嵌入式系统软硬件可靠性设计(Kenny武)

嵌入式系统软硬件可靠性设计(Kenny武)
嵌入式系统软硬件可靠性设计(Kenny武)

嵌入式系统软硬件可靠性设计

【2017年时间安排】

5月22-23日北京 5月25-26日上海 5月18-19日深圳

9月25-26日北京 9月21-22日上海 9月18-19日深圳

12月28-29日北京 12月25-26日上海 12月21-22日深圳

【参加对象】嵌入式系统软、硬件开发工程师。

【培训课时】12小时

【学习费用】4980元/两天 *买一赠一,单独一人收费3200元(含指定教材、证书、茶点)不含午餐

嵌入式系统可靠性设计,比拼的不是谁的设计更高明,而是谁的设计更少犯错误,而且因为软、硬件的专业背景差异,两个专业设计师之间的不了解,也会导致接口部分容易出现一些可靠性问题。

本课程采用逆向思维方式,从嵌入式系统设计的负面问题角度入手,总结剖析了嵌入式设计师易犯的错误点和接口部分的问题点,以期在设计中能提前加以预防。漏洞堵住了,跑冒滴漏自然不再发生。

Kenny

电子工程硕士,研究领域:电子产品系统可靠性设计与测试技术。

曾任航天二院总体设计所主任设计师、高级项目经理,机电制造企业研发总监、事业部总监,北京市级优秀青年工程师,科协委员。

有电子产品、军工、通信等专业方向的设计、测评和技术管理经历,对产品系统设计、可靠性设计、技术管理有较深入研究,曾在学术会议及多家技术刊物发表专业文章。

曾为比亚迪、中电30所、29所、北京华峰测控、北京航天长峰、普析通用仪器、航天二院23所、航天五院、株洲车辆研究所、北大青鸟环宇、惠州德赛、陕西华经微电子、西安工业集团公司、松下电工、航盛电子等企业提供专业技术和技术管理辅导、培训和咨询。

较擅长于将高深的理论知识转化为符合企业技术和经营特性的可操作实践方法

第一部分:嵌入式系统及硬件可靠性设计

第一章:可靠性设计基础

1.1、可靠性定义

1.2、环境应力分析

1.3、人机交互分析

1.4、关联设备互动分析

1.5、过渡过程应力

1.6、负载波动分析

1.7、单一故障分析

1.8、可靠性预计分析

1.9、判据标准

1.10 电子、机电一体化设备的可靠性模型;

1.11 系统失效率的影响要素;

第二章:可靠性设计规范

2.1 降额设计规范

降额等级、降额注意事项、降额因子降额参数的确定方法

2.2 电路热设计规范

强制风冷、传导散热的热设计计算及热设计工艺规范

2.3 电路安全性设计规范;

电路安全容错性机制、SFC分析、SFC下输出保证可靠的判据和解决方法…

2.4 EMC设计规范

电压容限控制、常用器件的高频等效特性、信号分析、布线、阻抗匹配、屏蔽、

滤波、接地…

2.5 PCB设计规范

板卡级的布线、布局工艺

第三章:器件失效规律与分析方法

3.1 持续性应力与浪涌应力的区别

3.2 电压应力与电流应力的故障现象区别

3.3 MSD与机械应力损伤的特征、成因、解决措施

3.4 基于端口特性阻抗曲线的失效测试分析方法

3.5 常用器件失效机理、失效特征、应对措施

第二部分:嵌入式系统器件选型与工程计算

第一章:工程计算基础

1.1 容差分析方法

1.2拉氏变换的物理含义与电路设计应用

1.3 微积分与电路设计的应用

1.4 概率论数理统计提升电子产品质量的应用方法

1.5 基础代数的电路设计工程计算应用(代数、三角函数、解析几何)

1.6 datasheet参数解读及对电路性能的影响

第二章:工程计算与器件选型

2.1 电源模块设计与选型计算

电感电容选型计算

2.2 电源输入端口器件选型计算

保险丝、NTC电阻、TVS/压敏电阻、储能电容、接插件、二极管的选型计算

2.3 信号输入/输出端口的匹配器件计算选型

上拉/下拉电阻、限流/分压电阻、阻抗匹配电阻、磁珠、退耦电容的选型计算

2.4 放大电路设计计算

运放参数和选型、精度分配计算、阻抗匹配计算

2.5 安全防护设计

电容的固有特性与寄生参数

退耦电容、储能电容、安规电容、隔直电容、滤波电容的选型计算

信号端口压敏电阻、TVS、气体放电管选型计算

2.6 热设计

整机散热计算

散热片、风扇、半导体致冷片散热选型计算

2.7 光电器件选型计算

光耦、发光二极管、数码管选型计算

2.8 驱动电路设计

二极管和三极管特性

三极管、二极管选型计算

开关器件

2.9 滤波器件选型计算

滤波器件特性

滤波电路设计计算

滤波器、滤波电容、磁珠磁环、电感选型计算

2.10 PCB布线布局设计

SI设计估算

2.11 数字IC器件选型计算

数字IC特性(结温、响应时间、带载能力、温漂、阈值、时序要求)

MCU、存储类器件、逻辑器件的选型计算

第三部分:嵌入式软件可靠性设计

1.嵌入式软件可靠性基础

定义软件可靠性定义

软件可靠性的度量与评估

软件与电子的失效率特性区别

影响嵌入式软件可靠性的因素

嵌入式软件归档及配置管理过程控制注意事项

嵌入式软件可靠性系统分析方法与软件DFMEA的运用

2.编译器问题嵌入式软件可靠性的影响

3.代码编程规范对嵌入式软件可靠性的影响

语句通用设计规范

冗余设计

睡眠设置抗干扰

软件、结构、电路相结合的电磁兼容解决方法

软件架构的设计方法

安全性内核

设计更改规则

防跑飞的软件陷阱

圈复杂度与软件测试

4.与硬件接口问题对嵌入式软件可靠性的作用和影响

时间受控

空间受控

IO吞吐能力

执行时间

串并联接法导致的信号波动

数据传输速率限制

上电时序引起的硬件故障及软件初始化对策

死机的机理及对策

显示处理措施

SFC下,输出保证安全

5.变量与存储问题成因与防护

防止过程中存储被刷

块存储特性

备份技巧

寄存器防刷处理

强数据类型

存储成功提示

6.人机接口问题与防护

对人工误操作的防护措施

参数设置控制策略

界面数据设置和布局方法

界面设计规范

7.报警

报警分类设置

报警编程处理

报警频率、声音、占空比要求

8.软件测试

单元测试方法与系统测试的区别

测试工具与人工测试

测试职责与测试分工

基于SFC的接口测试

全覆盖测试(路径覆盖与数据覆盖)

