高中高考数学专题复习《函数与导数》
高考数学压轴专题新备战高考《函数与导数》知识点总复习含解析

【高中数学】《函数与导数》知识点一、选择题1.函数()2sin 2xf x x x x=+-的大致图象为( ) A . B .C .D .【答案】D 【解析】 【分析】利用()10f <,以及函数的极限思想,可以排除错误选项得到正确答案。
【详解】()1sin112sin110f =+-=-<,排除,B ,C ,当0x =时,sin 0x x ==, 则0x →时,sin 1xx→,()101f x →+=,排除A , 故选:D . 【点睛】本题主要考查函数图象的识别和判断,利用排除法结合函数的极限思想是解决本题的关键。
2.336ax ⎛⎫- ⎪ ⎪⎝⎭的展开式中,第三项的系数为1,则11a dx x =⎰( ) A .2ln 2 B .ln 2 C .2 D .1【答案】A 【解析】 【分析】首先根据二项式定理求出a ,把a 的值带入11adx x⎰即可求出结果. 【详解】解题分析根据二项式33 ax⎛⎫-⎪ ⎪⎝⎭的展开式的通项公式得2212133()4aT C ax x+⎛⎫=-=⎪⎪⎝⎭.Q第三项的系数为1,1,44aa∴=∴=,则4411111d d ln2ln2ax x xx x===⎰⎰.故选:A【点睛】本题考查二项式定理及定积分. 需要记住二项式定理展开公式:1C k n k kk nT a b-+=.属于中等题.3.已知()(1)|ln|xf x xx=≠,若关于x方程22[()](21)()0f x m f x m m-+++=恰有4个不相等的实根,则实数m的取值范围是()A.1,2(2,)ee⎛⎫⋃⎪⎝⎭B.11,ee⎛⎫+⎪⎝⎭C.(1,)e e-D.1ee⎛⎫⎪⎝⎭,【答案】C【解析】【分析】由已知易知()f x m=与()1f x m=+的根一共有4个,作出()f x图象,数形结合即可得到答案.【详解】由22[()](21)()0f x m f x m m-+++=,得()f x m=或()1f x m=+,由题意()f x m=与()1f x m=+两个方程的根一共有4个,又()f x的定义域为(0,1)(1,)⋃+∞,所以()|ln|lnx xf xx x==,令()lnxg xx=,则'2ln1()(ln)xg xx-=,由'()0g x>得x e>,由'()0g x<得1x e<<或01x<<,故()g x在(0,1),(1,)e单调递减,在(,)e+∞上单调递增,由图象变换作出()f x图象如图所示要使原方程有4个根,则01m em e <<⎧⎨+>⎩,解得1e m e -<<.故选:C 【点睛】本题考查函数与方程的应用,涉及到方程根的个数问题,考查学生等价转化、数形结合的思想,是一道中档题.4.已知()ln xf x x=,则下列结论中错误的是( ) A .()f x 在()0,e 上单调递增 B .()()24f f = C .当01a b <<<时,b a a b < D .20192020log 20202019>【答案】D 【解析】 【分析】根据21ln (),(0,)xf x x x-'=∈+∞,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,进而判断得出结论. 【详解】21ln (),(0,)xf x x x -'=∈+∞Q ∴对于选项A ,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,故A 正确;对于选项B ,()2ln 4ln 2ln 24(2)442f f ====,故B 正确;对于选项C ,由选项A 知()f x 在()0,1上也是单调递增的,01a b <<<Q ,ln ln a ba b∴<,可得b a a b <,故选项C 正确; 对于选项D ,由选项A 知()f x 在(),e +∞上单调递减,(2019)(2020)f f ∴>,即ln 2019ln 202022019020>⇒20192020ln 2020log 2020ln 02019219>=, 故选项D 不正确. 故选:D 【点睛】本题考查导数与函数单调性、极值与最值的应用及方程与不等式的解法,考查了理解辨析能力与运算求解能力,属于中档题.5.函数()xe f x x=的图象大致为( )A .B .C .D .