2019届高三文科数学函数与导数解题方法规律技巧详细总结版
高考数学中的函数与导数的应用技巧

高考数学中的函数与导数的应用技巧高考数学中函数与导数的应用技巧在高考数学中,函数与导数是两个非常重要的知识点。
它们在各个科目中都扮演着不可或缺的角色,同时也是考试中必考的内容。
在学习这两个知识点时,我们需要掌握它们的应用技巧。
下面将简要介绍高考中函数与导数的应用技巧。
一、函数的应用技巧在高考中,函数是一个非常重要的知识点。
其应用范围涉及到各个分支学科。
掌握好函数的应用技巧,可以帮助我们更好地解决问题。
1.函数的连续性在高考数学中,函数的连续性是一个非常重要的概念。
如果一个函数在某个点上连续,那么它在该点的极限就等于该点的函数值。
利用这个概念,我们就可以使用代数法和图像法来判断函数的连续性,从而更好地解决问题。
2.函数的单调性函数的单调性是指函数的增减性质。
在高考中,我们需要通过函数的单调性来进行最值的求解。
如果一个函数在某个区间上单调递增,那么该区间的最小值就是函数在该区间左端点处的函数值。
反之,如果一个函数在某个区间上单调递减,那么该区间的最大值就是函数在该区间右端点处的函数值。
因此,掌握函数的单调性可以帮助我们更好地解决最值问题。
3.函数的奇偶性函数的奇偶性是指函数的对称性质。
在高考中,我们需要通过函数的奇偶性来判断函数的对称中心以及进行函数的分解。
如果一个函数为奇函数,则该函数在原点处对称。
如果一个函数为偶函数,则该函数在坐标轴上的所有点对称。
因此,掌握函数的奇偶性可以帮助我们更好地进行函数的图像分析以及函数的求解。
二、导数的应用技巧在高考数学中,导数是一个非常重要的知识点。
其应用范围涉及到各个分支学科。
掌握好导数的应用技巧,可以帮助我们更好地解决问题。
1.导数的定义在高考数学中,导数的定义是一个非常重要的概念。
通过导数的定义,我们可以求解函数在某个点的切线斜率。
在实际应用中,我们可以利用导数的定义来判断函数的单调性、最值、曲线的凸凹性等问题。
2.导数的求解在高考数学中,导数的求解是一个非常重要的环节。
高中数学导数相关知识点总结+解题技巧

高中数学:导数相关知识点总结+解题技巧一. 导数概念的引入1. 导数的物理意义瞬时速率。
一般的,函数y=f(x)在x=处的瞬时变化率是2. 导数的几何意义曲线的切线,当点趋近于P时,直线 PT 与曲线相切。
容易知道,割线的斜率是当点趋近于 P 时,函数y=f(x)在x=处的导数就是切线PT的斜率k,即3. 导函数当x变化时,便是x的一个函数,我们称它为f(x)的导函数. y=f(x)的导函数有时也记作,即二. 导数的计算1.基本初等函数的导数公式2.导数的运算法则3.复合函数求导y=f(u)和u=g(x),则称y可以表示成为x的函数,即y=f(g(x))为一个复合函数。
三、导数在研究函数中的应用1. 函数的单调性与导数一般的,函数的单调性与其导数的正负有如下关系:在某个区间(a,b)内(1) 如果>0,那么函数y=f(x)在这个区间单调递增;(2) 如果<0,那么函数y=f(x)在这个区间单调递减;2. 函数的极值与导数极值反映的是函数在某一点附近的大小情况。
求函数y=f(x)的极值的方法有:(1)如果在附近的左侧>0 ,右侧<0,那么是极大值;(2)如果在附近的左侧<0 ,右侧>0,那么是极小值;3. 函数的最大(小)值与导数求函数y=f(x)在[a,b]上的最大值与最小值的步骤:(1)求函数y=f(x)在[a,b]内的极值;(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是最大值,最小的是最小值。
四. 推理与证明1.合情推理与类比推理根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理。
根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理。
2.类比推理的一般步骤(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的;(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠。
2019年高考文科数学人教版一轮复习:函数与导数问题的解决策略

考向2 利用导数研究函数的性质 利用导数研究函数的单调性、极值与最值是高考命题的重点与热点之
一,主要有以下命题角度:
(1)利用导数研究函数的单调性、极值、最值;
(2)利用单调性、极值、最值求参数的取值范围. 题型以解答题为主,属于高考中的压轴题之一;选择题、填空题中也有 涉及,属于中档题.分值为5~12分.