一致性测试,通过软件测试发现硬件隐患

人机接口测试

10.嵌入式软件功能安全设计

软件安全功能的要求

软件结构的要求与措施

详细设计和开发要求

代码实现要求与措施

软件模块测试要求

软件集成测试的要求

功能安全评估方法

11.总结:嵌入式软件可靠性设计规范

硬件系统的可靠性设计

硬件系统的可靠性设计

目录 1 可靠性概念 (4) 1.1 失效率 (4) 1.2 可靠度 (5) 1.3 不可靠度 (6) 1.4 平均无故障时间 (6) 1.5 可靠性指标间的关系 (6) 2 可靠性模型 (7) 2.1 串联系统 (7) 2.2 并联系统 (9) 2.3 混合系统 (11) 2.4 提高可靠性的方法 (12) 3 可靠性设计方法 (12) 3.1 元器件 (12) 3.2 降额设计 (13) 3.3 冗余设计 (14) 3.4 电磁兼容设计 (15) 3.5 故障自动检测与诊断 (15) 3.6 软件可靠性技术 (15) 3.7 失效保险技术 (15) 3.8 热设计 (16) 3.9 EMC设计 (16) 3.10 可靠性指标分配原则 (17) 4 常用器件的可靠性及选择 (19) 4.1 元器件失效特性 (19) 4.2 元器件失效机理 (21) 4.3 元器件选择 (23) 4.4 电阻 (23) 4.5 电容 (26) 4.6 二极管 (30) 4.7 光耦合器 (31) 4.8 集成电路 (32) 5 电路设计 (38) 5.1 电流倒灌 (38) 5.2 热插拔设计 (40) 5.3 过流保护 (41) 5.4 反射波干扰 (42) 5.5 电源干扰 (49) 5.6 静电干扰 (51) 5.7 上电复位 (52) 5.8 时钟信号的驱动 (53) 5.9 时钟信号的匹配方法 (55) 6 PCB设计 (60)

6.1 布线 (60) 6.2 去耦电容 (62) 7 系统可靠性测试 (62) 7.1 环境适应性测试 (62) 7.2 EMC测试 (63) 7.3 其它测试 (63) 8 参考资料 (64) 9 附录 (64)

嵌入式系统设计与应用

嵌入式系统设计与应用第五章程序设计与分析(1) 西安交通大学电信学院 任鹏举

本章主要内容 Software Design Cycle ●嵌入式软件中的组件(状态机 、循环缓存器、队列) ●编程模型,如数据流和控制图●编译方法介绍 ●根据性能、大小和功耗来分析 和优化程序 ●如何测试程序以验证其正确性

1 嵌入式程序组件 ●状态机(State machine) 用变量来表示内部的状态,根据输入完成状态的转移交通灯控制、CPU design controller ●循环缓冲区(Circular buffer) I/O input buffer ●队列(Queue)

状态机(1) ● 反应系统(reactive system ):响应外部事件的系统。 ●外部输入是间歇到达● 适合使用状态机描述 ● 有限状态机是表示有限个状态以及在这些状态之间的转移和动作等行为的数学模型。 ●Moore 机:● Mealy 机:输出只由当前状态确定 输出依赖于当前状态和输入

状态机(2) 例子:一个简单的座位安全带控制器 idle buzzer seated belted 未入座/-入座/定时器启动 未系安全带且定时器未超时/- 未系安全带/定时器启动系好安全带/-系好安全带/蜂鸣器关闭 定时器超时/蜂鸣器启动 未入座/-未入座/蜂鸣器关闭输入/输出-= 无动作

状态机(3) #define IDLE 0#define SEATED 1#define BELTED 2#define BUZZER 3switch (state) { case IDLE: if (seat) { state = SEATED; timer_on = TRUE; } break; case SEATED: if (belt) state = BELTED; else if (timer) state = BUZZER; break; case BELTED: if (!seat) state = IDLE; else if (!belt) state = SEATED; break; case BUZZER: if (belt) state = BELTED; else if (!seat) state = IDLE; break; } Inputs :seat, belt, timer Outputs: buzzer

嵌入式系统设计与应用复习资料.docx

嵌入式系统设计与应用复习资料 (一)?单项选择题: 1. 下面哪个系统属于嵌入式系统。 ( 八、“天河一号”计算机系统 C 、联想S10±网木 D ) B 、联想T400笔记本计算机 D 、联想OPhone 手机 2. 软硕件协同设计方法与传统设计方法的最大不同Z 处在于(B )。 A 、软硬件分开描述 C 、协同测试 3. 卜?面关于哈佛结构描述正确的是(A A 、程序存储空间与数据存储空间分离 C 、程序存储空间与数据存储空间合并 4. 下面哪一种工作模式不属于ARM 特权模式 A 、用户模式 B 、系统模式 C 、 5. ARM7TDM1的工作状态包括(D )。 A 、测试状态和运行状态 C 、就绪状态和运行状态 6. USB 接口移动硬盘最合适的传输类型为( A 、控制传输 B 、批量传输 C 、 7. 下而哪一种功能单元不属于I/O 接口电路。(D ) A 、USB 控制器 B 、UART 控制器 C 、以太网控制器 &下面哪个操作系统是恢入式操作系统。(B ) As Red-hat Linux B 、 PCLinux C 、 Ubuntu Linux D 、 SUSE Linux 9. 使用Host-Target 联合开发嵌入式应用,(B )不是必须的。 A 、宿主机 B 、银河麒麟操作系统 C 、目标机 D 、交叉编译器 10. 下面哪个系统不属于嵌入式系统(D )。 A 、MP3播放器 B 、GPS 接收机 C 、“银河玉衡”核心路由器 D 、“犬河一号”计算机系统 11. 在嵌入式系统设计中,嵌入式处理器选型是在进行(C )吋完成。 A 、需求分析 B 、系统集成 C 、体系结构设计 D 、软便件设计 12. 下面哪一类嵌入式处理器最适合于用于工业控制(B )。 A 、嵌入式微处理器 B 、微控制器 C 、DSP D 、以上都不合适 13. 关于ARM 了程序和Thumb 了程序互相调用描述正确的是(B )。 A 、 系统初始化Z 后,ARM 处理器只能工作在一种状态,不存在互相调用。 B 、 只要遵循一定调用的规则,Thumb 子程序和ARM 子程序就可以互相调用。 C 、 只要遵循一定调用的规则,仅能Thumb 子程序调用ARM 子程序。 D 、 只耍遵循一定调用的规则,仅能ARM 子程序调用Thumb 子程序。 14. 关于ARM 处理器的异常的描述不正确的是(C )。 A 、复位属于异常 B 、除数为零会引起异常 B 、软硬件统一描述 D 、协同验证 B 、存储空间与10空间分离 D 、存储空间与10空间合并 (A )0 软中断模式 D 、FTQ 模式 B 、挂起状态和就绪状态 D 、ARM 状态和Thumb 状态 B )0 中断传输 D 、等时传输 D 、LED

