2019届高三文科数学函数与导数解题方法规律技巧详细总结版

2019届高三文科数学函数与导数解题方法规律技巧详细总结版
2019届高三文科数学函数与导数解题方法规律技巧详细总结版

高三文科数学函数与导数解题方法规律技巧详细总结版

【3年高考试题比较】

对于导数的解答题,考纲的要求是:1.了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次);2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次);3.会用导数解决实际问题.

通过比较近三年的高考卷总结如下:一般有两问,(16年3卷出现了三问),第一问往往是以讨论函数单调性和切线问题为主,第二问主要涉及不等式的恒成立问题,零点问题,函数最值问题,一元的不等式证明和二元的不等式证明

【必备基础知识融合】

1.基本初等函数的导数公式

2.导数的运算法则

若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );

(3)??????

f (x )

g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )](g (x )≠0).

3.复合函数的导数

复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的

导数等于y 对u 的导数与u 对x 的导数的乘积. 4.函数的单调性与导数

(1)在区间D 上,若f ′(x )≥0,且f ′(x )=0不连续成立?函数f (x )在区间D 上递增;

(2)在区间D 上,若f ′(x )≤0,且f ′(x )=0不连续成立?函数f (x )在区间D 上递减; (3)在区间D 上,若f ′(x )=0恒成立?函数f (x )在区间D 上是常函数. 5.函数的极值与导数

6.函数的最值与导数

(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.

(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.

【解题方法规律技巧】

典例1:已知曲线y =13x 3+4

3

.

(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.

(2)设曲线y =13x 3+43

与过点P (2,4)的切线相切于点A ????x 0,13x 30+43,则切线的斜率为y ′|x =x 0=x 20. ∴切线方程为y -????13x 30+43=x 20(x -x 0),即y =x 20·x -23x 30+43.∵点P (2,4)在切线上,∴4=2x 20-23x 30+43

,即x 30-3x 20+4=0,∴x 30+x 20-4x 20

+4=0, ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0,∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0

=2,故所求的切线方程为x -y +2=0或4x -y -4=0.

【规律方法】(1)求切线方程的方法:

①求曲线在点P处的切线,则表明P点是切点,只需求出函数在点P处的导数,然后利用点斜式写出切线方程;

②求曲线过点P的切线,则P点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程.

(2)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.

典例2:设函数f(x)=a ln x+x-1

x+1

,其中a为常数.

(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;

(2)讨论函数f(x)的单调性.

【规律方法】 (1)确定函数单调区间的步骤: ①确定函数f (x )的定义域; ②求f ′(x );

③解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间; ④解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.

(2)个别导数为0的点不影响所在区间的单调性,如函数f (x )=x 3

,f ′(x )=3x 2

≥0(x =0时,f ′(x )=0),但f (x )=x 3

在R 上是增函数.

(3)利用导数研究函数的单调性的关键在于准确判定导数的符号,当f (x )含参数时,需依据参数取值对不等式解集的影响进行分类讨论.分类讨论时,要做到不重不漏.

典例3: 已知函数f (x )=ln x ,g (x )=1

2ax 2+2x (a ≠0).

(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围. 解 (1)h (x )=ln x -1

2

a x 2-2x ,x ∈(0,+∞),①

所以h ′(x )=1x -ax -2,由h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1

x

-ax -2<0有解,②

【规律方法】利用单调性求参数的两类热点问题的处理方法: (1)函数f (x )在区间D 上存在递增(减)区间. 方法一:转化为“f ′(x )>0(<0)在区间D 上有解”;

方法二:转化为“存在区间D 的一个子区间使f ′(x )>0(<0)成立”. (2)函数f (x )在区间D 上递增(减).

方法一:转化为“f ′(x )≥0(≤0)在区间D 上恒成立”问题; 方法二:转化为“区间D 是函数f (x )的单调递增(减)区间的子集”. 易错警示 对于①:处理函数单调性问题时,应先求函数的定义域;

对于②:h (x )在(0,+∞)上存在递减区间,应等价于h ′(x )<0在(0,+∞)上有解,易误认为“等价于h ′(x )≤0在(0,+∞)上有解”,多带一个“=”之所以不正确,是因为“h ′(x )≤0在(0,+∞)上有解即为h ′(x )<0在(0,+∞)上有解,或h ′(x )=0在(0,+∞)上有解”,后者显然不正确;

对于③:h (x )在[1,4]上单调递减,应等价于h ′(x )≤0在[1,4]上恒成立,易误认为“等价于h ′(x )<0在[1,4]上恒成立”.

典例4:已知函数()()2

ln R 2

a f x x x x a =-

∈ .

(1)若2a = ,求曲线()y f x = 在点()()

1,1f 处的切线方程;

(2)若()()()1g x f x a x =+- 在1x = 处取得极小值,求实数a 的取值范围. 【答案】(1)y x =-(2)1a <

①当()0,0,a x ≤∈+∞ 时, ()'0h x > ,函数()'g x 单调递增,所以当()0,1x ∈ 时, ()'0g x <,当()1,x ∈+∞时, ()'0g x > ,所以()g x 在1x =处取得极小值,满足题意. ②当01a <<时,

11a > ,当10,x a ??

∈ ???

时, ()'0h x > ,故函数()'g x 单调递增,可得当()0,1x ∈ 时, ()1'01,g x x a ??

<∈ ???

,时, ()'0g x > ,所以()g x 在1x =处取得极小值,满足题意.