的压轴题出现.主要有以下命题角度:
(1)证明不等式;
(2)由不等式恒成立求解参数; (3)由不等式有解求解参数. 题型以解答题为主,属于中高档题,分值为12分.
文科数学 微专题1:高考中的函数与导数问题
示例3
[2017全国卷Ⅰ,21,12分][文]已知函数f(x)=ex(ex-a)-a2x.
(1)讨论f(x)的单调性;
文科数学 微专题1:高考中的函数与导数问题
文科数学 微专题1:高考中的函数与导数问题
文科数学 微专题1:高考中的函数与导数问题
解题策略
研究函数的性质通常转化为对函数单调性的讨论,讨论函
数的单调性要先求函数的定义域,再通过讨论导数在定义 域内的符号来判断函数的单调性.
考向3 利用导数解决不等式问题 利用导数解决不等式恒成立与有解问题是高考命题的热点,常作为高考
解题策略
利用导数研究不等式恒成立问题,一般要先构造函数,然后
利用导数研究函数的单调性,求出最值,进而得出相应的含 参不等式,从而求出参数的取值范围;也可分离变量,构造函 数,直接把问题转化为函数的最值问题求解.
考向4 利用导数解决与函数零点有关的问题 利用导数解决函数零点或方程解的问题是高考命题的重点,也是一个难
点.其中函数的零点、方程的根、曲线的交点三个问题可以互相转化.主要
有以下命题角度:
高考数学导数应用题型解题技巧总结

2019高考数学导数应用题型解题技巧总结导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于导数的学习,主要是以下几个方面:1. 导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2. 关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3. 导数与解析几何或函数图象的混合问题是一种重要类型,也是高考(微博)中考察综合能力的一个方向,应引起注意。
知识整合1. 导数概念的理解。
2. 利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。
复合函数的求导法则是微积分中的重点与难点内容。
课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
3. 要能正确求导,必须做到以下两点:我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。
特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。
知道“是这样”,就是讲不出“为什么”。
根本原因还是无“米”下“锅”。
于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。
高考文科数学一轮复习函数与导数解答题的答题规范与策略课件

ex>1+x与x≥1+lnx基础上,结合函数性质,编制的优美试题,2016
年全国Ⅲ卷T21,2017年全国Ⅲ卷T21有异曲同工之处.
素养
考查途径
数学运算 导数的计算、解一元二次不等式、解分式不等式.