【答案】B 【解析】函数()xe f x x=的定义域为(,0)(0,)-∞+∞U ,排除选项A ;当0x >时,()0f x >,且()2(1)'xx e f x x-= ,故当()0,1x ∈时,函数单调递减,当()1,x ∈+∞时,函数单调递增,排除选项C ;当0x <时,函数()0xe f x x=<,排除选项D ,选项B 正确.选B .点睛:函数图象的识别可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的周期性,判断图象的循环往复; (5)从函数的特征点,排除不合要求的图象.6.已知函数()f x 是定义在R 上的偶函数,且在()0,∞+上单调递增,则( ) A .()()()0.633log 132f f f -<-<B .()()()0.6332log 13f f f -<<-C .()()()0.632log 133f f f <-<-D .()()()0.6323log 13f f f <-<【答案】C 【解析】 【分析】利用指数函数和对数函数单调性可得到0.632log 133<<,结合单调性和偶函数的性质可得大小关系. 【详解】()f x Q 为R 上的偶函数,()()33f f ∴-=,()()33log 13log 13f f -=,0.633322log 9log 13log 273<=<<=Q 且()f x 在()0,∞+上单调递增,()()()0.632log 133f f f ∴<<,()()()0.632log 133f f f ∴<-<-.故选:C . 【点睛】本题考查函数值大小关系的比较,关键是能够利用奇偶性将自变量转化到同一单调区间内,由自变量的大小关系,利用函数单调性即可得到函数值的大小关系.7.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,2()4f x x x =-,则不等式(2)5f x +<的解集为( )A .(3,7)-B .()4,5-C .(7,3)-D .()2,6-【答案】C 【解析】 【分析】首先求出当0x ≥时不等式的解集,在根据偶函数的对称性求出当0x <时不等式的解集,从而求出()5f x <的解集,则525x -<+<,即可得解. 【详解】当0x ≥时,2()45f x x x =-<的解为05x <≤;当0x <时,根据偶函数图像的对称性知不等式()5f x <的解为5x 0-<<, 所以不等式()5f x <的解集为{}55x x -<<,所以不等式(2)5f x +<的解集为{}{}52573x x x x -<+<=-<<. 故选:C 【点睛】本题考查偶函数的性质,涉及一元二次不等式,属于基础题.8.函数()1sin cos 1sin cos 1tan 01sin cos 1sin cos 32x x x x f x x x x x x x π+-++⎛⎫=++<< ⎪+++-⎝⎭的最小值为( )A.13+ B.3C.23+ D.3【答案】B 【解析】 【分析】利用二倍角公式化简函数()f x ,求导数,利用导数求函数的最小值即可. 【详解】22222sin 2sin cos 2cos 2sin cos1sin cos 1sin cos 2222221sin cos 1sin cos 2cos 2sin cos 2sin 2sin cos 222222x x x x x x x x x x x x x x x xx x x x +++-+++=++++-++ 2sin sin cos 2cos sin cos sin cos 222222222sin cos sin 2cos sin cos 2sin sin cos 22222222x x x x x x x xx x x x x x x x x ⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=+=+=⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭, 则()21tan 0sin 32f x x x x π⎛⎫=+<< ⎪⎝⎭, 32222221sin 2cos 16cos cos 1()sin 3cos sin 3cos 3sin cos x x x x f x x x x x x x '''--+⎛⎫⎛⎫=+=-+= ⎪ ⎪⎝⎭⎝⎭. 令()cos 0,1t x =∈,()3261g t t t =--+为减函数,且102g ⎛⎫=⎪⎝⎭, 所以当03x π<<时,()11,02t g t <<<,从而()'0f x <; 当32x ππ<<时,()10,02t g t <<>,从而()'0f x >. 