③当1a =时,当()0,1x ∈ 时, ()'0h x >, ()'g x 在()0,1内单调递增, ()1,x ∈+∞时, ()()'0,'h x g x < 在()1,+∞内单调递减,所以当()0,x ∈+∞时, ()()'0,g x g x ≤单调递减,不合题意. ④当1a >时,即101a <

<,当1,1x a ??

∈ ???

时, ()()'0,'h x g x < 单调递减, ()'0g x > ,当()1,x ∈+∞时,

()()'0,'h x g x <单调递减, ()'0g x < ,所以()g x 在1x =处取得极大值,不合题意. 综上可知,实数a 的

取值范围为1a < .

【规律方法】函数极值的两类热点问题

(1)求函数f (x )极值这类问题的一般解题步骤为:

①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.

(2)由函数极值求参数的值或范围.

讨论极值点有无(个数)问题,转化为讨论f ′(x )=0根的有无(个数).然后由已知条件列出方程或不等式求出参数的值或范围,特别注意:极值点处的导数为0,而导数为0的点不一定是极值点,要检验极值点两侧导数是否异号.

典例5:已知函数f (x )=(4x 2+4ax +a 2)x ,其中a <0. (1)当a =-4时,求f (x )的单调递增区间; (2)若f (x )在区间[1,4]上的最小值为8,求a 的值.

①当-a

2

≤1时,

即-2≤a <0时,f (x )在[1,4]上的最小值为f (1),由f (1)=4+4a +a 2=8,得a =±22-2,均不符合题意. ②当1<-a

2

≤4时,

即-8≤a <-2时,f (x )在[1,4]上的最小值为f ????-a

2=0,不符合题意. ③当-a

2

>4时,

即a <-8时,f (x )在[1,4]上的最小值可能在x =1或x =4处取得,而f (1)≠8, 由f (4)=2(64+16a +a 2)=8得a =-10或a =-6(舍去),

当a =-10时,f (x )在(1,4)上单调递减,f (x )在[1,4]上的最小值为f (4)=8,符合题意. 综上有,a =-10.

【规律方法】(1)求函数f (x )在[a ,b ]上的最大值和最小值的步骤:①求函数在(a ,b )内的极值;②求函数在区间端点的函数值f (a ),f (b );③将函数f (x )的极值与 f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.

(2)含参数的函数的最值一般不通过比值求解,而是先讨论函数的单调性,再根据单调性求出最值.含参函数在区间上的最值通常有两类:一是动极值点定区间,二是定极值点动区间,这两类问题一般根据区间与极值点的位置关系来分类讨论.

典例6:已知函数f (x )=ax +ln x ,x ∈[1,e]. (1)若a =1,求f (x )的最大值;

(2)若f (x )≤0恒成立,求实数a 的取值范围.

则g ′(x )=

ln x -1

x 2

, ∵x ∈[1,e],∴g ′(x )≤0, ∴g (x )在[1,e]上递减, ∴g (x )min =g (e)=-1e ,∴a ≤-1

e

.

法二 要使x ∈[1,e],f (x )≤0恒成立,只需x ∈[1,e]时,f (x )max ≤0,显然当a ≥0时,f (x )=ax +ln x 在[1,e]上递增,

∴f (x )max =f (e)=a e +1>0,不合题意; 当a <0时,f ′(x )=a +1x =ax +1

x ,

令f ′(x )=0,x =-1

a

【规律方法】 由不等式恒(能)成立求参数的范围常有两种方法:(1)讨论最值:先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;(2)分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围. 典例7:设函数f(x)=ln x +m

x

,m ∈R .

(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x

3零点的个数.

解 (1)由题设,当m =e 时,f (x )=ln x +e

x ,

定义域为(0,+∞),则f ′(x )=

x -e

x 2

,由f ′(x )=0,得x =e. ∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞),f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +e

e

=2,

∴f (x )的极小值为2.

(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x

3(x >0),

令g (x )=0,得m =-1

3x 3+x (x >0).

设φ(x )=-1

3

x 3+x (x >0),

则φ′(x )=-x 2+1=-(x -1)(x +1),

当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. ∴x =1是φ(x )的唯一极值点,且是极大值点, 因此x =1也是φ(x )的最大值点. ∴φ(x )的最大值为φ(1)=2

3

.

又φ(0)=0,结合y =φ(x )的图象(如图),

可知①当m >2

3时,函数g (x )无零点;

②当m =2

3时,函数g (x )有且只有一个零点;

③当0<m <2

3时,函数g (x )有两个零点;

④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >2

3时,函数g (x )无零点;

当m =2

3或m ≤0时,函数g (x )有且只有一个零点;

当0<m <2

3

时,函数g (x )有两个零点.

【规律方法】利用导数研究函数的零点常用两种方法:

(1)运用导数研究函数的单调性和极值,利用单调性和极值定位函数图象来解决零点问题;

(2)将函数零点问题转化为方程根的问题,利用方程的同解变形转化为两个函数图象的交点问题,利用数形结合来解决.

典例8:已知函数f (x )=ax +b

x 2+1在点(-1,f (-1))处的切线方程为x +y +3=0.

(1)求函数f (x )的解析式;

(2)设g (x )=ln x ,求证:g (x )≥f (x )在[1,+∞)上恒成立; (3)若02a

a 2+b

2.