逻辑推理
用导函数的符号判断函数的单调性,不等式的恒成 立转化为函数问题
思想 方法
分类讨论思 想
分类讨论解决含参数的函数的单调性
2������ 2������
4������
分点6,下结论得满分)
感悟升华
文科数学 素养提升1 高考中函数与导数解答题的答题规范与策略
命题 探源
素养 探源
本题第(2)问的实质是证明ln(- 1 )+ 1 +1≤0,是不等式x-1≥lnx的变
2������ 2������
形,源于人教A版教材选修1-1P99B组T1,是在教材基本框架
(2)由(1)知,当a<0时,f(x)在x=-21������取得最大值,最大值为f(-21������)=ln(-21������)-1-41������. 所以f(x)≤-43������-2等价于ln(-21������)-1-41������≤-43������-2,即ln(-21������)+21������+1≤0.8分(得分点4 将原不等式等价转化是解答此问的关键)
文科数学 素养提升1 高考中函数与导数解题答题规的范答题与规策范与略策略
所以f '(x)=ex(cos x-sin x)-1,①
又f(0)=1, f '(0)=0,②
所以曲线y=f(x)在点(0, f(0))处的切线方程为y=1.③
(Ⅱ)由(Ⅰ)可设h(x)=ex(cos x-sin x)-1,则h'(x)=ex(cos x-sin x-sin x-cos
高考数学中的函数与导数综合运用技巧

高考数学中的函数与导数综合运用技巧高考数学作为考生们最重要的科目之一,函数与导数是其中重要的考点。
在解决实际问题时,合理地运用函数与导数的综合技巧能够帮助我们更好地理解、分析和求解数学题目。
本文将针对高考数学中的函数与导数综合运用技巧进行探讨,帮助考生们更好地应对相关考题。
一、函数与导数的基本概念在开始探讨函数与导数的综合运用技巧之前,首先需要了解函数与导数的基本概念。
函数是自变量与因变量之间的关系,用符号y = f(x)表示,其中x为自变量,y为因变量。
函数的图象可以用曲线或者折线来表示。
导数是函数在某一点处的变化率,用符号f'(x)表示。
导数可以表示函数在某一点的斜率,即切线的斜率。
二、函数与导数的综合运用技巧1. 极值问题在解决极值问题时,考生可以使用导数的概念。
首先求出函数的导数,然后将导数置零,求出使函数取得极值的自变量值。
根据导数的正负性,可以判断极值点的类型(极大值或极小值)。
2. 函数的单调性判断函数的单调性判断也是常见的考点。
对于给定的函数,可以通过求导数的方式来判断函数的单调区间。
当导数大于零时,函数递增;当导数小于零时,函数递减。
3. 求曲线与直线的位置关系在求解曲线与直线的位置关系时,可以结合函数与导数的性质进行分析。
首先求出函数的导数,然后比较曲线与直线斜率的大小关系,根据导数的正负性和零点位置,可以判断曲线与直线的位置关系。
4. 求变化率与速率函数与导数的综合运用还可以用于求解变化率与速率的问题。
对于给定的函数,可以通过求导数来表示函数在某一点的变化率。
当自变量表示时间时,导数就代表了函数的瞬时变化率,即速率。
5. 求函数的极限与渐近线函数的极限与渐近线也可以通过函数与导数的综合运用来解决。
对于给定的函数,可以通过求导数的方式来求解函数的极限。
当导数趋于无穷时,可以判断函数是否有垂直渐近线;当导数趋于有界数时,可以判断函数是否有水平渐近线。
三、综合练习与答案解析为了帮助考生更好地掌握函数与导数的综合运用技巧,以下列举了两道高考数学综合题目及其答案解析,供考生练习参考。
函数与导数解题方法知识点技巧总结材料

函数与导数解题方法知识点技巧总结1. 高考试题中,关于函数与导数的解答题(从宏观上)有以下题型: 〔1〕求曲线()y f x =在某点出的切线的方程 〔2〕求函数的解析式〔3〕讨论函数的单调性,求单调区间 〔4〕求函数的极值点和极值 〔5〕求函数的最值或值域 〔6〕求参数的取值X 围 〔7〕证明不等式 〔8〕函数应用问题2. 在解题中常用的有关结论〔需要熟记〕:〔1〕曲线()y f x =在0x x =处的切线的斜率等于0()f x ',且切线方程为000()()()y f x x x f x '=-+。
〔2〕假如可导函数()y f x =在0x x =处取得极值,如此0()0f x '=。
反之不成立。
〔3〕对于可导函数()f x ,不等式()0(0)f x '><的解是函数()f x 的递增〔减〕区间。
〔4〕函数()f x 在区间I 上递增〔减〕的充要条件是:,()0(0)x I f x '∀∈≥≤恒成立〔()f x '不恒为0〕. 〔5〕假如函数()f x 在区间I 上有极值,如此方程()0f x '=在区间I 上有实根且非二重根。
〔假如()f x '为二次函数且I R =,如此有0∆>〕。
〔6〕假如函数()f x 在区间I 上不单调且不为常量函数,如此()f x 在I 上有极值。