系统可靠性设计与分析

可靠性设计与分析作业 学号:071130123 姓名:向正平一、指数分布的概率密度函数、分布函数、可靠度函数曲线 (1)程序语言 t=(0:0.01:20); Array m=[0.3,0.6,0.9]; linecolor=['r','b','y']; for i=1:length(m); f=m(i)*exp(-m(i)*t); F=1-exp(-m(i)*t); R=exp(-m(i)*t); color=linecolor(i); subplot(3,1,1); title('指数函数概率密度函数曲线'); plot(t,f,color); hold on subplot(3,1,2); title('指数函数分布函数函数曲线'); plot(t,F,color); hold on subplot(3,1,3); title('指数指数分布可靠度函数曲线 plot(t,R,color); hold on end (3)指数分布的分析 在可靠性理论中,指数分布是最基本、最常用的分布,适合于失效率为常数 的情况。指数分布不但在电子元器件偶然失效期普遍使用,而且在复杂系统和整 机方面以及机械技术的可靠性领域也得到使用。 有图像可以看出失效率函数密度f(t)随着时间的增加不断下降,而失效率随 着时间的增加在不断的上升,可靠度也在随着时间的增加不断地下降,从图线的 颜色可以看出,随着m的增加失效率密度函数下降越快,而可靠度的随m的增加 而不断的增加,则失效率随m的增加减小越快。 在工程运用中,如果某零件符合指数分布,那么可以适当增加m的值,使零 件的可靠度会提升,增加可靠性。 二、正态分布的概率密度函数、分布函数、可靠性函数、失效率函数曲线 (1)程序语言 t=-10:0.01:10; m=[3,6,9]; n=[1,2,3]; linecolor=['r','b','y'];

嵌入式系统软硬件可靠性设计

嵌入式系统软硬件可靠性设计 主讲:Kenny(电子工程硕士,研究领域:电子产品系统可靠性设计与测试技术)课程对象:嵌入式系统软、硬件开发工程师。 【课程背景】 嵌入式系统可靠性设计,比拼的不是谁的设计更高明,而是谁的设计更少犯错误,而且因为软、硬件的专业背景差异,两个专业设计师之间的不了解,也会导致接口部分容易出现一些可靠性问题。 本课程采用逆向思维方式,从嵌入式系统设计的负面问题角度入手,总结剖析了嵌入式设计师易犯的错误点和接口部分的问题点,以期在设计中能提前加以预防。漏洞堵住了,跑冒滴漏自然不再发生。 【培训内容】 第一部分:嵌入式系统及硬件可靠性设计 第一章:可靠性设计基础 1.1、可靠性定义 1.2、环境应力分析 1.3、人机交互分析 1.4、关联设备互动分析 1.5、过渡过程应力 1.6、负载波动分析 1.7、单一故障分析 1.8、可靠性预计分析 1.9、判据标准 1.10电子、机电一体化设备的可靠性模型; 1.11系统失效率的影响要素; 第二章:可靠性设计规范 2.1降额设计规范 降额等级、降额注意事项、降额因子降额参数的确定方法 2.2电路热设计规范

强制风冷、传导散热的热设计计算及热设计工艺规范 2.3电路安全性设计规范; 电路安全容错性机制、SFC分析、SFC下输出保证可靠的判据和解决方法… 2.4EMC设计规范 电压容限控制、常用器件的高频等效特性、信号分析、布线、阻抗匹配、屏蔽、滤波、接地… 2.5PCB设计规范 板卡级的布线、布局工艺 第三章:器件失效规律与分析方法 3.1持续性应力与浪涌应力的区别 3.2电压应力与电流应力的故障现象区别 3.3MSD与机械应力损伤的特征、成因、解决措施 3.4基于端口特性阻抗曲线的失效测试分析方法 3.5常用器件失效机理、失效特征、应对措施 第二部分:嵌入式系统器件选型与工程计算 第一章:工程计算基础 1.1容差分析方法 1.2拉氏变换的物理含义与电路设计应用 1.3微积分与电路设计的应用 1.4概率论数理统计提升电子产品质量的应用方法 1.5基础代数的电路设计工程计算应用(代数、三角函数、解析几何) 1.6datasheet参数解读及对电路性能的影响 第二章:工程计算与器件选型 2.1电源模块设计与选型计算 电感电容选型计算 2.2电源输入端口器件选型计算 保险丝、NTC电阻、TVS/压敏电阻、储能电容、接插件、二极管的选型计算 2.3信号输入/输出端口的匹配器件计算选型 上拉/下拉电阻、限流/分压电阻、阻抗匹配电阻、磁珠、退耦电容的选型计算

