必修二 空间几何体的直观图的画法

合集下载

空间几何体的直观图与三视图知识点归纳总结

空间几何体的直观图与三视图知识点归纳总结
A. B. C. D.
变式2 利用斜二测画法, 一个平面图形的直观图时边长为1的正方形, 如图8-11所示,则该平面图形的面积为()
A. B.2 C. D. 4
题型2.直视图 三视图
思路提示
已知直观图描绘三视图的原则是:
先看俯视图, 观察几何体的摆放姿态, 再看正视图与侧视图同高, 正视图与俯视图同长, 侧视图与俯视图同宽.
A. B. C. D.
变式3 若几何体的三视图如图8-35所示, 则该几何体的体积是().
A. B. C. D.
例8.13一个几何体的三视图及其尺寸(单位:cm)如图8-36所示,
则该几何体的侧面积为cm2.
分析由三视图是2个三角形和1个矩形, 可知该几何体是正四棱锥.
解析先看俯视图定底面——正四棱锥的底面, 再结合正视图和俯视图, 将中心 “拔地而起”得直观图, 如图8-37所示, 再由口诀知数据, 且可知斜高 ,所以几何体的侧面积 .
故选C.
变式1 (2012湖北理4)已知某几何体的三视图如图8-54所示,则该几何体的体积为( ).
A. B. C. D.
例8.17 如图8-55所示为由长方体木块堆成的几何体的三视图,则组成此几何体的长方体木块的块数为( ).
A.3块B4块C.5块D.6块
分析 先看俯视图,从下往上“拔地而起”.
解析 先看俯视图定底,再结合正视图和侧视图,从下往上堆积可知其直观图,如图8-56所示. 故选B.
变式2 将正方体(如图1所示)截去两个三棱锥,得到图2所示的几何体, 则该几何体的左视图为().
变式3 已知棱长为1的正方体的俯视图是一个面积为1的正方形, 则该正方体的正视图的面积面积不可能等于()
A. 1 B. C. D.

高中数学必修2知识点总结:第一章-空间几何体

高中数学必修2知识点总结:第一章-空间几何体

高中数学必修2知识点总结第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图1 三视图:正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则:长对齐、高对齐、宽相等 3直观图:斜二测画法 4斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。

5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积1棱柱、棱锥的表面积: 各个面面积之和2 圆柱的表面积3 圆锥的表面积2r rl S ππ+= 4 圆台的表面积22R Rl r rl S ππππ+++= 5 球的表面积24R S π=(二)空间几何体的体积1柱体的体积 h S V ⨯=底 2锥体的体积 h S V ⨯=底313台体的体积 h S S S S V ⨯++=)31下下上上( 4球体的体积 334R V π=222r rl S ππ+=第一章空间几何体1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个()A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。

人教A版高中数学必修二课件1.2.3 空间几何体的直观图3

人教A版高中数学必修二课件1.2.3 空间几何体的直观图3
x′轴的平行线 l,在 l 上沿 x′轴正方向取点 C′使得 D′C′=DC.连接 B′C′,如图②. (3)所得四边形O′B′C′D′就是直角梯形OBCD的直观图.如图③.
方法技能
在画水平放置的平面图形的直观图时,选取适当的直角坐标系是关键, 一般要使平面多边形尽可能多的顶点在坐标轴上,以便于画点.原图 中不平行于坐标轴的线段可以通过作平行于坐标轴的线段来完成.
(2)画底面.作水平放置的三角形(俯视图)的直观图△ABC. (3)画侧棱.过A,B,C各点分别作z轴的平行线,并在这些平行线上分别截 取线段AA′,BB′,CC′,且AA′=BB′=CC′.(侧视图中矩形的高) (4)成图,顺次连接A′,B′,C′,并加以整理(擦去辅助线,将遮挡部分用虚线 表示),得到的图形就是所求的几何体的直观图.
即时训练1-1:用斜二测画法画如图所示边长为4 cm的水平放置的正三角 形的直观图.
解:(1)如图①所示,以BC边所在的直线为x轴,以BC边上的高线AO所在 的直线为y轴.建立平面直角坐标系.
解:(2)画对应的 x′轴、y′轴, 使∠x′O′y′=45°. 在 x′轴上截取 O′B′=O′C′=OB=OC=2 cm,
(2)画底面.按x′轴、y′轴画正五边形的直观图ABCDE. (3)画侧棱.过点A,B,C,D,E分别作z′轴的平行线,并在这些平行线上分别 截取AA′,BB′,CC′,DD′,EE′都等于正视图的高. (4)成图.顺次连接A′,B′,C′,D′,E′,去掉辅助线,改被挡部分为虚线,如图② 所示.
方法技能
(3)原图的面积 S 与直观图的面积 S′之间的关系为 S=2 2 S′.
即时训练 3-1:等腰梯形 ABCD 中,上底 CD=1,腰 AD=CB= 2 ,下底 AB=3,以下 底所在直线为 x 轴,则由斜二测画法画出的直观图 A′B′C′D′的面积