〔7〕假如,()0x I f x ∀∈>恒成立,如此min ()0f x >;假如,()0x I f x ∀∈<恒成立,如此max ()0f x < 〔8〕假如0x I ∃∈使得0()0f x >,如此max ()0f x >;假如0x I ∃∈使得0()0f x <,如此min ()0f x <. 〔9〕设()f x 与()g x 的定义域的交集为I ,假如,()()x I f x g x ∀∈>恒成立,如此有min [()()]0f x g x ->. 〔10〕假如对112212,,()()x I x I f x g x ∀∈∈>恒成立,如此min max ()()f x g x >.假如对1122,x I x I ∀∈∃∈,使得12()()f x g x >,如此min min ()()f x g x >. 假如对1122,x I x I ∀∈∃∈,使得12()()f x g x <,如此max max ()()f x g x <.〔11〕()f x 在区间1I 上的值域为A ,()g x 在区间2I 上值域为B ,假如对1122,x I x I ∀∈∃∈使得12()()f x g x =成立,如此A B ⊆。
高中导数解题方法归纳总结

高中导数解题方法归纳总结导数是微积分中的重要概念,是描述函数在某一点处变化率的数学工具。
在解题过程中,运用正确的导数解题方法能够有效地解决各种导数相关问题。
本文将对高中导数解题方法进行归纳总结,旨在帮助同学们更好地理解和应用导数。
一、函数求导法则在导数的计算过程中,掌握函数求导的基本法则是非常重要的。
以下是几个常见的函数求导法则:1. 常数法则:对于常数函数f(x)=c,导数恒为0,即f'(x)=0。
2. 幂函数求导法则:对于幂函数f(x)=x^n,其中n为常数,导数为f'(x)=nx^(n-1)。
3. 指数函数求导法则:对于指数函数f(x)=a^x,其中a为常数且a>0且a≠1,导数为f'(x)=a^x * ln(a)。
4. 对数函数求导法则:对于对数函数f(x)=log_a(x),其中a为常数且a>0且a≠1,导数为f'(x)=1 / (x * ln(a))。
5. 三角函数求导法则:对于常见的三角函数(如sin(x),cos(x),tan(x)等),可以利用导数定义或相关恒等式来求导。
二、导数的基本运算法则导数运算法则是在函数求导法则的基础上发展起来的,它能够简化复杂函数的求导过程。
以下是几个常见的导数运算法则:1. 和差法则:对于两个函数f(x)和g(x)的和函数,其导数为(f+g)'(x)=f'(x)+g'(x);对于两个函数f(x)和g(x)的差函数,其导数为(f-g)'(x)=f'(x)-g'(x)。
2. 积法则:对于两个函数f(x)和g(x)的乘积函数,其导数为(fg)'(x)=f'(x)g(x)+f(x)g'(x)。
3. 商法则:对于两个函数f(x)和g(x)的商函数,其导数为(f/g)'(x)=(f'(x)g(x)-f(x)g'(x)) / (g(x))^2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三文科数学函数与导数解题方法规律技巧详细总结版【3年高考试题比较】对于导数的解答题,考纲的要求是:1.了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次);2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次);3.会用导数解决实际问题.通过比较近三年的高考卷总结如下:一般有两问,(16年3卷出现了三问),第一问往往是以讨论函数单调性和切线问题为主,第二问主要涉及不等式的恒成立问题,零点问题,函数最值问题,一元的不等式证明和二元的不等式证明【必备基础知识融合】1.基本初等函数的导数公式2.导数的运算法则若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )](g (x )≠0).3.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 4.函数的单调性与导数(1)在区间D 上,若f ′(x )≥0,且f ′(x )=0不连续成立⇔函数f (x )在区间D 上递增;(2)在区间D 上,若f ′(x )≤0,且f ′(x )=0不连续成立⇔函数f (x )在区间D 上递减; (3)在区间D 上,若f ′(x )=0恒成立⇔函数f (x )在区间D 上是常函数. 5.函数的极值与导数6.函数的最值与导数(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.