(完整word版)嵌入式系统设计与应用

嵌入式系统设计与应用 本文由kenneth67贡献 ppt文档可能在W AP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 课程名称:课程名称:嵌入式系统设计与应用 总学时:其中讲课36学时,上机实践环节12 36学时12学时总学时:其中讲课36学时,上机实践环节12学时教材:嵌入式系统设计教程》教材:《嵌入式系统设计教程》电子工业出版社马洪连参考书:参考书:1、《嵌入式系统开发与应用》北航出版社、田泽编著. 嵌入式系统开发与应用》北航出版社、田泽编著. 2、《ARM体系结构与编程》清华大学出版社杜春雷编著ARM体系结构与编程体系结构与编程》嵌入式系统设计与实例开发—ARM ARM与C/OS3、《嵌入式系统设计与实例开发ARM与μC/OS-Ⅱ》清华大学出版社王田苗、魏洪兴编著清华大学出版社王田苗、ARM嵌入式微处理器体系结构嵌入式微处理器体系结构》4、《ARM嵌入式微处理器体系结构》北航出版社、马忠梅等著. 北航出版社、马忠梅等著. 张石.ARM嵌入式系统教程嵌入式系统教程》5、张石.《ARM嵌入式系统教程》.机械工业出版2008年社.2008年9月 1 课程内容 绪论:绪论: 1)学习嵌入式系统的意义2)高校人才嵌入式培养情况嵌入式系统设计(实验课)3)嵌入式系统设计(实验课)内容安排 第1章嵌入式系统概况 1.1 嵌入式系统的定义1.2 嵌入式系统的应用领域及发展趋势1.3 嵌入式系统组成简介 第2章嵌入式系统的基本知识 2.1 2.2 2.3 嵌入式系统的硬件基础嵌入式系统的软件基础ARM微处理器的指令系统和程序设计ARM微处理器的指令系统和程序设计 2 第3章 3.1 3.2 3.3 基于ARM架构的嵌入式微处理器基于ARM架构的嵌入式微处理器ARM 概述嵌入式微处理器的组成常用的三种ARM ARM微处理器介绍常用的三种ARM 微处理器介绍 第4章 4.1 4.2 4.3 4.4 4.5 4.6 嵌入式系统设计 概述嵌入式系统的硬件设计嵌入式系统接口设计嵌入式系统人机交互设备接口嵌入式系统的总线接口和网络接口设计嵌入式系统中常用的无线通信技术 3 第5章嵌入式系统开发环境与相关开发技术 5.1 5.2 5.3 5.4 5.5 6.1 6.2 6.3 6.4 概述嵌入式系统的开发工具嵌入式系统调试技术嵌入式系统开发经验嵌入式系统的Bootloader Bootloader技术嵌入式系统的Bootloader技术μC/OS-II操作系统概述C/OS-II操作系统概述ADS开发环境ARM ADS开发环境C/OS-II操作系统在ARM系统中的移植操作系统在ARM μC/OS-II操作系统在ARM系统

可靠性设计的基本概念与方法

4.6 可靠性设计的基本概念与方法 一、结构可靠性设计概念 1.可靠性含义 可靠性是指一个产品在规定条件下和规定时间内完成规定功能的能力;而一个工业产品(包括像飞机这样的航空飞行器产品)由于内部元件中固有的不确定因素以及产品构成的复杂程度使得对所执行规定功能的完成情况及其产品的失效时间(寿命)往往具有很大的随机性,因此,可靠性的度量就具有明显的随机特征。一个产品在规定条件下和规定时间内规定功能的概率就称为该产品的可靠度。作为飞机结构的可靠性问题,从定义上讲可以理解为:“结构在规定的使用载荷/环境作用下及规定的时间内,为防止各种失效或有碍正常工作功能的损伤,应保持其必要的强刚度、抗疲劳断裂以及耐久性能力。”可靠度则应是这种能力的概率度量,当然具体的内容是相当广泛的。例如,结构元件或结构系统的静强度可靠性是指结构元件或结构系统的强度大于工作应力的概率,结构安全寿命的可靠性是指结构的裂纹形成寿命小于使用寿命的概率;结构的损伤容限可靠性则一方面指结构剩余强度大于工作应力的概率,另一方面指结构在规定的未修使用期间内,裂纹扩展小于裂纹容限的概率.可靠性的概率度量除可靠度外,还可有其他的度量方法或指标,如结构的失效概率F(c),指结构在‘时刻之前破坏的概率;失效率^(().指在‘时刻以前未发生破坏的条件下,在‘时刻的条件破坏概率密度;平均无故障时间MTTF(MeanTimeToFailure),指从开始使用到发生故障的工作时间的期望值。除此而外,还有可靠性指标、可靠寿命、中位寿命,对可修复结构还有维修度与有效度等许多可靠性度量方法。 2..结构可靠性设计的基本过程与特点 设计一个具有规定可靠性水平的结构产品,其内容是相当丰富的,应当贯穿于产品的预研、分析、设计、制造、装配试验、使用和管理等整个过程和各个方面。从研究及学科划分上可大致分为三个方面。 (1)可靠性数学。主要研究可靠性的定量描述方法。概率论、数理统计,随机过程等是它的重要基础。 (2)可靠性物理。研究元件、系统失效的机理,物理成固和物理模型。不同研究对象的失效机理不同,因此不同学科领域内可靠性物理研究的方法和理论基础也不同. (3)可靠性工程。它包含了产品的可靠性分析、预测与评估、可靠性设计、可靠性管理、可靠性生产、可靠性维修、可靠性试验、可靠性数据的收集处理和交换等.从产品的设计到产品退役的整个过程中,每一步骤都可包含于可靠性工程之中。 由此我们可以看出,结构可靠性设计仅是可靠性工程的其中一个环节,当然也是重要的环节,从内容上讲,它包括了结构可靠性分析、结构可靠性设计和结构可靠性试验三大部分。结构可靠性分析的过程大致分为三个阶段。 一是搜集与结构有关的随机变量的观测或试验资料,并对这些资料用概率统计的方法进行分析,确定其分布概率及有关统计量,以作为可靠度和失效概率计算的依据。

硬件系统可靠性设计规范

硬件系统可靠性设计规范 一、概论 可靠性的定义:产品或系统在规定条件下和规定时间内完成规定功能的能力 可靠性及抗干扰设计是硬件设计必不可少的一部分,它包括芯片、器件选择、去耦滤波、印刷电路板布线、通道隔离等。有完善的抗干扰措施,是保证系统精度、工作正常和不产生错误的必要条件。设备可靠性设计规范的一个核心思想是监控过程,而不是监控结果。 二、可靠性设计方法 1、元器件:构成系统的基本部件,作为设计与使用者,主要是保证所选用的元器件的质量或可靠性指标满足设计的要求 2、降额设计:使电子元器件的工作应力适当低于其规定的额定值,从而达到降低基本故障率,保证系统可靠性的目的。幅度的大小可分为一、二、三级降额,一级降额((实际承受应力)/(器件额定应力) < 50%的降额),建议使用二级降额设计方法,一级降额<70% 3、冗余设计:也称为容错技术或故障掩盖技术,它是通过增加完成同一功能的并联或备用单元(包括硬件单元或软件单元)数目来提高系统可靠性的一种设计方法,实现方法主要包括:硬件冗余;软件冗余;信息冗余;时间冗余等 4、电磁兼容设计:系统在电磁环境中运行的适应性,即在电磁环境下能保持完成规定功能的能力。电磁兼容性设计的目的是使系统既不受外部电磁干扰的影响,也不对其它电子设备产生电磁干扰。硬件措施主要有滤波技术、去耦电路、屏蔽技术、接地技术等;软件措施主要有数字滤波、软件冗余、程序运行监视及故障自动恢复技术等 5、故障自动检测及诊断 6、软件可靠性设计:为了提高软件的可靠性,应尽量将软件规范化、标准化、模块化 7、失效保险技术 8、热设计 9、EMC设计:电磁兼容(EMC)包括电磁干扰(EMI)和电磁敏感度(EMS)两个方面 三、可靠性设计准则