故()min 3f x f π⎛⎫==⎪⎝⎭. 故选:A 【点睛】本题主要考查了三角函数的恒等变换,利用导数求函数的最小值,换元法,属于中档题.9.设函数()f x 在R 上存在导数()f x ',x R ∀∈有()()22f x f x x +-=,在()0+∞,上()2f x x '<,若()()4168f m f m m --≥-,则实数m 的取值范围是( ) A .[)2+∞,B .[)0+∞,C .[]22-,D .(][)22-∞-⋃+∞,, 【答案】A 【解析】【分析】通过x R ∀∈有()()22f x f x x +-=,构造新函数()()2g x f x x =-,可得()g x 为奇函数;利用()2f x x '<,求()g x 的导函数得出()g x 的单调性,再将不等式()()4168f m f m m --≥-转化,可求实数m 的取值范围.【详解】设()()2g x f x x =-,∵()()()()220g x g x f x x f x x +-=-+--=,∴函数()g x 为奇函数,∵在()0,x ∈+∞上,()2f x x '<,即()20f x x '-<, ∴()()20g x f x x ''=-<,∴函数()g x 在()0,x ∈+∞上是减函数, ∴函数()g x 在(),0x ∈-∞上也是减函数, 且()00g =,∴函数()g x 在x ∈R 上是减函数, ∵()()4168f m f m m --≥-,∴()()()2244168g m m g m m m ⎡⎤⎡⎤-+--+≥-⎣⎦⎣⎦, ∴()()4g m g m -≥, ∴4m m -≤, 即2m ≥. 故选:A. 【点睛】本题考查函数的奇偶性、单调性的应用,考查运算求解能力、转化与化归的数学思想,是中档题.10.已知函数()ln xf x x=,则使ln ()()()f x g x a f x =-有2个零点的a 的取值范围( ) A .(0,1) B .10,e ⎛⎫ ⎪⎝⎭C .1,1e ⎛⎫ ⎪⎝⎭D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B 【解析】 【分析】 令()ln xt f x x==,利用导数研究其图象和值域,再将ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解求解. 【详解】令()ln x t f x x ==,当01x <<时,()0ln xt f x x==<, 当1x >时,()2ln 1()ln x t f x x -''==,当1x e <<时,0t '<,当x e >时,0t '>, 所以当x e =时,t 取得最小值e ,所以t e ≥, 如图所示:所以ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解, 令ln t m t =,21ln 0t m t -'=≤,所以ln tm t=在[),e +∞上递减,所以10m e<≤, 所以10a e <≤,当1a e=时,x e =,只有一个零点,不合题意, 所以10a e<< 故选:B 【点睛】本题主要考查导数与函数的零点,还考查了数形结合的思想和运算求解的能力,属于中档题.11.已知定义在R 上的函数(f x ),其导函数为()f x ',若()()3f x f x '-<-,()04f =,则不等式()3x f x e >+的解集是( )A .(),1-∞B .(),0-∞C .()0,+∞D .()1,+∞【答案】B 【解析】不等式()3xf x e >+得()()3311xx xf x f x e e e ->+∴>, ()()()()()330xxf x f x f xg x g x ee--+=∴='<'设,所以()g x 在R 上是减函数,因为()()()4301001g g x g x -==∴>∴<. 故选B .点睛:本题的难点在于解题的思路. 已知条件和探究的问题看起来好像没有分析联系,这里主要利用了分析法,通过分析构造函数,利用导数的知识解答.12.已知函数()f x 为偶函数,当x <0时,2()ln()f x x x =--,则曲线()y f x =在x =1处的切线方程为( ) A .x -y =0 B .x -y -2=0 C .x +y -2=0 D .3x -y -2=0【答案】A 【解析】 【分析】先求出当0x >时,()f x 的解析式,再利用导数的几何意义计算即可得到答案. 