【解题方法规律技巧】典例1:已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43,则切线的斜率为y ′|x =x 0=x 20. ∴切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43.∵点P (2,4)在切线上,∴4=2x 20-23x 30+43,即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0, ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为x -y +2=0或4x -y -4=0.【规律方法】(1)求切线方程的方法:①求曲线在点P处的切线,则表明P点是切点,只需求出函数在点P处的导数,然后利用点斜式写出切线方程;②求曲线过点P的切线,则P点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程.(2)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.典例2:设函数f(x)=a ln x+x-1x+1,其中a为常数.(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)的单调性.【规律方法】 (1)确定函数单调区间的步骤: ①确定函数f (x )的定义域; ②求f ′(x );③解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间; ④解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.(2)个别导数为0的点不影响所在区间的单调性,如函数f (x )=x 3,f ′(x )=3x 2≥0(x =0时,f ′(x )=0),但f (x )=x 3在R 上是增函数.(3)利用导数研究函数的单调性的关键在于准确判定导数的符号,当f (x )含参数时,需依据参数取值对不等式解集的影响进行分类讨论.分类讨论时,要做到不重不漏.典例3: 已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围. 解 (1)h (x )=ln x -12a x 2-2x ,x ∈(0,+∞),①所以h ′(x )=1x -ax -2,由h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1x-ax -2<0有解,②【规律方法】利用单调性求参数的两类热点问题的处理方法: (1)函数f (x )在区间D 上存在递增(减)区间. 方法一:转化为“f ′(x )>0(<0)在区间D 上有解”;方法二:转化为“存在区间D 的一个子区间使f ′(x )>0(<0)成立”. (2)函数f (x )在区间D 上递增(减).方法一:转化为“f ′(x )≥0(≤0)在区间D 上恒成立”问题; 方法二:转化为“区间D 是函数f (x )的单调递增(减)区间的子集”. 易错警示 对于①:处理函数单调性问题时,应先求函数的定义域;对于②:h (x )在(0,+∞)上存在递减区间,应等价于h ′(x )<0在(0,+∞)上有解,易误认为“等价于h ′(x )≤0在(0,+∞)上有解”,多带一个“=”之所以不正确,是因为“h ′(x )≤0在(0,+∞)上有解即为h ′(x )<0在(0,+∞)上有解,或h ′(x )=0在(0,+∞)上有解”,后者显然不正确;对于③:h (x )在[1,4]上单调递减,应等价于h ′(x )≤0在[1,4]上恒成立,易误认为“等价于h ′(x )<0在[1,4]上恒成立”.典例4:已知函数()()2ln R 2a f x x x x a =-∈ .(1)若2a = ,求曲线()y f x = 在点()()1,1f 处的切线方程;(2)若()()()1g x f x a x =+- 在1x = 处取得极小值,求实数a 的取值范围. 【答案】(1)y x =-(2)1a <①当()0,0,a x ≤∈+∞ 时, ()'0h x > ,函数()'g x 单调递增,所以当()0,1x ∈ 时, ()'0g x <,当()1,x ∈+∞时, ()'0g x > ,所以()g x 在1x =处取得极小值,满足题意. ②当01a <<时,11a > ,当10,x a ⎛⎫∈ ⎪⎝⎭时, ()'0h x > ,故函数()'g x 单调递增,可得当()0,1x ∈ 时, ()1'01,g x x a ⎛⎫<∈ ⎪⎝⎭,时, ()'0g x > ,所以()g x 在1x =处取得极小值,满足题意.