空间几何体的直观图与斜二测画法(正式)

空间几何体的直观图与斜二测画法(正式)

安全框
知识探究(二)
画一个水平放置的多边形的直 观图,关键是确定直观图中各顶点 的位置
安全框
知识探究(二)
画一个水平放置的多边形的直 观图,关键是确定直观图中各顶点 的位置,顶点位置确定后,连结顶 点,画出多边形的直观图.
安全框
知识探究(二)
我们可以借助平面直角坐标系 来确定水平放置的多边形各顶点的 位置.
安全框
知识探究(二)
问题5 平面直角坐标系水平放置之 后是什么样子呢?
安全框
知识探究(二)
y o x
安全框
知识探究(二)
y o x
安全框
知识探究(二)
y o x o'
y'
x'
安全框
知识探究(二)
当平面直角坐标系水平放 置后,得到的直观图中,x 轴记作 x' 轴, y轴记作y' 轴,交点o记作 点o'
安全框
知识探究(一)
斜二测画法是空间几何体直 观图的画法基础
安全框
知识探究(一)
斜二测画法是空间几何体直 观图的画法基础,斜二侧画法是 一种特殊的平行投影的画法.
安全框
要画空间几何体的直观图, 首先要学会水平放置的平面图 形的画法.
安全框
知识探究(二)
问题1
一本书正面放置,其视觉效 果是一个矩形
知识探究(一)
空间几何体的直观图在工程 建设、机械制造以及日常生活中 具有重要的意义.
安全框
知识探究(一)
问题3 如何在画出空间几何体的直观 图呢?
安全框
知识探究(一)
空间几何体的直观图是一种 平行投影下的图像
安全框
知识探究(一)

空间几何体的直观图—高中数学湘教版(2019)必修二

空间几何体的直观图—高中数学湘教版(2019)必修二

∠xOy=45°,∠xOz=90°.
(2)画下底面的直观图.以O为中点,在x轴上取线段MN,使MN=3,在y轴上取线
段PQ,使PQ=1.5.分别过点M和点N作y轴的平行线,过点P和点Q作x轴的平行
线,设它们的交点分别为A,B,C,D,则四边形ABCD即为四棱台的下底面.
(3)画上底面的直观图.在z轴上取一点O',使OO'=2,过点O'画直线a和直线b,使
直线a∥x轴,直线b∥y轴,在平面aO'b内以O'为中心画水平放置的边长为2的正
方形的直观图A'B'C'D'.
(4)成图.被遮挡的线画成虚线,擦去
辅助线并整理就得到四棱台的直观
图(如图②).
反思感悟 画空间几何体的直观图的四个步骤
(1)画轴.通常以高所在直线为z轴建系.
(2)画底面.根据水平放置的平面图形的直观图画法确定底面.
4.若用斜二测画法把一个高为20 cm的圆柱的底面画在x'O'y'平面上,则该
圆柱的高应画成(
)
A.平行于z'轴且长度为20 cm
B.平行于z'轴且长度为10 cm
C.与z'轴成45°且长度为20 cm
D.与z'轴成45°且长度为10 cm
答案 A
解析 平行于z轴的线段,在直观图中平行关系和长度都不变,故选A.
1
O'E'= OE,分别过点G'和点H'作y'轴的平行线,并在相应的平行线上沿y轴正
2
1
1
方向取G'A'= GA,H'D'=
HD.
2

第1章 §2 直观图-2020秋北师大版高中数学必修二课件(共55张PPT)

第1章 §2 直观图-2020秋北师大版高中数学必修二课件(共55张PPT)

小 结
·


新 你发现直观图的面积与原图形面积有何关系?
