【详解】当0x >时,0x -<,2()ln f x x x -=-,又函数()f x 为偶函数,所以2()ln f x x x =-,(1)1f =,所以'1()2f x x x=-,'(1)1f =,故切线方程为11y x -=-,即y x =.故选:A .【点睛】本题考查导数的几何意义,涉及到函数的奇偶性求对称区间的解析式,考查学生的数学运算能力,是一道中档题.13.已知函数()2814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )A .-4B .-3C .-2D .-1【答案】C 【解析】 【分析】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.【详解】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立, 得:()f x 的值域为()g x 的值域的子集,由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞ 当43a --≤≤ 时,()21f x-#-,此时()f x 的值域为()g x 的值域的子集成立.当3a >-时,()22814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,即28142a a ++≤,得62a -≤≤- 所以a 的最大值为2-. 故选:C. 【点睛】本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.14.下列求导运算正确的是( ) A .()cos sin x x '= B .()1ln 2x x'=C .()333log xx e '= D .()22x x x e xe '=【答案】B 【解析】分析:利用基本初等函数的导数公式、导数的运算法则对给出的四种运算逐一验证,即可得到正确答案.详解:()'cos sin x x =-,A 不正确;()'11ln222x x x=⨯= ,B 正确;()'33ln3x x =,C 不正确;()'222xxx x e xex e =+,D 不正确,故选B.点睛:本题主要考查基本初等函数的导数公式、导数的运算法以及简单的复合函数求导法则,属于基础题.15.已知函数()f x 的导函数为()f x ',在()0,∞+上满足()()xf x f x '>,则下列一定成立的是( )A .()()2019202020202019f f >B .()()20192020f f >C .()()2019202020202019f f <D .()()20192020f f <【答案】A 【解析】 【分析】 构造函数()()f xg x x=,利用导数判断函数()y g x =在()0,∞+上的单调性,可得出()2019g 和()2020g 的大小关系,由此可得出结论.【详解】令()()()0f x g x x x =>,则()()()2xf x f x g x x'-'=. 由已知得,当0x >时,()0g x '>.故函数()y g x =在()0,∞+上是增函数,所以()()20202019g g >,即()()2020201920202019f f >,所以()()2019202020202019f f >. 故选:A.【点睛】 本题考查利用构造函数法得出不等式的大小关系,根据导数不等式的结构构造新函数是解答的关键,考查推理能力,属于中等题.16.40cos2d cos sin x x x xπ=+⎰( ) A.1)B1 C1 D.2【答案】C【解析】【分析】利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分.【详解】 因为22cos2cos sin cos sin cos sin cos sin x x x x x x x x x-==-++,∴4400cos 2d (cos sin )d (sin cos )14cos sin 0x x x x x x x x x πππ=-=+=+⎰⎰,故选C . 【点睛】本题考查三角恒等变换知与微积分基本定理的交汇.17.若函数()f x 的定义域为R ,其导函数为()f x '.若()3f x '<恒成立,()20f -=,则()36f x x <+ 解集为( )A .