③当1a =时,当()0,1x ∈ 时, ()'0h x >, ()'g x 在()0,1内单调递增, ()1,x ∈+∞时, ()()'0,'h x g x < 在()1,+∞内单调递减,所以当()0,x ∈+∞时, ()()'0,g x g x ≤单调递减,不合题意. ④当1a >时,即101a <<,当1,1x a ⎛⎫∈ ⎪⎝⎭时, ()()'0,'h x g x < 单调递减, ()'0g x > ,当()1,x ∈+∞时,()()'0,'h x g x <单调递减, ()'0g x < ,所以()g x 在1x =处取得极大值,不合题意. 综上可知,实数a 的取值范围为1a < .【规律方法】函数极值的两类热点问题(1)求函数f (x )极值这类问题的一般解题步骤为:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)由函数极值求参数的值或范围.讨论极值点有无(个数)问题,转化为讨论f ′(x )=0根的有无(个数).然后由已知条件列出方程或不等式求出参数的值或范围,特别注意:极值点处的导数为0,而导数为0的点不一定是极值点,要检验极值点两侧导数是否异号.典例5:已知函数f (x )=(4x 2+4ax +a 2)x ,其中a <0. (1)当a =-4时,求f (x )的单调递增区间; (2)若f (x )在区间[1,4]上的最小值为8,求a 的值.①当-a2≤1时,即-2≤a <0时,f (x )在[1,4]上的最小值为f (1),由f (1)=4+4a +a 2=8,得a =±22-2,均不符合题意. ②当1<-a2≤4时,即-8≤a <-2时,f (x )在[1,4]上的最小值为f ⎝⎛⎭⎫-a2=0,不符合题意. ③当-a2>4时,即a <-8时,f (x )在[1,4]上的最小值可能在x =1或x =4处取得,而f (1)≠8, 由f (4)=2(64+16a +a 2)=8得a =-10或a =-6(舍去),当a =-10时,f (x )在(1,4)上单调递减,f (x )在[1,4]上的最小值为f (4)=8,符合题意. 综上有,a =-10.【规律方法】(1)求函数f (x )在[a ,b ]上的最大值和最小值的步骤:①求函数在(a ,b )内的极值;②求函数在区间端点的函数值f (a ),f (b );③将函数f (x )的极值与 f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.(2)含参数的函数的最值一般不通过比值求解,而是先讨论函数的单调性,再根据单调性求出最值.含参函数在区间上的最值通常有两类:一是动极值点定区间,二是定极值点动区间,这两类问题一般根据区间与极值点的位置关系来分类讨论.典例6:已知函数f (x )=ax +ln x ,x ∈[1,e]. (1)若a =1,求f (x )的最大值;(2)若f (x )≤0恒成立,求实数a 的取值范围.则g ′(x )=ln x -1x 2, ∵x ∈[1,e],∴g ′(x )≤0, ∴g (x )在[1,e]上递减, ∴g (x )min =g (e)=-1e ,∴a ≤-1e.法二 要使x ∈[1,e],f (x )≤0恒成立,只需x ∈[1,e]时,f (x )max ≤0,显然当a ≥0时,f (x )=ax +ln x 在[1,e]上递增,∴f (x )max =f (e)=a e +1>0,不合题意; 当a <0时,f ′(x )=a +1x =ax +1x ,令f ′(x )=0,x =-1a,【规律方法】 由不等式恒(能)成立求参数的范围常有两种方法:(1)讨论最值:先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;(2)分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围. 典例7:设函数f(x)=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数.解 (1)由题设,当m =e 时,f (x )=ln x +ex ,定义域为(0,+∞),则f ′(x )=x -ex 2,由f ′(x )=0,得x =e. ∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞),f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee=2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. ∴x =1是φ(x )的唯一极值点,且是极大值点, 因此x =1也是φ(x )的最大值点. ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.【规律方法】利用导数研究函数的零点常用两种方法:(1)运用导数研究函数的单调性和极值,利用单调性和极值定位函数图象来解决零点问题;(2)将函数零点问题转化为方程根的问题,利用方程的同解变形转化为两个函数图象的交点问题,利用数形结合来解决.