返 首 页
·
32
·









提示:由题意,易知在△ABC 中,AC⊥AB,且 AC=6,AB=3, 提
·



∴S△ABC=12×6×3=9.



作 探 究

S△A′B′C′=12×3×(3sin
45°)=9 4 2,∴S△A′B′C′=


OB=2O′B′=2 2,OC=O′C′=AB=
·



知 A′B′=1,

·
·

且 AB∥OC,∠BOC=90°.
BC = B′C′ = 1 +
2,在
y
轴上截取线段
BA =
课 堂


习 2B′A′=2.
·



新 知
过 A 作 AD∥BC,截取 AD=A′D′=1.
素 养
·
·

连接 CD,则四边形 ABCD 就是四边形 A′B′C′D′的平面图 课


探 形.



释 疑
四边形 ABCD 为直角梯形,上底 AD=1,下底 BC=1+







立体图形的直观图【新教材】人教A版高中数学必修第二册课件

立体图形的直观图【新教材】人教A版高中数学必修第二册课件
[分析] (1)如何建立直角坐标系. 对斜二测画法理解不透,导致判断错误.
线为y轴,两轴相交于O(如图1所示),画相应的x′轴和y′轴、z′轴,三 (1)画底面,这时使用平面图形的斜二测画法即可.
(3)确定顶点:利用与z轴平行或在z轴上的线段确定有关顶点. (3)有些线段的度量关系也发生变化.
3[分.析掌]握轴直利观用交图斜与二于原测图画、法O直的′观规图则与,将三直视观使图图的复∠关原系. x. ′O′y′=45°,∠x′O′z′=90°(如图2所示).
返回导航
第八章 立体几何初步
数学(必修·第二册RJA)
[归纳提升] 简单几何体直观图的画法规则: (1)画轴:通常以高所在直线为z轴建系. (2)画底面:根据平面图形的直观图画法确定底面. (3)确定顶点:利用与z轴平行或在z轴上的线段确定有关顶点. (4)连线成图.
返回导航
第八章 立体几何初步
学法指导
1.结合初中所学的平行投影 方法,把握图形投影的规则. 2.结合常见平面图形感受其 直观图并体会斜二测的含义.
返回导航
第八章 立体几何初步
数学(必修·第二册RJA)
必备知识·探新知
返回导航
第八章 立体几何初步
数学(必修·第二册RJA)
知识点1 用斜二测画法画水平放置的平面图形的直观图的步骤
返回导航
第八章 立体几何初步
数学(必修·第二册RJA)
关键能力·攻重难
返回导航
第八章 立体几何初步
数学(必修·第二册RJA)
题型探究 题型一 水平放置的平面图形直观图的画法
典例 1 画正五边形的直观图. [分析] (1)如何建立直角坐标系. (2)确定不在坐标轴上的点. (3)建立坐标系xOy后,B、E两点不在坐标轴上或平行于坐标轴的直 线上,故需作BG⊥x轴于G,EH⊥x轴于H.