(2)证明 由题意知要证ln x ≥2x -2

x 2+1

在[1,+∞)上恒成立,

即证明(x 2+1)ln x ≥2x -2,x 2ln x +ln x -2x +2≥0在[1,+∞)上恒成立. 设h (x )=x 2ln x +ln x -2x +2,则h ′(x )=2x ln x +x +1

x -2,

因为x ≥1,所以2x ln x ≥0,x +1

x

≥2·

x ·1

x

≥2(当且仅当x =1时等号成立),即h ′(x )≥0, 所以h (x )在[1,+∞)上单调递增,h (x )≥h (1)=0, 所以g (x )≥f (x )在[1,+∞)上恒成立. (3)证明 因为0

a

>1,

由(2)知ln b

a >2·

b a -2????b a 2+1,整理得ln b -ln a b -a >2a a 2+b 2,

所以当02a

a 2+

b 2

.

【规律方法】 证明不等式通常需要构造函数,利用函数的最值、单调性证明.

(1)证明不等式f (x )f (b ),然后利用函数f (x )的单调性证明,另一种方法是通过换元构造成单变量不等式,如本例令x =b

a

然后再利用已知关系证明即可. 典例9:设k ∈R ,函数()ln f x x kx =-.

(Ⅰ)若2k =,求曲线()y f x =在1x =处的切线方程;

(Ⅱ)若()f x 无零点,求实数k 的取值范围;

(Ⅲ)若()f x 有两个相异零点12x x ,,求证: 12ln ln 2x x +>. 【答案】(Ⅰ) 10x y ++=;(Ⅱ) 1,e ∞??+ ???

;(Ⅲ)证明见解析.

试题解析:

(Ⅰ)函数的定义域为()()110,'kx

f x k x x

∞-+=

-=

,, 当2k =时, ()'11f =-,则切线方程为()()21y x --=--,即10x y ++=. (Ⅱ)①若k 0<时,则()()'0f x f x >,是区间()0,∞+上的增函数, ∵()()()

10e e 1e 0k k k f k f k k k =->=-=-<,, ∴()()

1e 0k f f ?<,函数()f x 在区间()0,∞+有唯一零点; ②若()0ln k f x x ==,有唯一零点1x =; ③若0k >,令()'0f x =,得1x k

=, 在区间10,

k ??

???

上, ()'0f x >,函数()f x 是增函数; 在区间1,k ∞??

+

???

上, ()'0f x <,函数()f x 是减函数; 故在区间()0,∞+上, ()f x 的最大值为1ln 1ln 1f k k k ??

=-=--

?

??

∵120x x >>,要证12ln ln 2x x +>,只需证()122k x x +>, 只需

121212ln ln 2

x x x x x x ->-+,等价于()121212

2ln x x x x x x ->+,

设1

21x t x =

>上式转化为()21ln (11

t t t t ->

>+), 设()()()()()

2

2

211ln '01

1t t g t t g t t t t --=-

=>++,,

∴()g t 在()1,∞+上单调递增, ∴()()10g t g >=,∴()21ln 1

t t t ->+,

∴12ln ln 2x x +>.

【规律方法】涉及到二元问题的证明问题,通常是将二元问题一元化,进而利用函数导数求最值即可得解. 二元问题一元化的一般思路有:(1)等量代换,将题中的等量关系代入即可; (2)变量集中,通常是设1

2

x t x =

,12t x x =+,12t x x =-等手段将二元关系换成关于t 的一元函数即可; (3)利用“极值点偏移”的思想,将二元换为一元. 典例10:设函数()()

2(x f x x ax a e a R -=+-?∈).

(1)当0a =时,求曲线()y f x =在点()()

1,1f --处的切线方程;

(2)设()21g x x x =--,若对任意的[]0,2t ∈,存在[]

0,2s ∈使得()()f s g t ≥成立,求a 的取值范围.

【答案】(1) 320ex y e ++=;(2) 1a ≤-或24a e ≥-.

试题解析:(1)当0a =时,因为()2

x

f x x e -=?,所以()()

()2'2,'13x f x x x e f e -=-+?-=-,又因为()1f e -=,

所以曲线()y f x =在点()()

1,1f --处的切线方程为()31y e e x -=-+,即320ex y e ++=.

(2)“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]

0,2上, ()f x 的最大值大

于或等于()g x 的最大值”.因为()2

215124g x x x x ?

?=--=-- ??

?,所以()g x 在[]0,2上的最大值为()21g =.

()()()

2'2x x f x x a e x ax a e --=+?-+-? ()2

22x e x a x a -??=-+--??

()()2x e x x a -=--+,令()'0f x =,得2x =或x a =-.

①当0a -≤,即0a ≥时, ()'0f x ≥在[]0,2上恒成立, ()f x 在[]

0,2上为单调递增函数, ()f x 的最大值大为()()2124f a e =+?

,由()2

141a e

+?≥,得2

4a e ≥-; ②当02a <-<,即20a -<<时,当()0,x a ∈-时, ()()'0,f x f x <为单调递减函数,当(),2x a ∈-时,

()()'0,f x f x >为单调递增函数,所以()f x 的最大值大为()0f a =-或()()21

24f a e

=+?.由1a -≥,得1a ≤-;由()2

141a e

+?

≥,得2

4a e ≥-,又因为20a -<<,所以21a -<≤-; ③当2a -≥,即2a ≤-时, ()'0f x ≤在[]0,2上恒成立, ()f x 在[]

0,2上为单调递减函数,所以()f x 的最大值大为()0f a =-,由1a -≥,得1a ≤-,又因为2a ≤-,所以2a ≤-,

综上所述,实数a 的取值范围是1a ≤-或2

4a e ≥-.