典例8:已知函数f (x )=ax +bx 2+1在点(-1,f (-1))处的切线方程为x +y +3=0.(1)求函数f (x )的解析式;(2)设g (x )=ln x ,求证:g (x )≥f (x )在[1,+∞)上恒成立;(3)若0<a <b ,求证:ln b -ln a b -a >2a a 2+b2.(2)证明 由题意知要证ln x ≥2x -2x 2+1在[1,+∞)上恒成立, 即证明(x 2+1)ln x ≥2x -2,x 2ln x +ln x -2x +2≥0在[1,+∞)上恒成立.设h (x )=x 2ln x +ln x -2x +2,则h ′(x )=2x ln x +x +1x-2, 因为x ≥1,所以2x ln x ≥0,x +1x ≥2·x ·1x≥2(当且仅当x =1时等号成立),即h ′(x )≥0, 所以h (x )在[1,+∞)上单调递增,h (x )≥h (1)=0, 所以g (x )≥f (x )在[1,+∞)上恒成立.(3)证明 因为0<a <b ,所以b a>1, 由(2)知ln b a >2·b a -2⎝⎛⎭⎫b a 2+1,整理得ln b -ln a b -a >2a a 2+b 2, 所以当0<a <b 时,ln b -ln a b -a >2a a 2+b 2. 【规律方法】 证明不等式通常需要构造函数,利用函数的最值、单调性证明.(1)证明不等式f (x )<g (x ),可构造函数F (x )=f (x )-g (x ),利用导数求F (x )的值域,得到F (x )<0即可;(2)对于证明含有两个变量a ,b 的不等式时,一种方法是通过变形构造成不等式f (a )>f (b ),然后利用函数f (x )的单调性证明,另一种方法是通过换元构造成单变量不等式,如本例令x =b a然后再利用已知关系证明即可. 典例9:设k ∈R ,函数()ln f x x kx =-.(Ⅰ)若2k =,求曲线()y f x =在1x =处的切线方程;(Ⅱ)若()f x 无零点,求实数k 的取值范围;(Ⅲ)若()f x 有两个相异零点12x x ,,求证: 12ln ln 2x x +>.【答案】(Ⅰ) 10x y ++=;(Ⅱ) 1,e ∞⎛⎫+ ⎪⎝⎭;(Ⅲ)证明见解析.试题解析:(Ⅰ)函数的定义域为()()110,'kx f x k x x∞-+=-=,, 当2k =时, ()'11f =-,则切线方程为()()21y x --=--,即10x y ++=.(Ⅱ)①若k 0<时,则()()'0f x f x >,是区间()0,∞+上的增函数,∵()()()10e e 1e 0k k k f k f k k k =->=-=-<,,∴()()1e 0k f f ⋅<,函数()f x 在区间()0,∞+有唯一零点;②若()0ln k f x x ==,有唯一零点1x =;③若0k >,令()'0f x =,得1x k =, 在区间10,k ⎛⎫ ⎪⎝⎭上, ()'0f x >,函数()f x 是增函数; 在区间1,k ∞⎛⎫+ ⎪⎝⎭上, ()'0f x <,函数()f x 是减函数; 故在区间()0,∞+上, ()f x 的最大值为1ln 1ln 1f k k k ⎛⎫=-=--⎪⎝⎭,∵120x x >>,要证12ln ln 2x x +>,只需证()122k x x +>,只需121212ln ln 2x x x x x x ->-+,等价于()1212122ln x x x x x x ->+, 设121x t x =>上式转化为()21ln (11t t t t ->>+), 设()()()()()22211ln '011t t g t t g t t t t --=-=>++,,∴()g t 在()1,∞+上单调递增,∴()()10g t g >=,∴()21ln 1t t t ->+, ∴12ln ln 2x x +>.【规律方法】涉及到二元问题的证明问题,通常是将二元问题一元化,进而利用函数导数求最值即可得解. 二元问题一元化的一般思路有:(1)等量代换,将题中的等量关系代入即可; (2)变量集中,通常是设12x t x =,12t x x =+,12t x x =-等手段将二元关系换成关于t 的一元函数即可; (3)利用“极值点偏移”的思想,将二元换为一元.典例10:设函数()()2(x f x x ax a e a R -=+-⋅∈).(1)当0a =时,求曲线()y f x =在点()()1,1f --处的切线方程;(2)设()21g x x x =--,若对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立,求a 的取值范围. 【答案】(1) 320ex y e ++=;(2) 1a ≤-或24a e ≥-.