新必修二 8.2 立体图形的直观图(斜二测画法) 教案+练习

新必修二 8.2 立体图形的直观图(斜二测画法) 教案+练习

8.2 立体图形的直观图(斜二测画法)【要点梳理】要点一、平行投影(选讲)1.中心投影我们把光由一点向外散射形成的投影叫做中心投影.中心投影的投影线交于一点,它的实质是一个点光源把一个物体射到一个平面上,这个物体的影子就是它在这个平面上的中心投影.2.平行投影我们把在一束平行光线照射下形成的投影叫做平行投影.投影线正对着投影面时,叫做正投影,否则叫做斜投影.3.中心投影与平行投影的区别与联系(1)平行投影包括斜二测画法和三视图.中心投影后的图形与原图形相比虽然改变较多,但直观性强,看起来与人的视觉效果一致,最像原来的物体.(2)画实际效果图时,一般用中心投影法,画立体几何中的图形时,一般用平行投影法.要点二、斜二测画法在立体几何中,空间几何体的直观图通常是在平行投影下画出的空间图形.要画空间几何体的直观图,首先要学会水平放置的平面图形的直观图画法.对于平面多边形,我们常用斜二测画法画它们的直观图,斜二测画法是一种特殊的平行投影画法.斜二测画法的步骤:(1)在已知图形中取互相垂直的z轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x'轴与y'轴,两轴交于点O',且使∠x'O'y'=45°(或135°),它们确定的平面表示水平面.(2)已知图形中,平行于x轴、y轴的线段,在直观图中分别画成平行于x'轴、y'轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.(3)已知图形中,平行于x轴或z轴的线段,在直观图中保持长度不变,平行于y轴的线段,长度变为原来的一半.画图完成后,擦去作为辅助线的坐标轴,就得到了平面图形的直观图.要点诠释:用斜二测画法画图的关键是在原图中找到决定图形位置与形状的点并在直观图中画出.一般情况下,这些点的位置都要通过其所在的平行于x、y轴的线段来确定,当原图中无需线段时,需要作辅助线段.要点三、立体图形的直观图(1)用斜二测画法画空间几何体的步骤①在已知图形中,取互相垂直的x轴和y轴,再取z轴,使∠xOz=90°,且∠yOz=90°;②画直观图时,把它们画成对应的轴x′,y′,z′,使∠x′O′y′=45°(或135°),∠x′O′z′=90°,x′O′y′所确定的平面表示水平平面;③已知图形中平行于x轴,y轴或z轴的线段,在直观图中分别画成平行于x′轴,y′轴或z′轴的线段;④在已知平面图形中平行于x轴和z轴的线段,在直观图中保持原长度不变,平行于y轴的线段,长度变为原来的一半;⑤擦去作为辅助线的坐标轴,就得到了空间几何体的直观图.(2)斜二测画法保留了原图形中的三个性质①平行性不变,即在原图中平行的线在直观图中仍然平行;②共点性不变,即在原图中相交的直线仍然相交;③平行于x,z轴的长度不变.(3)画立体图形与画水平放置的平面图形相比多了一个z轴,其直观图中对应于z轴的是z'轴,平面x'O'y'表示水平平面,平面y'O'z'和x'O'z'表示直立平面.平行于z轴(或在:轴上)的线段,其平行性和长度都不变.(4)三视图与直观图的联系与区别三视图与直观图都是用平面图形来刻画空间图形的位置特征与度量特征,二者有以下区别:①三视图从细节上刻画了空间几何体的结构,由三视图可以得到一个精确的几何体,如零件、建筑图纸等都是三视图.②直观图是对空间几何体的整体刻画,可视性高,立体感强,由此可以想象实物的形状.要点四、已知三视图画直观图三视图和直观图是空间几何体的两种不同的表现形式.直观图是在某一定点观察到的图形,三视图是投射线从不同位置将物体按正投影向投影面投射所得到的图形,对于同一个物体,两者可以相互转换.由三视图画直观图,一般可分为两步:第一步:想象空间几何体的形状.三视图是按照正投影的规律,使平行光线分别从物体的正面、侧面和上面投射到投影面后得到的投影图,包括正视图、侧视图和俯视图.正视图反映出物体的长和高,侧视图反映出物体高和宽,所以正视图和侧视图可以确定几何体的基本形状,如柱体、锥体或台体等.俯视图反映出物体的长和宽.对于简单几何体来说,当俯视图是圆形时,该几何体是旋转体;当俯视图是多边形时,该几何体是多面体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)已知图形中平行于x轴的线段,在直观图中保持原长度不 变;平行于y轴的线段,长度为原来的一半.
用斜二测画法画下列图形的直观图: (1)边长为2cm的正方形
(2)边长为2cm的正三角形
(3)半径为2cm的圆
画水平放置的圆的直观图.
y
C E G
y′
C'
E'
A
O
B
x
A'
O′
D'
B'
x′
F'
D FH
(3)已知图形中平行于x轴、y轴或z轴的线段,在 直观图中分别画成平行于 x ' 轴 y '轴或 z '轴的线段; (4)已知图形中平行于x轴和z轴的线段,在直观 图中保持长度不变;平行于y轴的线段,长度为原 来的一半
练习:用斜二测画法画底面边长为2cm,侧 棱长为√11cm的正四棱锥的直观图.
画棱柱、棱锥的直观图大致可分以下几 个步骤
1.2.3空间几何体的直观图