软件可靠性技术发展与趋势分析

软件可靠性技术发展及趋势分析 1引言 1)概念 软件可靠性指软件在规定的条件下、规定的时间内完成规定的功能的能力。 安全性是指避免危险条件发生,保证己方人员、设施、财产、环境等免于遭受灾难事故或重大损失。安全性指的是系统安全性。一个单独的软件本身并不存在安全性问题。只有当软件与硬件相互作用可能导致人员的生命危险、或系统崩溃、或造成不可接受的资源损失时,才涉及到软件安全性问题。由于操作人员的错误、硬件故障、接口问题、软件错误或系统设计缺陷等很多原因都可能影响系统整体功能的执行,导致系统进入危险的状态,故系统安全性工作自顶至下涉及到系统的各个层次和各个环节,而软件安全性工作是系统安全性工作中的关键环节之一。 因此,软件可靠性技术解决的是如何减少软件失效的问题,而软件安全性解决的是如何避免或减少与软件相关的危险条件的发生。二者涉及的范畴有交又,但不完全相同。软件产生失效的前提是软件存在设计缺陷,但只有外部输入导致软件执行到有缺陷的路径时才会产生失效。因此,软件可靠性关注全部与软件失效相关的设计缺陷,以及导致缺陷发生的外部条件。由于只有部分软件失效可能导致系统进

入危险状态,故软件安全性只关注可能导致危险条件发生的失效。以及与该类失效相关的设计缺陷和外部输入条件。 硬件的失效,操作人员的错误等也可能影响软件的正常运行,从而导致系统进入危险的状态,因此软件安全性设计时必须对这种危险情况进行分析,井在设计时加以考虑。而软件可靠性仅针对系统要求和约束进行设计,考虑常规的容错需求,井不需要进行专门的危险分析。在复杂的系统运行条件下,有时软件、硬件均未失效,但软硬件的交互 作用在某种特殊条件下仍会导致系统进入危险的状态,这种情况是软件安全性设计考虑的重点之一,但软件可靠性并不考虑这类情况。2)技术发展背景 计算机应用范围快速扩展导致研制系统的复杂性越来越高。软硬件密切耦合,且软件的规模,复杂度及其在整个系统中的功能比重急剧上升,由最初的20%左右激增到80%以上。伴随着硬件可靠性的提高,软件的可靠性与安全性问题日益突出。 在军事、航空航天、医疗等领域,核心控制软件的失效可能造成巨大的损失甚至威胁人的生命。1985年6月至1987年1月,Therac-25治疗机发生6起超大剂量辐射事故,其中3起导致病人死亡。1991年海湾战争。爱国者导弹在拦截飞毛腿导弹中几次拦截失败,其直接原因为软件系统未能及时消除计时累计误差。1996年阿里亚娜5型运载火箭由于控制软件数据转换溢出起飞40秒后爆炸,造成经济损

嵌入式系统设计与应用-西安交通大学教师个人主页

嵌入式系统设计与应用第六章进程和操作系统(3)西安交通大学电信学院孙宏滨 i n S u n i 'a n J i a o t o n g U i v e r s i t y I n t e r n a l T e a c h i n g U s e O n l y

● 我们该如何评估调度策略?● 能满足所有截止时限 ● CPU 利用率---CPU 执行有用工作所占的时间比例● 调度开销---做调度决策所需的时间 i n S u n i 'a n J i a o t o n g U i v e r s i t y I n t e r n a l T e a c h i n g U s e O n l y

● 分配优先级主要有两种方法:● 静态优先级:在整个执行过程中优先级始终不变● 动态优先级:在执行过程中优先级发生变化 i n S u n i 'a n J i a o t o n g U i v e r s i t y I n t e r n a l T e a c h i n g U s e O n l y

● 单调速率调度(Rate-Monotonic Scheduling, RMS ):首先为实时操作系统开发的调度策略之一,直至现在仍然被广泛使用。● RMS 属于静态调度策略。事实证明,固定优 先级的做法在许多情况下都足以有效地调度进程。● RMS 的理论基础是单调速率分析(Rate Monotonic Analysis, RMA )。i n S u n i 'a n J i a o t o n g U i v e r s i t y I n t e r n a l T e a c h i n g U s e O n l y

硬件可靠性及提高

硬件可靠性及提高 一般来说,系统总是由多个子系统组成,而子系统又是由更小的子系统组成,直到细分到电阻器、电容器、电感、晶体管、集成电路、机械零件等小元件的复杂组合,其中任何一个元件发生故障都会成为系统出现故障的原因。因此,硬件可靠性设计在保证元器件可靠性的基础上,既要考虑单一控制单元的可靠性设计,更要考虑整个控制系统的可靠性设计。 1.影响硬件可靠性的因素 (1)元件失效。元件失效有三种:一是元件本身的缺陷,如硅裂、漏气等;二是加工过程、环境条件的变化加速了元件、组件的失效;三是工艺问题,如焊接不牢、筛选不严等。 (2)设计不当。在计算机控制系统中,许多元器件发生的故障并不是元件本身的问题,而是系统设计不合理或元器件使用不当所造成。 在设计过程中,如何正确使用各种型号的元器件或集成电路,是提高硬件可靠性不可忽视的重要因素。 (1)电气性能:元器件的电气性能是指元器件所能承受的电压、电流、电容、功率等的能力,在使用时要注意元器件的电气性能,不能超限使用。(2)环境条件:计算机控制系统的工作环境有时相当恶劣,由于环境因素的影响,不少系统的实验室试验情况虽然良好,但安装到现场并长期运行就频出故障。其原因是多方面的,包括温度、干扰、电源、现场空气等对硬件的影响。因此,设计系统时,应考虑环境条件对硬件参数的影响,元件设备须经老化试验处理。 (3)组装工艺:在硬件设计中,组装工艺直接影响硬件系统的可靠性。由于工艺原因引起的故障很难定位排除,一个焊点的虚焊或似接非接很可能导致整个系统在工作过程中不时地出现工作不正常现象。另外,设计印制电路板时应考虑元器件的布局、引线的走向、引线的分类排序等。