试题解析:(1)当0a =时,因为()2x f x x e -=⋅,所以()()()2'2,'13x f x x x e f e -=-+⋅-=-,又因为()1f e -=,所以曲线()y f x =在点()()1,1f --处的切线方程为()31y e e x -=-+,即320ex y e ++=.(2)“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上, ()f x 的最大值大于或等于()g x 的最大值”.因为()2215124g x x x x ⎛⎫=--=-- ⎪⎝⎭,所以()g x 在[]0,2上的最大值为()21g =. ()()()2'2x x f x x a e x ax a e --=+⋅-+-⋅ ()222x e x a x a -⎡⎤=-+--⎣⎦ ()()2x e x x a -=--+,令()'0f x =,得2x =或x a =-.①当0a -≤,即0a ≥时, ()'0f x ≥在[]0,2上恒成立, ()f x 在[]0,2上为单调递增函数, ()f x 的最大值大为()()2124f a e =+⋅,由()2141a e+⋅≥,得24a e ≥-; ②当02a <-<,即20a -<<时,当()0,x a ∈-时, ()()'0,f x f x <为单调递减函数,当(),2x a ∈-时, ()()'0,f x f x >为单调递增函数,所以()f x 的最大值大为()0f a =-或()()2124f a e=+⋅.由1a -≥,得1a ≤-;由()2141a e +⋅≥,得24a e ≥-,又因为20a -<<,所以21a -<≤-; ③当2a -≥,即2a ≤-时, ()'0f x ≤在[]0,2上恒成立, ()f x 在[]0,2上为单调递减函数,所以()f x 的最大值大为()0f a =-,由1a -≥,得1a ≤-,又因为2a ≤-,所以2a ≤-,综上所述,实数a 的取值范围是1a ≤-或24a e ≥-.【规律方法】利用导数研究函数单调性,利用导数研究函数极值,导数几何意义等内容是考查的重点.解题时,注意函数与方程思想、数形结合思想、分类讨论思想、等价转化思想的应用,另外,还要能够将问题进行合理的转化,尤其是“任意”和“存在”问题的等价转化,可以简化解题过程.本题“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上, ()f x 的最大值大于或等于()g x 的最大值”. 【归纳常用万能模板】设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )零点的个数;(2)证明:当a >0时,f (x )≥2a +a ln 2a. 满分解答 (1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -a x (x >0).当a ≤0时,f ′(x )>0,f ′(x )没有零点.2分当a >0时,设u (x )=e 2x ,v (x )=-a x ,因为u (x )=e 2x 在(0,+∞)上单调递增,v (x )=-a x 在(0,+∞)上单调递增,所以f ′(x )在(0,+∞)上单调递增.4分又f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0(讨论a ≥1或a <1来检验),故当a >0时,f ′(x )存在唯一零点.6分(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x =x 0时,f (x )取得最小值,最小值为f (x 0)9分由于2e2x 0-a x 0=0, 所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a . 故当a >0时,f (x )≥2a +a ln 2a .12分❶得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问中,求导正确,分类讨论;第(2)问中利用单调性求f (x )的最小值和基本不等式的应用.❷得关键分:解题过程不可忽视关键点,有则给分,无则没分,如第(1)问中,求出f(x)的定义域,f′(x)在(0,+∞)上单调性的判断;第(2)问,f(x)在x=x0处最值的判定.❸得计算分:解题过程中计算准确是得满分的根本保证.如第(1)问中,求导f′(x)准确,否则全盘皆输,求解使f′(b)<0的b满足的约束条件0<b<a4,且b<14.如第(2)问中x0满足条件的计算,若计算错误不得分,另外还应注意规范的文字、符号语言的表述.1.讨论零点个数的答题模板第一步:求函数的定义域;第二步:分类讨论函数的单调性、极值;第三步:根据零点存在性定理,结合函数图象确定各分类情况的零点个数.2.证明不等式的答题模板第一步:根据不等式合理构造函数;第二步:求函数的最值;第三步:根据最值证明不等式.。