直观图的画法
几种基本几何体三视图 1.圆柱、圆锥、球的三视图
几何体 正视图 侧视图
知识
俯视图
回顾
·
几种基本几何体的三视图 知识 2.棱柱、棱锥的三视图
几何体 正视图 侧视图
回顾
俯视图
你会画下列几何体的直观图吗?
D1 A1 B1 C1 C1 A1 B1 C B B1 E E1 C1
A1
D1
D A B
C A
A
B C
D
上面都是相应几何体的直观图.它们是怎样画出 来的呢?
空间图形的直观图的概念: 在一个平面内不可能画出空间图形的真实形状, 为了便于对空间图形的研究,我们将作出空间图形 的直观图,即用平面图形表示空间图形,它不是空 间图形的真实形状,但它具有立体感。
空间几何体的直观图
确定点位置的画法: 在斜坐标系里横坐 标保持不变,纵坐 标变为原来的一半.
平行y轴的线段的长度变为原来的一半. (4) 成图
作业
P35复习参考题A组: 3
画轴 → 画底面 → 画侧棱 → 成图
例3.已知几何体的三视图,用斜二测画法画出 它的直观图
• 由三视图可知: 该几何体是怎么 的一个组合体? • 如何画出一个圆 柱的直观图? • 如何画出一个圆 锥的直观图? • 思考三视图与直 观图有何关系?
· O
· O · O
侧视图·
A
B
例3.用斜二测画法画长,宽,高分别是 4cm,3cm,2cm的长方体 ABCD ABCD 的直观图
4 成图.顺次连接A,B,C,D,并加以整理
去掉辅助线,将被遮挡住的部分改为虚线 ,
就可得到长方体的直观图.
D
Z
B
O
C
Q
A
y
M
D
P
C
N
x
A
B
例3.用斜二测画法画长,宽,高分别是 4cm,3cm,2cm的长方体 ABCD ABCD 的直观图
课堂小结: 1、水平放置的平面图形的直观图的画法
2、空间几何体的直观图的画法
特殊的平行投影画法——斜二测画法
1、平面图形的直观图画法
(1)画轴.
y
y’
o
x
( 450或1350 )
o’
x’
(2)确定平行线段. 平行x轴的线段平行于x’ 轴 平行y轴的线段平行于y’ 轴
(3)确定线段长度. 平行x轴的线段的长度保持不变.
y
F A
M
E D
O
y'
O
x
x'
B
N
C
注意:(1)建系时要尽量考虑图形的对称性 (2)画水平放置平面图形的关键是确定多边形顶点的位置.
1 (2)以 O 为中心,在 x 上取 A D AD ,在 y 轴上取 M N 2 MN ' '为中心,画 B'C ' x ' 轴,并等于 BC ,再以 M 为中心,画 以点 N
2
3、如图Δ A‘B‘C’是水平放置的Δ ABC的 直观图,则在Δ ABC的三边及中线AD 中,最长的线段是( AC )
4、右图是Δ ABC利用斜二测画法得 到的水平放置的直观图Δ A‘B‘C’,其 中A‘B’∥y’轴,B‘C’∥x‘轴,若Δ A‘B‘C’ 的面积是3,则Δ ABC的面积是(6 2 )
z
A
/
/
D
/
C
/
D/ A/ B
/
C/
B
/
/
y
D A B x
/
C
D A B
C
练习:用斜二测画法画长、宽、高分别为4cm、 3cm、2cm的长方体的直观图
例3.用斜二测画法画长,宽,高分别是 4cm,3cm,2cm的长方体 ABCD ABCD 的直观图
1 画轴.画x轴,y轴,z轴,三轴交于点O,使xOy=45 ,
关于水平放置的圆的直观图的画法,常用正等测画 法.在实际画水平放置的圆的直观图时,通常使用椭圆模版.
练习:P21 EX1、2
斜二测画法的基本步骤和规则:
(1)建坐标系,定水平面; (2)与坐标轴平行的线段保持平行;
(3)水平线段等长,竖直线段减半.
小结:“横同,竖半, 450 ”
例2 .画棱长为2cm的正方体的直观图
4 成图.顺次连接A,B,C,D,并加以整理
去掉辅助线,将被遮挡住的部分改为虚线 ,
就可得到长方体的直观图.
D
C
B
C
A
D
A
B
规则:
(1)在已知图形中取水平平面,取互相垂直的轴ox、 oy,再取oz轴,使∠xoz=900,且∠yoz=900 ;
(2)画直观图时,把它们画成对应的 o' x' , o' y' , o' z ' 轴,使 x' o' y' 450 或135 0 , x' o' z ' 90 0. x' o' y' 所确定 的平面表示水平平面;
投影规律
1.平行性不变,但形状、长度、 夹角会改变;
2.平行直线段或同一直线上的 两条线段的比不变; 3.在太阳光下,平行于地面的 直线在地面上的投影长不变.
例1.用斜二测画法画水平放置的正六边形的直观图 (1)在正六边形ABCDEF中,取AD所在的直线为X轴,对称轴MN 所在直线为Y轴,两轴交于点O.画对应的 X ' ,Y '轴,两轴相交于 点 O ',使X ' OY ' 45
y
F A
M
E D
y
A
x
O
F M E
N C
B
B N
C
O
D
x
~请您总结斜二测画法画水平放置的平面图形的方法步骤~
斜二测画法的步骤
(1)在已知图形中取互相垂直的x轴和y轴,两轴相交于O点.画 直观图时,把它画成对应的x’轴、y ’轴,两轴交于O’,使 x'Oy' 45 (或135,它们确定的平面表示水平平面. ) (2)已知图形中平行于x轴或y轴的线段,在直观图中分别画 成平行于x’轴或y’轴的线段.