【规律方法】利用导数研究函数单调性,利用导数研究函数极值,导数几何意义等内容是考查的重点.解题时,注意函数与方程思想、数形结合思想、分类讨论思想、等价转化思想的应用,另外,还要能够将问题进行合理的转化,尤其是“任意”和“存在”问题的等价转化,可以简化解题过程.本题“对任意的[]0,2t ∈,存在[]

0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]

0,2上, ()f x 的最大值大于或等于()g x 的最大值”.

【归纳常用万能模板】

设函数f (x )=e 2x -a ln x .

(1)讨论f (x )的导函数f ′(x )零点的个数; (2)证明:当a >0时,f (x )≥2a +a ln 2a

.

满分解答 (1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -a

x (x >0). 当a ≤0时,f ′(x )>0,f ′(x )没有零点.2分 当a >0时,设u (x )=e 2x ,v (x )=-a

x ,

因为u (x )=e 2x 在(0,+∞)上单调递增,v (x )=-a

x 在(0,+∞)上单调递增,所以f ′(x )在(0,+∞)上单调递增.4分

又f ′(a )>0,当b 满足0<b <a 4且b <1

4时,f ′(b )<0(讨论a ≥1或a <1来检验), 故当a >0时,f ′(x )存在唯一零点.6分

(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0; 当x ∈(x 0,+∞)时,f ′(x )>0.

故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以当x =x 0时,f (x )取得最小值,最小值为f (x 0)9分 由于2e2x 0-a

x 0

=0,

所以f (x 0)=a 2x 0

+2ax 0+a ln 2a ≥2a +a ln 2

a .

故当a >0时,f (x )≥2a +a ln 2

a .12分

?得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问中,求导正确,分类讨论;第(2)问中利用单调性求f (x )的最小值和基本不等式的应用.

?得关键分:解题过程不可忽视关键点,有则给分,无则没分,如第(1)问中,求出f(x)的定义域,f′(x)在(0,+∞)上单调性的判断;第(2)问,f(x)在x=x0处最值的判定.

?得计算分:解题过程中计算准确是得满分的根本保证.

如第(1)问中,求导f′(x)准确,否则全盘皆输,求解使f′(b)<0的b满足的约束条件0<b<a

4,且b

<1

4.如第(2)问中x0满足条件的计算,若计算错误不得分,另外还应注意规范的文字、符号语言的表

述.

1.讨论零点个数的答题模板

第一步:求函数的定义域;

第二步:分类讨论函数的单调性、极值;

第三步:根据零点存在性定理,结合函数图象确定各分类情况的零点个数.

2.证明不等式的答题模板

第一步:根据不等式合理构造函数;

第二步:求函数的最值;

第三步:根据最值证明不等式.

高中高考数学专题复习《函数与导数》

高中高考数学专题复习<函数与导数> 1.下列函数中,在区间()0,+∞上是增函数的是 ( ) A .1y x = B. 12x y ?? = ??? C. 2log y x = D.2x y -= 2.函数()x x x f -= 1 的图象关于( ) A .y 轴对称 B .直线y =-x 对称 C .坐标原点对称 D .直线y =x 对称 3.下列四组函数中,表示同一函数的是( ) A .y =x -1与y .y y C .y =4lgx 与y =2lgx 2 D .y =lgx -2与y =lg x 100 4.下列函数中,既不是奇函数又不是偶函数,且在)0,(-∞上为减函数的是( ) A .x x f ?? ? ??=23)( B .1)(2+=x x f C.3)(x x f -= D.)lg()(x x f -= 5.已知0,0a b >>,且12 (2)y a b x =+为幂函数,则ab 的最大值为 A . 18 B .14 C .12 D .34 6.下列函数中哪个是幂函数( ) A .3 1-??? ??=x y B .2 2-?? ? ??=x y C .3 2-=x y D .()3 2--=x y 7.)43lg(12x x y -++=的定义域为( ) A. )43 ,21(- B. )43 ,21[- C. ),0()0,2 1(+∞?- D. ),43 []21 ,(+∞?-∞ 8.如果对数函数(2)log a y x +=在()0,x ∈+∞上是减函数,则a 的取值范围是 A.2a >- B.1a <- C.21a -<<- D.1a >- 9.曲线3 ()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( )

高考文科数学专题复习导数训练题(文)

考点一:求导公式。 例1. ()f x '是3 1()213f x x x =++的导函数,则(1)f '-的值是 。 解析: ()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22y x = +,则(1)(1)f f '+= 。 解析:因为 21=k ,所以()211'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()251= f , 所以()()31'1=+f f 答案:3 例3.曲线 32 242y x x x =--+在点(13)-,处的切线方程是 。 解析: 443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-, 带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 考点三:导数的几何意义的应用。 例4.已知曲线C : x x x y 232 3+-=,直线kx y l =:,且直线l 与曲线C 相切于点()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析: 直线过原点,则 ()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02 0300 23x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2 +-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为 ()263'02 00+-==x x x f k ,∴ 2632302 002 0+-=+-x x x x , 整理得:03200=-x x ,解得: 2 30= x 或00=x (舍),此时, 830-=y ,41-=k 。所以,直线l 的方程为x y 41 -=,切点坐标是??? ??-83,23。 考点四:函数的单调性。 例5.已知 ()132 3+-+=x x ax x f 在R 上是减函数,求a 的取值围。 解析:函数()x f 的导数为 ()163'2 -+=x ax x f 。对于R x ∈都有()0'a 时,函数()x f 在R 上存在增区间。所以,当3->a 时,函数()x f 在R 上不是单调递减函数。 综合(1)(2)(3)可知3-≤a 。 答案:3-≤a 考点五:函数的极值。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值;(2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值围。 解析:(1) 2 ()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=?? ++=?, .,解得3a =-,4b =。 (2)由(Ⅰ)可知,32()29128f x x x x c =-++, 2 ()618126(1)(2)f x x x x x '=-+=--。

