法则)a bn ab n(n N,且n 1) 异向可减性)a b,c dN,且nb 1)0 a na nb(n ③(三个正数的算术—几何平均不等式)abc 33 abc(a 、b 、 cR )(当且仅当②(传递性) a b,b c ac③(可加性) a bacbc⑦(开方法则) 11a b;a22①a 2b 22aba ,,(当且仅当b时取 "" 号) . 变形公式:②(基本不等式)aba ,变形公式: a2 ababa b2ab,(当且仅当 a b时取到等号)a2b2 2,要注意满足三个条件“一正、二定、(a 2 b 2)(c 2 d 2) (ac bd )2 (a,b,c,d R ).当且仅当 ad bc 时,等号成立2ax⑨绝对值三角不等式3、几个著名不等式②幂平均不等式:④ 二维形式的柯西不等式:2④ab 22c ab bc ca a , b R(当且仅当a b c 时取到等号) .3⑤ab33c 3abc(a 0,b 0,c 0)(当且仅当a b c 时取到等号) .若ab ⑥ 0,则 ba 2 ab (当仅当 a=b 时取等号)若abb 0,则 aa 2b (当仅当 a=b 时取等号)b b m 1an bn a ⑦a a mb ,(其中a b 0,规律: 小于 1 同加则变大,大于 1 同加则变小 .⑧当a 0时,x22a x a x a 或 x a;m 0, n 0)1(a 1 n③二维形式的三角不等式: 22 a 1 a 2 2ana 2 a n )2.22 x 1 y 1 22x 2 y 2(x 1 x 2)2(y 1 y 2)2(x 1,y 1,x 2,y 2 R).a.b.①平均不等式: 211ab abb a2b2,(a,b R,当且仅当a b 时取 " "号) .(即调和平均 变形公几何平均 算术平均 平方平均) . aba b22abb2(a b)220)⑤ 三维形式的柯西不等式:顺序和),当且仅当 a1 a2 ... an 或 b 1 b 2 ... b n 时,反序和等于顺序和 ⑨琴生不等式 : (特例 :凸函数、凹函数)若定义在某区间上的函数f ( x),对于定义域中任意两点 x 1,x 2(x 1 x 2), 有f(x 1 x 2)f(x 1) f(x 2)或 f(x 1 x 2)f (x 1) f(x 2).f (2 )2或 f (2 )2 .则称 f(x) 为凸(或凹)函数4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法) 、综合法、分析法; 其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等 一化:化二次项前的系数为正数 二判:判断对应方程的根 . 三求:求对应方程的根 .2 2 2 2 2 2(a 1 a 2 a 3 )(b 1 b 2 b 3 ) (a 1b 1 a 2b 2⑥ 一般形式的柯西不等式:(a 12a 22... a n 2)(b 12b 22... b n 2) (a 1b 1⑦向量形式的柯西不等式:ur ururu u设 ,是两个向量,则,当且仅当等号成立 .⑧排序不等式( 排序原理):设a 1 a 2 ... a n ,b 1 b2bn为两组实数a 1bn a2b n 1...a ba1c 1a2c2... a n c na 3b 3) .a 2b 2 ... a n b n ) .ur ur ur是零向量,或存在实数 k ,使 k时,.c 1,c 2,...,c n 是 b 1,b 2,...,b n 的任一排列,则①舍去或加上一些项,如1 (a 12)2 34②将分子或分母放大(缩小) ,11,11如k 2k(k 1),k2 k(k1),1 2 (k *N *,k 1) 等.kk k 15、一 元二次不等式的解法2求一元二次不等式 ax bx c 0(或12(a12)2;22122 k k k k k k 1常见不等式的放缩方法:(a 0,2b 4ac 0)解集的步骤:四画:画出对应函数的图象 . 五解集:根据图象写出不等式的解集 . 规律:当二次项系数为正时,小于取中间,大于取两边 .6、高次不等式的解法:穿根法 . 分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切) ,结合原式不等号的方向, 写出不等式的解集 .7、分式不等式的解法:先移项通分标准化,则f(x)0 f (x) g(x) 0 g(x)f(x) 0f (x) g(x) 0g(x) g(x) 0(“ 或 ”时同理)规律:把分式不等式等价转化为整式不等式求解 .8、无理不等式的解法:转化为有理不等式求解⑵当0 a 1时,a f(x)a g(x)f (x) g(x)规律:根据指数函数的性质转化 .10、对数不等式的解法f(x) 0log a f (x) log a g(x) g(x) 0⑴当a 1时,f(x) g(x)f(x )a(a 0) f(x ) f(x f(x )a(a 0) f(x )f(x) g(x) f(x ) g(x)0 2 [g(x)或 f(x) 0或g(x) 0 f(x) g(x) f(x ) g(x ) 02[g(x)f(x) g(x) f (x) g(x ) f 0g(x) ⑸ 规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解 9、指数不等式的解法:⑴当 a 1时 ,af (x) a g(x)f (x) g(x)f (x) 0log a f (x) log a g(x) g(x) 0 .⑵当0 a 1时,f (x) g(x)规律:根据对数函数的性质转化 .11、含绝对值不等式的解法:a (a 0) a.⑴定义法:a (a 0)⑵平方法:f (x) g(x) f 2(x) g 2(x).⑶同解变形法,其同解定理有:①x a a x a(a 0); ②x a x a 或 x a(a 0);③f (x) g(x) g(x) f (x) g(x) (g(x) 0)④f (x) g(x) f(x) g(x)或f(x) g(x) (g(x) 0) 规律:关键是去掉绝对值的符号 .12、含有两个(或两个以上)绝对值的不等式的解法: 规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集 . 13、含参数的不等式的解法2解形如 ax bx c 0 且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论 a与 0的大小;⑵讨论 与 0 的大小; ⑶讨论两根的大小 .14、恒成立问题⑴不等式ax 2bxc 0 的解集是全体实数(或恒成立)的条件是①当 a0 时 b0,c 0;a 0 ②当 a 0时0.⑵不等式ax 2 bx c 0 的解集是全体实数(或恒成立)的条件是①当a 0 时b 0,c 0;a 0②当a 0 时0.⑶f (x) a恒成立f (x)max a;f(x) a恒成立f(x)max a⑷ f (x) a 恒成立f (x)min a;f(x) a恒成立f(x)min a. 15、线性规划问题常见的目标函数的类型:①“截距”型:zAx By;z ②“斜率”型:y z yx 或x b; a③“距离”型:z22x2 y2z 22 xyz (x a)2 (y b)2或z (x a)2(y b)2.在求该“三型” 的目标函数的最值时,可结合线性规划与代数式的几何意义求解,题简单化.从而使问。

相关文档
最新文档