江苏科技大学通信专业嵌入式系统设计及应用_复习大纲

嵌入式系统设计复习 题型: 1、填空,15分左右 2、选择,30分左右 3、简答题40分左右 4、综述15分左右 第一章嵌入式系统概述 提纲: 1、掌握嵌入式系统的定义 2、了解嵌入式系统的一般组成 嵌入式微处理器、外围硬件设备、嵌入式操作系统以及用户的应用程序 (嵌入式系统一般由嵌入式计算机和执行部件组成。其中嵌入式计算机是整个嵌入式系统的核心,主要包括硬件层、中间层、系统软件层以及应用软件层) 知识点: 1、嵌入式系统的定义与特点 定义:是以应用为中心、以计算机技术为基础、软件硬件可裁剪、适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统 特点:软件硬件可裁剪 ①专用性:嵌入式系统具有特定的功能,用于特定的任务; ②低成本:嵌入式系统极其关注成本; ③低功耗:嵌入式系统大都有功耗的要求; ④高实时性OS; ⑤嵌入式系统的运行环境广泛; ⑥嵌入式系统的软件通常要求固态化存储; ⑦嵌入式系统的软件、硬件可靠性要求更高; 2.RISC指令系统的特点 答:指令系统:RISC设计者把上要精力放在那些经常使用的指令上,尽量使它们具有简单高效的特色。对不常用的功能,常通过组合指令来实现。因此,在RISC机器上实现特殊功能时,效率可能较低。但可以利用流水技术和超标量技术加以改进和弥补。 存储器操作:RISC对存储器操作有限制,使控制简单化 程序:RISC汇编语言程序一般需要较大的内存空间,实现特殊功能时程序复杂,不易设计 中断:RISC机器在一条指令执行的适当地方可以响应中断 CPU:由于RISC CPU包含少的单元电路,因而面积小、功耗低 设计周期:RISC微处理器结构简单,布局紧凑,设计周期短,且易于采用最新技术易用性:RISC微处理器结构简单,指令规整,性能容易把握,易学易用 应用范围:由于RISC指令系统的确定与特定的应用领域有关,所以RISC机器更适合于嵌入式应用 3、嵌入式系统由硬件与软件组成,其中软件的组成 答:由实时多任务操作系统、文件系统、图形用户界面接口、网络系统及通用组件模块组成 4、嵌入式系统的运行可靠性指标

嵌入式软件可靠性设计

嵌入式软件可靠性设计培训 嵌入式软件既是电子系统的核心,也是硬件系统的有效补充,需要具备防错、判错、纠错、容错的功能,具备了这些功能,就能保证系统可靠性要求在软件分系统设计中的实现。但是软件可靠性又不同于硬件电路,它不会随时间的推移而降低,并且其可靠性保障全部在设计过程中实现。因此软件工程的工作也是软件可靠性所要关注的内容。 为此,我协会决定组织召开《嵌入式软件可靠性设计》讲座,本讲座主要从嵌入式软件的系统设计、需求分析、接口、模块、变量控制、软件测试、安全性分析、硬件匹配设计等设计规范进行总结和分析,深层次探讨嵌入式软件的可靠性设计技巧。现具体事宜通知如下: 【主办单位】中国电子标准协会培训中心 【协办单位】深圳市威硕企业管理咨询有限公司 课程提纲:课程大纲以根据学员要求,上课时会有所调整,具体以报到时的讲义为准。 1.概述和定义 2.计算机系统设计准则:2.1、一般要求;2.2、硬件与软件功能的分配原则;2.3、硬件与软件可靠性指标的分配原则;2.4、安全关键功能的人工确认;2.5、安全性内核;2.6、自动记录系统故障;2.7、禁止回避检测出的不安全状态;2.8、保密性设计;2.9、容错设计

3.硬件设计:3.1、硬件选用;3.2、总线检测;3.3、加电检测;3.4、电源失效的安全措施;3.5、主控计算机失效的安全措施;3.6、反馈回路传感器失效的防护措施3.7、电磁干扰的防护措施;3.8、维修互锁措施 4.软件需求分析 5.软件危险分析 6.安全关键功能设计 7.冗余设计准则:7.1、指令冗余设计;7.2、软件陷阱与软件拦截技术;7.3、软件冗余 8.接口设计准则:8.1、硬件接口要求;8.2、硬件接口的软件设计;8.3、人机界面设计;8.4、报警设计;8.5、软件接口设计 9.软件健壮性设计准则:9.1、电源失效防护;9.2、加电检测;9.3、电磁干扰; 9.4、系统不稳定;9.5、接口故障9.6、干扰信号9.7、错误操作;9.8、监控定时器的设计9.9、异常保护设计 10. 简化设计准则:10.1、单入和单出;10.2、模块的独立性;10.3、模块的扇入扇出;10.4、模块耦合方式;10.5、模块内聚顺方式;10.6、其他特殊考虑 11.余量设计:11.1、资源分配及余量要求11.2、时序安排的余量要求 12. 数据要求:12.1、数据需求;12.2、属性控制;12.3、数值运算范围控制;12.4、合理性检查 13. 防错程序设计准则:13.1、参数化;13.2、公用数据和公共变量;13.3、标志;13.4、文件;13.5、非授权存取的限制13.6、无意指令跳转的处理;13.7、程序检测点的设置13.8、寻址模式的选用;13.9、数据区隔离;13.10、安全关键信息的要求;13.11、信息存储要求;13.12、算法选择要求 14. 编程要求:14.1、语言要求;14.2、汇编语言编程限制14.3、高级语言的编程限制;14.4、圈复杂度指数(McCabe)14.5、软件单元的规模;14.6、命名要