2019届东莞市高三文科数学模拟试题(三)

东莞市2019届高三文科数学模拟试题(三) 东华高级中学康逢永老师提供 一、选择题(每小题5分,共50分) 1. 复数 2 2 (1i) i +等于( ) A.2 B.2- C.i 2- D.i 2 2.已知直线l 、m 和平面α、β,下列四个命题中,真命题的个数是( ①若l ∥α,m ∥α,则l ∥m ;②若α∥l ,β∥l ,则α∥β; ③若l α⊥,l β⊥,则α∥β;④若l α⊥,m α⊥,则l ∥m . A .1 B .2 C .3 D .4 3.已知}{n a 为等差数列,且1247-=-a a , 03=a ,则公差=d ( ) A.2- B.-12 C.1 2 D.2 4.在右面的程序框图中,若5=x ,则输出的i 的值是( ) A. 2 B. 3 C. 4 D. 5 5.如图,一个体积为 则这个三棱柱的左视图的面积为( ) A.36 B .8 C .38 D .12 6.“1=m ”是“直线01)2(=+++my x m 与直线03)2()2(=-++-y m x m 相互垂 直”的( ) A .充分必要条件 B .充分而不必要条件 C ..必要而不充分条件 D .既不充分也不必要条件 7.已知两点(2,0),(0,2)A B -,点C 是圆22 4460x y x y +-++=上任意一点,则点C 到直线AB 距离的最小值是( ) A.22 B. C .2 D . 8.设min{, }p q 表示p ,q 两者中的较小者,若函数}log ,3m in{)(2x x x f -=,则满足0)(

的取值范围是( ) A. ),3()1,0(+∞ B. )3,1( C. ),3()1,(+∞-∞ D. ),2 5()1,0(+∞ 9.已知点F 是双曲线)0,0(122 22>>=-b a b y a x 的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴 的直线与双曲线交于B A ,两点,若ABE ?是直角三角形,则该双曲线的离心率等于( ) A. 3 B. 2 C.3 D.4 10.已知函数()f t 是奇函数且是R 上的增函数,若y x ,满足不等式2 2 (2)(2)f x x f y y -≤--,则2 2 x y + 的最大值是( ) A B ..8 D .12 二、填空题(每小题5分,共20分) 11.已知向量)2,4(=→ a ,向量)3,(x b =→ ,且→ →b a //,则=x . 12.若实数,x y 满足不等式组?? ? ??≥≤-+≥+-0010 1y y x y x ,则函数2z x y =+的最大值为 . 13. 已知集合{} (,)1,,A x y y x x y ==-∈R ,{} (,)2,,B x y y ax x y ==+∈R ,若集合A B 有且只 有一个元素,则实数a 的取值范围是 . ▲选做题(考生只能从中选做一题) 14.在极坐标系中,点)4 7,2(π A 到直线22)4sin(= +πθρ的 距离为 . 15.已知⊙O 的割线PAB 交⊙O 于B A ,两点,割线PCD 经过圆心, 若3=PA ,4=AB ,5=PO ,则⊙O 的半径为___________. 三、解答题(本大题共6小题,满分80分) 16.(本小题满分12分) 已知函数)2 sin(sin 3sin )(2 π ωωω+?+=x x x x f (0>ω)的最小正周期为π. (Ⅰ)求ω的值; (Ⅱ)求函数)(x f 在区间]3 2, 0[π 上的取值范围. (Ⅲ)函数)(x f 的图象可由x y sin =的图象经过怎样的变化得到?

高考数学真题汇编——函数与导数

高考数学真题汇编——函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A. B. C. D. 【答案】D

【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,, , 据此可得:.本题选择D选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D. 【答案】D 点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 5.【2018年全国卷Ⅲ理】设,,则

高考文科数学专题复习导数训练题

高考文科数学专题复习导数训练题(文) 一、考点回顾和基础知识 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容.考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义. 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用. 3.应用导数解决实际问题,关键是建立适当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用和端点值进行比较,也可以得知这就是最值. 在0x 处有增量x ?,称为函数)(x f y =在则称函数)(x f y =在)0或0|'x x y =,即 f . )(v u v u ±=±)(...)()()(...)()(2121x f x f x f y x f x f x f y n n +++=?+++=?''''''')()(cv cv v c cv u v vu uv =+=?+=(c 为常数) )0(2''' ≠-= ?? ? ??v v u v vu v u *复合函数的求导法则:)()())(('''x u f x f x ??= 或x u x u y y '''?= 4.几种常见的函数导数: I.0'=C (C 为常数) x x cos )(sin ' = 1')(-=n n nx x (R n ∈) x x sin )(cos '-= II. x x 1)(ln '= e x x a a log 1 )(log '= x x e e =')(a a a x x ln )('= 二、经典例题剖析 考点一:求导公式

导数各类题型方法总结(含答案)

导数各种题型方法总结 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0) 0302(3) 09330g m g m <-??<--=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == 2m ∴> (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)023011(2)0230F x x x F x x ?->--+>?????-<-+>??? 2b a ∴-=

2019届高三第一次模拟考试卷 文科数学(一)