xOz 90 .

Z
y
O
x
例3.用斜二测画法画长,宽,高分别是 4cm,3cm,2cm的长方体 ABCD ABCD 的直观图
2 画底面.以O为中心,在x轴上取线段MN,使MN=
4
cm;在
轴上取线段PQ,使PQ= 1.5 cm;分别过点M 和N 作y轴的平行 线,过点P和Q作x轴的平行线,设它们的交点分别为A,B, C,D,四边形ABCD就是长方形的底面ABCD
' '
'
'
'
'
'
E ' F ' x' 轴,并等于 EF
y
F A
M
E D
y
A
x
O
F M E
N C
B
B N
C
O
D
x
注意:水平放置的线段长不变,铅垂放置的线段长变为原 来的一半.
(3)连接 A' B' , C ' D' , E ' F ' , F ' A' , 并擦去辅助线x’轴和y ’轴,便获得 正六边形ABCDEF水平放置的直观图 A' B'C ' D' E ' F '
Z
y
D
M
O
Q
C
N
A
x
P
B
例3.用斜二测画法画长,宽,高分别是 4cm,3cm,2cm的长方体 ABCD ABCD 的直观图
上分别截取2cm长的线段AA,BB,CC,DD.
3 画侧棱.过A,B,C,D,各点分别作z轴的平行线,并在这些平行线
D
Z
B
O
C
Q
A
y
M
D
P
C
N
x
O
y
y
x
O
x
课本P19的探究
练习 1.已知一四边形ABCD的水平放置的直 观图是一个边长为2的正方形,请画 出这个图形的真实图形。
2、如图为水平放置的正方形ABCO,它 在直角坐标系xOy中点B的坐标为(2,2), 则在用斜二测画法画出的正方形的直 观图中,顶点B‘到x’轴的距离为( 2 )
一、引入课题
(1)
(2)
思考:这两副图相同吗 ? 讨论:图(2)是图(1)的几何体的直观图 那么它是怎样画出来的呢? 我们今天来学习最常用的,直观性好的 斜二测画法。
相关文档
最新文档