(),2-∞-B .()2,2-C .(),2-∞D .()2,-+∞【答案】D【解析】【分析】设()()36g x f x x =--,求导后可得()g x 在R 上单调递减,再结合()20g -=即可得解.【详解】设()()36g x f x x =--,Q ()3f x '<,∴()()30g x f x ''=-<,∴()g x 在R 上单调递减,又()()22660g f -=-+-=,不等式()36f x x <+即()0g x <,∴2x >-,∴不等式()36f x x <+的解集为()2,-+∞.故选:D.【点睛】本题考查了导数的应用,关键是由题意构造出新函数,属于中档题.18.如图,记图中正方形介于两平行线x y a +=与1x y a +=+之间的部分的面积为()S S a =,则()S a 的图象大致为( )A .B .C .D .【答案】D【解析】【分析】根据函数的部分特征,利用排除法,即可得到本题答案.【详解】①当011a ≤+<时,即10a -≤<,21()(1)2S a a =+;②当11a +=时,即0a =,1()2S a =. 由此可知,当10a -≤<时,21()(1)2S a a =+且1(0)2S =,所以,,A B C 选项不正确. 故选:D【点睛】 本题主要考查根据函数的性质选择图象,排除法是解决此题的关键.19.对于任意性和存在性问题的处理,遵循以下规则:20.已知函数221,0()log ,0x x f x x x ⎧+-≤=⎨>⎩,若()1f a ≤,则实数a 的取值范围是( ) A .(4][2,)-∞-+∞U B .[1,2]-C .[4,0)(0,2]-UD .[4,2]-【答案】D【解析】【分析】不等式()1f a ≤等价于0,211,a a ≤⎧⎨+-≤⎩或20,log 1,a a >⎧⎨≤⎩分别解不等式组后,取并集可求得a 的取值范围.【详解】()1f a ≤⇔0,211,a a ≤⎧⎨+-≤⎩或20,log 1,a a >⎧⎨≤⎩, 解得:40a -≤≤或02a <≤,即[4,2]a ∈-,故选D.【点睛】本题考查与分段函数有关的不等式,会对a 进行分类讨论,使()f a 取不同的解析式,从而将不等式转化为解绝对值不等式和对数不等式.。
高三函数与导数知识点总结

高三函数与导数知识点总结函数与导数是高三数学中重要的知识点,它们在解决实际问题和推导数学公式中起到至关重要的作用。
本文将对高三函数与导数的相关知识点进行总结,并提供一些例题以加深理解。
一、函数的基本概念函数是一种特殊的关系,它将一个集合的元素(自变量)映射到另一个集合的元素(因变量)。
函数可以用符号表示为f(x),其中x表示自变量,f(x)表示因变量。
函数在数学中有着广泛的应用,如描述物理运动、经济变化等。
二、函数的分类1.一次函数:f(x) = ax + b,其中a和b是常数,a不能为0。
一次函数的图像为一条直线,斜率a决定了直线的倾斜方向和程度,而常数b则决定了直线与y轴的交点位置。
2.二次函数:f(x) = ax² + bx + c,其中a、b和c是常数,a不能为0。
二次函数的图像为一条抛物线,a决定了抛物线的开口方向,b和c决定了抛物线的位置。
3.指数函数:f(x) = aˣ,其中a是常数,且大于0且不等于1。
指数函数的图像为以点(0, 1)为底的指数曲线,呈现上升或下降的趋势。
4.对数函数:f(x) = logₐ(x),其中a是常数,且大于0且不等于1。
对数函数的图像为以点(1, 0)为底的对数曲线,呈现上升或下降的趋势。
三、导数的概念导数是函数在某一点上的变化率,表示函数曲线在该点的切线斜率。
导数可以用符号表示为f'(x)或dy/dx,其中x表示自变量,f(x)表示函数。
导数在实际问题中有着重要的几何和物理意义。
四、导数的计算方法1.函数的导数定义:导数的定义为f'(x) = limₜ→0 [f(x + t) - f(x)] / t,其中lim表示极限。
2.常见函数的导数:- 一次函数f(x) = ax + b的导数为f'(x) = a。
- 二次函数f(x) = ax² + bx + c的导数为f'(x) = 2ax + b。
- 指数函数f(x) = aˣ的导数为f'(x) = aˣln(a)。
高考函数与导数知识点

高考函数与导数知识点在高考数学中,函数与导数是重要的考点之一。
理解和掌握函数与导数的知识对于解答各类函数与导数题目至关重要。
本文将对高考函数与导数的知识点进行详细论述,帮助同学们更好地应对考试。