1 2019届高三第一次模拟考试卷 文 科 数 学(一) 一、选择题:本大题共12小题,每小题5分 1.[2018·陕西四校联考]已知复数3 12i z =-(i 是虚数单位),则z 的实部为( ) A .3 5- B .35 C .15- D .15 2.[2018·广西摸底]已知集合{} 24A x x x =≤,{}340B x x =->,则A B =( ) A .(],0-∞ B .40,3?? ???? C .4,43?? ??? D .(),0-∞ 3.[2018·资阳一诊]空气质量指数AQI 是反映空气质量状况的指数,AQI 指数值越小,表明空气质量越好,其对应关系如下表: 下图是某市10月1日—20日AQI 指数变化趋势 下列叙述错误的是( ) A .这20天中AQI 指数值的中位数略高于100 B .这20天中的中度污染及以上的天数占1 4 C .该市10月的前半个月的空气质量越来越好 D .总体来说,该市10月上旬的空气质量比中旬的空气质量好 4.[2018·长春质监]已知等差数列{}n a 中,n S 为其前n 项的和,45S =,9 20S =,则7a =( ) A .3- B .5- C .3 D .5 5.[2018·曲靖一中]曲线()ln 20y a x a =->在1x =处的切线与两坐标轴成的三角形的面积为4,则a 的值为( ) A B .2 C .4 D .8 6.[2018·衡水中学]如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O ,且2A E E O =,则ED = A .1233 AD AB - B .2133AD AB + C .2133A D AB - D .12 33 AD AB + 7.[2018·遵义航天中学]如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( ) A .13 B . 23 C .1 D . 43 8.[2018·黑龙江模拟]已知抛物线2:8C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与 C 的一个交点,若3FP FQ =,则QF =( ) A .83 B . 52 C .3 D .2 9.[2018·曲靖统测]若关于x 的不等式210x kx +->在[] 1,2区间上有解,则k 的取值范围是( ) A .(),0-∞ B .3,02?? - ??? C .3,2??-+∞???? D .3,2?? -+∞ ??? 10.[2018·广安诊断]在区间[]1,1-上随机取一个数k ,则直线()2y k x =-与圆221x y +=有两个不同公共点的概率为( ) A . 29 B C .13 D 11.[2018·赣州模拟]在平面直角坐标系xOy 中,设1F ,2F 分别为双曲线()22 2210,0x y a b a b -=>>的左、 右焦点,P 是双曲线左支上一点,M 是1PF 的中点,且1OM PF ⊥,122PF PF =,则双曲线的离心率为( ) A B .2 C D 12.[2018·陈经纶中学]已知矩形ABCD ,2AB =,BC x =,将ABD △沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,则( ) A .当1x =时,存在某个位置,使得AB CD ⊥ B .当x =AB CD ⊥ C .当4x =时,存在某个位置,使得AB C D ⊥ D .0x ?>时,都不存在某个位置,使得AB CD ⊥ 二、填空题:本大题共4小题,每小题5分. 此 卷 只 装 订 不 密 封 班级 姓名 准考证号 考场号 座位号

高考数学函数与导数复习指导

2019高考数学函数与导数复习指导 函数的观点和思想方法贯穿整个高中数学的全过程,在近几年的高考中,函数类试题在试题中所占分值一般为22---35分。一般为2个选择题或2个填空题,1个解答题,而且常考常新。 在选择题和填空题中通常考查反函数、函数的定义域、值域、函数的单调性、奇偶性、周期性、函数的图象、导数的概念、导数的应用以及从函数的性质研究抽象函数。 在解答题中通常考查函数与导数、不等式的综合运用。其主要表现在: 1.通过选择题和填空题,全面考查函数的基本概念,性质和图象。 2.在解答题的考查中,与函数有关的试题常常是以综合题的形式出现。 3.从数学具有高度抽象性的特点出发,没有忽视对抽象函数的考查。 4.一些省市对函数应用题的考查是与导数的应用结合起来考查的。 5.涌现了一些函数新题型。 死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素 养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。 6.函数与方程的思想的作用不仅涉及与函数有关的试题,而且对于数列,不等式,解析几何等也需要用函数与方程思想作指导。 家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练

工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。 7.多项式求导(结合不等式求参数取值范围),和求斜率(切线方程结合函数求最值)问题。 “师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。 8.求极值,函数单调性,应用题,与三角函数或向量结合。

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

2019年高考文科数学模拟试卷及答案(共五套)

2019年高考文科数学模拟试卷及答案(共五套) 2019年高考文科数学模拟试卷及答案(一) 一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目的要求) 1、设集合{}1 2 3 4U =,,,,集合{}2540A x x x =∈-+

高考数学函数与导数

回扣2 函数与导数 1.函数的定义域和值域 (1)求函数定义域的类型和相应方法 ①若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围; ②若已知f (x )的定义域为[a ,b ],则f [g (x )]的定义域为不等式a ≤g (x )≤b 的解集;反之,已知f [g (x )]的定义域为[a ,b ],则f (x )的定义域为函数y =g (x )(x ∈[a ,b ])的值域; ③在实际问题中应使实际问题有意义. (2)常见函数的值域 ①一次函数y =kx +b (k ≠0)的值域为R ; ②二次函数y =ax 2+bx +c (a ≠0):当a >0时,值域为????4ac -b 2 4a ,+∞,当a <0时,值域为? ???-∞,4ac -b 2 4a ; ③反比例函数y =k x (k ≠0)的值域为{y ∈R |y ≠0}. 2.函数的奇偶性、周期性 (1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x (定义域关于原点对称),都有f (-x )=-f (x )成立,则f (x )为奇函数(都有f (-x )=f (x )成立,则f (x )为偶函数). (2)周期性是函数在其定义域上的整体性质,一般地,对于函数f (x ),如果对于定义域内的任意一个x 的值:若f (x +T )=f (x )(T ≠0),则f (x )是周期函数,T 是它的一个周期. 3.关于函数周期性、对称性的结论 (1)函数的周期性 ①若函数f (x )满足f (x +a )=f (x -a ),则f (x )为周期函数,2a 是它的一个周期. ②设f (x )是R 上的偶函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,2a 是它的一个周期. ③设f (x )是R 上的奇函数,且图象关于直线x =a (a ≠0)对称,则f (x )是周期函数,4a 是它的一个周期. (2)函数图象的对称性 ①若函数y =f (x )满足f (a +x )=f (a -x ), 即f (x )=f (2a -x ), 则f (x )的图象关于直线x =a 对称.