嵌入式系统最小系统硬件设计

引言 嵌入式系统是以应用为中心,软件硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗等综合性严格要求的专用计算机系统。本文主要研究了基于S3C2410的嵌入式最小系统,围绕其设计出相应的存储器、总电源电路、复位电路等一系列电路模块。 嵌入式最小系统 嵌入式最小系统即是在尽可能减少上层应用的情况下,能够使系统运行的最小化模块配置。以ARM内核嵌入式微处理器为中心,具有完全相配接的Flash电路、SDRAM电路、JTAG电路、电源电路、晶振电路、复位信号电路和系统总线扩展等,保证嵌入式微处理器正常运行的系统,可称为嵌入式最小系统。对于一个典型的嵌入式最小系统,以ARM处理器为例,其构成模块及其各部分功能如图1所示,其中ARM微处理器、FLASH和SDRAM模块是嵌入式最小系统的核心部分。

微处理器——采用了S3C2410A ; 电源模块——本电源运用5V 的直流电源通过两个三端稳压器转换成我们所设计的最小系统所需要的两个电压,分别是3.3V 和1.8V ,3.3V 的给VDDMOP ,VDDIO,VDDADC 等供电,而1.8V 的给VDDi 和RTC 供电。 时钟模块(晶振)——通常经ARM 内部锁相环进行相应的倍频,以提供系统各模块运行所需的时钟频率输入。32.768kHz 给RTC 和Reset 模块,产生计数时钟,10MHz 作为主时钟源; Flash 存储模块——存放嵌入式操作系统、用户应用程序或者其他在系统掉电后需要保存的用户数据等; SDRAM 模块——为系统运行提供动态存储空间,是系统代码运行的主要区域; 复位模块——实现对系统的复位; 1.8V 电源LDD 稳压 SDARM 32MB (use JTAG 接口 REST 电路256字 节E2PROM E2PROM UART 串口功能扩展 32768Hz 晶振RTC 时钟源 S3C2410A-20 (ARM920T) (16KB I-Cache,16KB D-Cache) SDARM 32MB (use NOR FLASH 2MB (use

软件可靠性和安全性设计指南

软件可靠性和安全性设计指南 (仅供内部使用) 文档作者:_______________ 日期:___/___/___ 开发/测试经理:_______________ 日期:___/___/___ 产品经理: _______________ 日期:___/___/___ 管理办:_______________ 日期:___/___/___ 请在这里输入公司名称 版权所有不得复制

软件可靠性和安全性设计指南 1 范围 1 .1主题内容 [此处加入主题内容] 1 .2适用范围 [此处加入适用范围] 2 引用标准 GBxxxx 信息处理——数据流程图、程序流程图、系统流程图、程序网络图和系统资源图的文件编制符号及约定。 GB/Txxx 软件工程术语 GB/Txxxxxx 计算机软件质量保证计划规范 GB/T xxxxx 计算机软件配置管理计划规范 GB/T xxxxx 信息处理——程序构造及其表示的约定 GJBxxxx 系统安全性通用大纲 GJBxxxxx 系统电磁兼容性要求 GBxxxx 电能质量标准大纲 GBxxxxx 电能质量标准术语 3 定义 [此处加入定义] 3 .1失效容限 [此处加入失效容限] 3 .2扇入 [此处加入扇入] 3 .3扇出 [此处加入扇出] 3 .4安全关键信息 [此处加入安全关键信息] 3 .5安全关键功能 [此处加入安全关键功能]

3 .6软件安全性 [此处加入软件安全性] 4 设计准则和要求 4 .1对计算机应用系统设计的有关要求 4 .1.1 硬件软件功能的分配原则 [此处加入硬件软件功能的分配原则] 4 .1.2 硬件软件可靠性指标的分配原则[此处加入硬件软件可靠性指标的分配原则] 4 .1.3 容错设计 [此处加入容错设计] 4 .1.4 安全关键功能的人工确认 [此处加入安全关键功能的人工确认] 4 .1. 5 设计安全性内核 [此处加入设计安全性内核] 4 .1.6 记录系统故障 [此处加入记录系统故障] 4 .1.7 禁止回避检测出的不安全状态[此处加入禁止回避检测出的不安全状态] 4 .1.8 安全性关键软件的标识原则 [此处加入安全性关键软件的标识原则] 4 .1.9 分离安全关键功能 [此处加入分离安全关键功能] 4 .2对硬件设计的有关要求 [此处加入对硬件设计的有关要求] 4 .3软件需求分析 4 .3.1 一般要求 [此处加入一般要求] 4 .3.2 功能需求 [此处加入功能需求] 4.3.2.1输入 [此处加入输入] 4.3.2.2处理 [此处加入处理] 4.3.2.3输出 [此处加入输出]

2019嵌入式课程设计-嵌入式系统设计与应用(第2版)-王剑-清华大学出版社

嵌入式系统课程设计计划 具体内容、进度安排及要求 (附课表,包含指导、答疑、上机的时间、地点,指导教师,学生班级,分组情况等)一、内容及要求: 通过本次课设,使学生了解嵌入式系统的特点,进一步理解和巩固课堂所学的嵌入式系统的基本理论和知识。掌握嵌入式系统的基本设计与分析方法,从而达到理论与实际相结合,并为今后从事嵌入式系统设计及其相关领域的各项工作打下坚实的基础。具体要求如下: 1、掌握嵌入式系统的硬件设计原理。 2、掌握嵌入式linux操作系统下的C语言应用程序设计技术 3、掌握嵌入式linux操作系统驱动程序设计技术 4、掌握嵌入式linux操作系统的移植技术 5、掌握嵌入式linux操作系统的交叉编译与动态调试技术 具体内容如下: (1)熟悉嵌入式硬件系统基础知识及基于Linux的应用开发环境的建立和程序设计方法 熟悉嵌入式硬件系统基础知识,熟悉嵌入式操作系统Linux的特点,了解Linux的主要模块及各自的功能。掌握虚拟机VMW ARE的使用方法,掌握通过交互式的环境来设计和定制内核、选择系统特性,然后进行编译和调试的全过程。了解BSP在嵌入式系统中位置及其作用。掌握在嵌入式操作系统Linux上搭建嵌入式应用开发环境的方法,熟悉Bootloader的使用方法。 (2)嵌入式操作系统Linux平台的编译移植搭建 安装嵌入式实验开发平台的BSP。根据嵌入式实验开发平台的特点和系统需求,利用VMARE环境配置Linux操作系统的特性和功能, 熟悉Bootloader的使用方法,使用TOOLCHAIN进行交叉编译、链接生成操作系统内核,生成系统映像文件ZImage。下载并运行编译好的Linux系统内核。对文件系统同样进行相关编译移植下载至嵌入式开发平台上。 (3)嵌入式数据库SQLITE与UI开发工具QT的掌握。 (4)根据所学理论知识和嵌入式硬件开发平台的具体情况,设计一个具有一定规模较复杂功能的嵌入式系统(如嵌入式系统设备驱动程序),一般来讲需要2个学生共同完成. (5)编写课设报告。课设报告要求: 1.要求使用A4纸打印,必须有封面和目录。封面内容有课设题目、班级、序号(两位)、姓名、指导教师、日期等内容。 2.课设内容一般应包含如下部分: ①课设名称、目的、要求、内容。 ②嵌入式系统a8开发硬件平台的基本概述。 ③嵌入式操作系统Linux配置、编译、移植的基本原理和过程及测试程序设计。 ④嵌入式数据库sqlite的移植过程及程序设计。 ⑤基于QT的数据库应用程序设计。 ⑥目标系统如嵌入式设备驱动程序的设计。 ⑦课设结果及分析。 ⑧收获、体会和建议。 二、进度安排: 1.嵌入式开发平台的熟悉(硬件设计环境和软件开发环境)(1天) 2.嵌入式操作系统Linux平台的编译移植搭建(1天) 3.嵌入式linux操作系统的交叉编译与动态调试(1天) 4.嵌入式数据库SQLITE的熟悉(1天)