1. 函数的概念与性质函数是数学中常见的概念,它描述了两个变量之间的关系。
通常用字母表示,其中一个变量称为自变量,另一个变量称为函数的值或因变量。
函数可以用方程、图形或解析式等形式表示。
函数的性质有很多,例如:奇偶性、单调性、周期性、有界性等。
了解这些性质对于解题非常有帮助。
同时,还需要掌握函数的基本运算、复合函数以及函数的反函数等概念和运算方法。
2. 导数的概念与计算方法导数是函数在某一点上的变化率或斜率。
它是函数微分学的基本概念之一。
导数的计算方法有很多,常见的有用定义法、用极限法和用基本导数法等。
要计算导数,首先需要了解导数的定义。
其次,掌握各类函数的导数公式,如幂函数、指数函数、对数函数、三角函数等的导数。
此外,还需要掌握导数的运算法则,例如和差法则、积法则、商法则等。
3. 函数与导数的关系函数与导数之间有着密切的联系,理解函数与导数的关系对于高考数学题目的解答至关重要。
首先,导数可以表征函数的变化趋势。
通过函数的导数值,可以判断函数在某一点上是递增还是递减,也可以分析函数的极值(最大值和最小值)。
其次,函数的导数也可以求出函数的切线方程。
通过求导并代入给定点的坐标,可以确定函数在该点的切线,进而得到切线的方程。
此外,通过函数的导数还可以判断函数的凹凸性。
函数的导数值的变化可以揭示函数的曲线是上凹还是下凹,从而确定函数的凹凸区间。
4. 应用题与解题技巧高考中,函数与导数的知识点经常会涉及到应用题。
这类题目结合了函数与导数的知识,考察学生对于函数与导数概念的理解和运用能力。
在解答应用题时,需要注意以下几个方面的技巧:(1) 确定函数的自变量和因变量,建立函数模型;(2) 利用导数求出函数的变化趋势,比如函数递增递减的区间、函数的最值等;(3) 根据问题中给出的条件,列方程并求解;(4) 检查解的合理性以及问题中是否有陷阱,注意解答方式和表述的准确性。
新高考新教材高考数学二轮复习专题检测6函数与导数pptx课件

却,经过10 min物体的温度为50 ℃,则若使物体的温度为20 ℃,需要冷却
( C )
A.17.5 min
B.25.5 min
C.30 min
D.32.5 min
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
解析 由题意得 50=10+(90-10)e
( D )
2.(2023 北京,4)下列函数中,在区间(0,+∞)上单调递增的是( C )
A.f(x)=-ln x
1
C.f(x)=
1
B.f(x)=2
D.f(x)=3|x-1|
解析 因为 y=ln x 在(0,+∞)上单调递增,所以 f(x)=-ln x 在(0,+∞)上单调递减,
故 A 错误;
3
3 +2
g(x)= ,则函数
3 +2
x≠0,所以-a=
.
设
f(x)存在 3 个零点等价于函数
y=-a 有三个不同的交点.
2(3 -1)
g'(x)= 2 .当
3 +2
g(x)= 的图象与直线
x>1 时,g'(x)>0,
函数 g(x)在(1,+∞)内单调递增,
当 x<1 且 x≠0 时,g'(x)<0,
专题检测六
函数与导数
单项选择题
lg, > 0,
1.(2023 广东高三学业考试)已知函数 f(x)=
若 a=f
2 , < 0,
A.-2
解析 a=f
B.-1
高三函数和导数知识点总结

高三函数和导数知识点总结函数是数学中的重要概念,而导数则是函数的基本性质之一。
在高三阶段,函数和导数是数学学习的重点内容。
下面将对高三函数和导数的知识点进行总结。
一、函数的定义和性质函数是一种特殊的关系,将一个数集的每一个元素都对应到另一个数集的元素上。
函数的定义包括定义域、值域和对应关系。
在函数的性质方面,常见的有奇偶性、单调性、周期性等。
二、常见函数的图像和特点1. 线性函数线性函数表示为y = kx + b,其中k为斜率,b为截距。
线性函数的图像为直线,其特点是一次函数,斜率决定了线的倾斜程度。
2. 二次函数二次函数表示为y = ax^2 + bx + c,其中a、b、c为实数且a≠0。
二次函数的图像为抛物线,其特点是开口方向、最值等。
3. 指数函数指数函数表示为y = a^x,其中a>0且a≠1。
指数函数的图像在直角坐标系中右上方增长,其特点是单调递增。
4. 对数函数对数函数表示为y = loga(x),其中a>0且a≠1。
对数函数的图像在直角坐标系中左上方增长,其特点是单调递增。