高考压轴题:导数题型及解题方法总结很全.

高考压轴题:导数题型及解题方法 (自己总结供参考) 一.切线问题 题型1 求曲线)(x f y 在0x x 处的切线方程。方法: )(0x f 为在0x x 处的切线的斜率。 题型2 过点),(b a 的直线与曲线 )(x f y 的相切问题。 方法:设曲线 )(x f y 的切点))(,(00x f x ,由b x f x f a x )()()(000 求出0x ,进而解决相关问题。 注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。例 已知函数f (x )=x 3 ﹣3x . (1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169y x ) (2)若过点A )2)(,1(m m A 可作曲线)(x f y 的三条切线,求实数 m 的取值范围、 (提示:设曲线 )(x f y 上的切点()(,00x f x );建立)(,00x f x 的等式关系。将问题转化为关于 m x ,0的方 程有三个不同实数根问题。(答案: m 的范围是2,3) 题型3 求两个曲线)(x f y 、)(x g y 的公切线。方法:设曲线)(x f y 、)(x g y 的切点分别为( )(,11x f x )。()(,22x f x ); 建立 21,x x 的等式关系,12112)()(y y x f x x ,12 212 )()(y y x f x x ;求出21,x x ,进而求出 切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。 例 求曲线 2 x y 与曲线x e y ln 2的公切线方程。(答案02e y x e ) 二.单调性问题 题型1 求函数的单调区间。 求含参函数的单调区间的关键是确定分类标准。分类的方法有:(1)在求极值点的过程中,未知数的系数与 0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与 0的 关系不定);(3) 在求极值点的过程中,极值点的大小关系不定而引起的分类;(4) 在求极值点的过程中,极值点与区间的关系不定而引起分类等。注意分类时必须从同一标准出发,做到不重复,不遗漏。例 已知函数x a x x a x f )1(2 1ln ) (2 (1)求函数)(x f 的单调区间。(利用极值点的大小关系分类)(2)若 e x ,2,求函数)(x f 的单调区间。(利用极值点与区间的关系分类) 题型2 已知函数在某区间是单调,求参数的范围问题。 方法1:研究导函数讨论。 方法2:转化为 0) (0) (' ' x f x f 或在给定区间上恒成立问题, 方法3:利用子区间(即子集思想) ;首先求出函数的单调增区间或减区间,然后让所给区间是求的增或减区间的子 集。 注意:“函数)(x f 在 n m,上是减函数”与“函数)(x f 的单调减区间是b a,”的区别是前者是后者的子集。 例已知函数2 () ln f x x a x + x 2在 , 1上是单调函数,求实数 a 的取值范围. (答案 , 0) 题型 3 已知函数在某区间的不单调,求参数的范围问题。 方法1:正难则反,研究在某区间的不单调方法2:研究导函数是零点问题,再检验。方法3:直接研究不单调,分情况讨论。 例 设函数 1) (2 3 x ax x x f ,R a 在区间 1,2 1内不单调,求实数 a 的取值范围。 (答案: 3, 2a ) )三.极值、最值问题。 题型1 求函数极值、最值。基本思路:定义域 → 疑似极值点 → 单调区间 → 极值→ 最值。 例 已知函数12 1)1() (2 kx x e k x e x f x x ,求在2,1x 的极小值。 (利用极值点的大小关系、及极值点与区间的关系分类) 题型 2 已知函数极值,求系数值或范围。 方法:1.利用导函数零点问题转化为方程解问题,求出参数,再检验。方法2.转化为函数单调性问题。 例 函数1)1(2 1)1(3 14 1) (2 3 4 x p p px x p x x f 。0是函数)(x f 的极值点。求实数 p 值。(答案:1)

衡水中学2019届高考理科数学模拟精彩试题精编(十)

高考理科数学模拟试题精编(十) (考试用时:120分钟试卷满分:150分) 注意事项: 1.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。 2.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。 3.考生必须保证答题卡的整洁。考试结束后,将试卷和答题卡一并交回。 第Ⅰ卷 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知集合A={(x,y)|y=x+1,0≤x≤1},集合B={(x,y)|y =2x,0≤x≤10},则集合A∩B=( ) A.{1,2} B.{x|0≤x≤1} C.{(1,2)} D.? 2.设i是虚数单位,复数(a+1+i)2-2a-1为纯虚数,则实数a为( ) A.1 B.-1 C.1或-1 D.-1 2 3.若sin(π-α)=1 3 ,且 π 2 ≤α≤π,则sin 2α的值为( ) A.-42 9 B.- 22 9 C. 22 9