嵌入式系统软硬件可靠性设计(Kenny武)

嵌入式系统软硬件可靠性设计 【2017年时间安排】 5月22-23日北京 5月25-26日上海 5月18-19日深圳 9月25-26日北京 9月21-22日上海 9月18-19日深圳 12月28-29日北京 12月25-26日上海 12月21-22日深圳 【参加对象】嵌入式系统软、硬件开发工程师。 【培训课时】12小时 【学习费用】4980元/两天 *买一赠一,单独一人收费3200元(含指定教材、证书、茶点)不含午餐 嵌入式系统可靠性设计,比拼的不是谁的设计更高明,而是谁的设计更少犯错误,而且因为软、硬件的专业背景差异,两个专业设计师之间的不了解,也会导致接口部分容易出现一些可靠性问题。 本课程采用逆向思维方式,从嵌入式系统设计的负面问题角度入手,总结剖析了嵌入式设计师易犯的错误点和接口部分的问题点,以期在设计中能提前加以预防。漏洞堵住了,跑冒滴漏自然不再发生。 Kenny 电子工程硕士,研究领域:电子产品系统可靠性设计与测试技术。 曾任航天二院总体设计所主任设计师、高级项目经理,机电制造企业研发总监、事业部总监,北京市级优秀青年工程师,科协委员。 有电子产品、军工、通信等专业方向的设计、测评和技术管理经历,对产品系统设计、可靠性设计、技术管理有较深入研究,曾在学术会议及多家技术刊物发表专业文章。 曾为比亚迪、中电30所、29所、北京华峰测控、北京航天长峰、普析通用仪器、航天二院23所、航天五院、株洲车辆研究所、北大青鸟环宇、惠州德赛、陕西华经微电子、西安工业集团公司、松下电工、航盛电子等企业提供专业技术和技术管理辅导、培训和咨询。 较擅长于将高深的理论知识转化为符合企业技术和经营特性的可操作实践方法

需求分析与软件可靠性保证

需求分析与软件可靠性保证 摘要:通过对软件测试过程中产生的数据进行分析,对照软件设计过程中需求分析中的错误或缺陷,对有关可靠性指标进行反复度量,明确软件错误的分布以减少其对软件需求分析可靠性的影响,进而对相关的错误或缺陷进行控制。 关键词:需求分析;测试;可靠性评估;模型 requirements analysis and software reliability assurance pang hongbiao (information central of china north industries group corp,beijing100089,china) abstract:the data generated by the software testing process analysis,control errors or defects in the software design process needs analysis,repeated measure of the reliability index of explicit software error distribution in order to reduce the reliability of the software requirements analysis impact,and thus control the errors or defects. keywords:needs analysis;test;reliability;model 需求分析是使用技术手段分析识别软件面向客户的实际需要,并且通过特性的系统描述待开发软件需要实现的功能和解决的问题,以此定义软件所有的操作指令和特征,并最终形成软件的使用说明。因此需求分析在软件设计计划的基础之上,从最先客户的原始

嵌入式系统设计与应用课程设计报告

《嵌入式系统设计与应用》课程设计报告 专业: 班级: 姓名: 学号: 指导教师:

目录 一、设计目的 (3) 二、开发环境 (3) 三、设计任务及要求 (3) 四、实现过程 (3) 用户应用程序设计 (3) 服务器端程序 (3) 五、总结 (4)

一、设计目的 (1)、熟悉并掌握在Linux开发环境下C语言程序设计及编译方法、嵌入式系统;(2)、掌握嵌入式linux下基础网络编程:socket编程 (3)、独立编写客户机/服务器通信程序; 二、开发环境 (1) 编程环境:在Linux开发环境下设计及编译C语言程序。 (2) 硬件设备:PXA270开发板,PC机。 三、设计任务及要求 设计一套可远程调用求和函数并返回客户端的程序。 四、实现过程 用户应用程序设计 1.程序 int sum(); 2.程序 #include <> int sum(){ int i=1,sum=0; while(i<=100){ sum=sum+i; i++; } return sum; } 服务器端程序 /******************************* * 服务器端程序*

********************************/ #include #include #include <> #include <> #include <> #include <> #include <> #include #include “” main() { int sockfd,new_fd,numbytes; struct sockaddr_in my_addr; struct sockaddr_in their_addr; int sin_size,sum; char buff[100] ,temp[100]; sum=sum(); itoa(sum, temp, 10); ..\n"); ,100,0)==-1) { perror("send"); exit(1); } socket success! Sockfd=3; bind success; Listening... Hello!I am Client. (5)、在PC机上运行客户端程序 # ./ result:5050 五、总结 通过本次课程设计,让我熟悉并掌握在Linux开发环境下C语言程序设计及编译方法、嵌入式系统、明白了嵌套字的使用方法、嵌入式linux下基础网络编

相关文档
最新文档