D.429 4.已知A (1,2),B (2,4),C (-2,1),D (-3,2),则向量CD →在向量AB →上的投影为( ) A. 55 B.255 C.22 D.223 5.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( ) A. 3 B. 2 C .2 D .3 6.某国际会议结束后,中、美、俄等21国领导人合影留念,他们站成两排,前排11人,后排10人,中国领导人站在前排正中间位置,美、俄两国领导人也站前排并与中国领导人相邻,如果对其他国家领导人所站位置不做要求,那么不同的站法共有( ) A .A 1818种 B .A 2020种 C .A 23A 318A 1010种 D .A 2 2 A 18 18种 7.M =???0 11x +1d x ,N =∫π20cos x d x ,由程序框图输出S 的值为( ) A .ln 2 B .0 C.π2 D .1 8.如图是一个正三棱柱挖去一个圆柱后得到的几何体的

导数题型方法总结绝对经典

第一章 导数及其应用 一.导数的概念 1..已知x f x f x x f x ?-?+=→?) 2()2(lim ,1 )(0 则的值是( ) A. 4 1- B. 2 C. 41 D. -2 变式1:()()()为则设h f h f f h 233lim ,430--='→( ) A .-1 B.-2 C .-3 D .1 变式2:()()()00003,lim x f x x f x x f x x x ?→+?--??设在可导则等于 ( ) A .()02x f ' B .()0x f ' C .()03x f ' D .()04x f ' 导数各种题型方法总结 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x <

2019届高三文科数学高考模拟卷4含答案

【命题说明】命题者是在认真研究近几年新课标全国卷高考试题,命题时严格按照全国Ⅰ卷格式编排,以最新发布的2018年全国卷《考试说明》为依据,内容确保不超纲。调研卷体现高考“前瞻性”和“预测性”。试卷力争做到形、神与新课标全国卷风格一致,让学生和教师有“高考卷”的感觉。试卷中知识点分布、试卷的总字数(包括各科选择题的题干字数、大题材料的长度、信息的有效性)、选项文字的长度、答案的规范、难易度的梯度等,都要符合高考试卷特点。 2019届高三文科数学高考模拟卷4 一.选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知集合{|lg(2)0}A x x =-≤,={|13}B x x -≤≤,则A B ?= ( ) A .[1,3]- B .[1,2]- C .(2,3] D .(1,2] 【答案】C 【解析】:由lg(2)0x -≤解得:021x <-≤,所以{|23}A x x =<≤,所以{|23}A B x x ?=<≤。故选项C 正确。 2.已知向量(1,3),(3,1),a b m =-= 若a b ⊥ ,则||b = ( ) A .﹣1 B .1 C D 【答案】C 【解析】:因为a b ⊥ ,所以330,1m m -=∴=,所以||b == C 正确。 3.复数Z 满足(1)|1i Z -=,则Z = ( ) A .1+i B .1i - C .1i -- D .1+i - 【答案】B 【解析】根据已知得:(1)2i Z -=,所以22(1)11(1)(1) i Z i i i i +===+--+,所以1Z i =-,故选项B 正确。 4. “春晚歌舞是抢红包背景乐”成了春晚被转发频次最高的“段子”之一。抢红包涉及平台有支付宝、微信、QQ 、微博四个;如果夫妻两人参与其中一个抢红包活动,每人参与等可能的,则夫妻二人参与同一个平台的概率是( )。

(完整版)专题05导数与函数的极值、最值—三年高考(2015-2017)数学(文)真题汇编.doc

1. 【 2016 高考四川文科】已知函数的极小值点,则=( ) (A)-4 (B) -2 (C)4 (D)2 【答案】 D 考点:函数导数与极值. 【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 的解,附近,如 果时,,时,则是极小值点,如果时,,时,,则是极大值点, 2. 【 2015 高考福建,文A.充分而不必要条 件12】“对任意 B.必要而不充分条件 ,”是“ C .充分必要条件 D ”的() .既不充分也不必 要条件 【答案】 B 【解析】当时,,构造函数,则 .故在单调递增,故,则;当时,不等式等价于,构造函数 ,则,故在递增,故 ”是“,则.综上 ”的必要不充分条件,选 所述,“ 对任 意B. ,

【考点定位】导数的应用. 【名师点睛】 本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用, 根 据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 3. (2014 课标全国Ⅰ,文 12) 已知函数 f ( x ) = ax 3 - 3 2 + 1,若 f ( ) 存在唯一的零点 x 0 ,且 x x x 0>0,则 a 的取值范围是 ( ) . A . (2 ,+∞ ) B . (1 ,+∞) C . ( -∞,- 2) D .( -∞,- 1) 答案: C 解析:当 a = 0 时, f ( x ) =- 3x 2+ 1 存在两个零点,不合题意; 当 a >0 时, f ′(x ) = 3ax 2- 6x = , 令 ′( ) = 0,得 x 1 = 0, , fx 所以 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一的零点,需 ,但这时零点 x 0 一定小于 0,不合题意; 当 a <0 时, f ′(x ) = 3ax 2- 6x = , 令 f ′(x ) = 0,得 x 1=0, ,这时 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一零点,应满足 ,解得 a <- 2( a > 2 舍去 ) ,且这时 零点 x 0 一定大于 0,满足题意,故 a 的取值范围是 ( -∞,- 2) . 名师点睛:本题考查导数法求函数的单调性与极值,函数的零点,考查分析转化能力,分类讨论思想, 较难题 . 注意区别函数的零点与极值点 . 4. 【 2014 辽宁文 12】当 时,不等式 恒成立,则实数 a 的取 值范围是()

相关文档
最新文档