5. 三角函数三角函数包括正弦函数、余弦函数和正切函数等。
它们的图像在坐标系中以一定周期重复出现,具有周期性和振荡性。
三、导数的定义和求解导数描述了函数在某一点的变化率,是函数的重要性质之一。
导数的定义是函数的极限,常用的求导公式有:1. 基本函数的导数如常数函数、幂函数、指数函数、对数函数、三角函数等的导数可根据定义和求导法则进行求解。
2. 导数的四则运算法则导数具有加减乘除等基本运算法则,可根据这些法则对复杂函数进行求导。
3. 链式法则链式法则是求解复合函数导数时常用的方法,将复合函数拆开分别求导再进行乘积。
四、导数的应用导数不仅有理论意义,也在实际问题中有重要应用,以下是导数的几个常见应用:1. 切线和法线导数代表了函数曲线上某一点的斜率,通过导数可以求出函数曲线在某一点的切线和法线方程。
2. 最值问题导数的零点处为函数的极值点,通过求解导函数的零点可以求出函数的最值。
高考数学专题《函数与导数》解读

从新高考的考查情况来看,函数与导数一直是高考的重点和难点.一般以基本初等函数为载体,利用导数研究函数的单调性、极值、最值、零点等问题,同时与解不等式关系最为密切,还可能与三角函数、数列等知识综合考查。
一般出现在选择题和填空题的后两题以及解答题中,难度较大,复习备考的过程中应引起重视。
通过导数研究函数的单调性、极值、最值问题,考查考生的分类讨论思想、等价转化思想以及数学运算、逻辑推理核心素养.1、研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (1)讨论分以下四个方面①二次项系数讨论;②根的有无讨论;③根的大小讨论;④根在不在定义域内讨论. (2)讨论时要根据上面四种情况,找准参数讨论的分类. (3)讨论完毕须写综述.2、研究函数零点或方程根的方法(1)通过最值(极值)判断零点个数的方法:借助导数研究函数的单调性、极值后,通过极值的正负,函数单调性判断函数图象走势,从而判断零点个数或者通过零点个数求参数范围.(2)数形结合法求解零点:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性,画出草图数形结合确定其中参数的范围.(3)构造函数法研究函数零点:①根据条件构造某个函数,利用导数确定函数的单调区间及极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求解.②解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法. 3、求与函数零点有关的参数范围的方法: 方程有实根函数的图象与轴有交点函数有零点.(1)参数分离法,构造新的函数,将问题转化为利用导数求新函数单调性与最值.(2)分类讨论法. 4、不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点()0f x =()y f x =x ()y f x =重难点06 函数与导数和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理.恒成立问题的重要思路:(1)m≥f(x)恒成立⇒m≥f(x)max.(2)m≤f(x)恒成立⇒m≤f(x)min.存在性(有解)问题的重要思路:(1)存在m≥f(x) ⇒m≥f(x) min(2) 存在m≤f(x) ⇒m≤f(x) max.5、利用导数证明不等式f(x)>g(x)的基本方法:(1)若f(x)与g(x)的最值易求出,可直接转化为证明f(x)min>g(x)max;(2)若f(x)与g(x)的最值不易求出,可构造函数h(x)=f(x)-g(x),然后根据函数h(x)的单调性或最值,证明h(x)>0.无论不等式的证明还是解不等式,构造函数,运用函数的思想,利用导数研究函数的性质,达到解题的目的,是一成不变的思路,合理构思,善于从不同角度分析问题,是解题的法宝.6、函数性质综合问题函数性质综合应用问题的常见类型及解题策略:(1)函数单调性与奇偶性的综合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性的综合.此类问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)单调性、奇偶性与周期性的综合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.(4)应用奇函数图象关于原点对称,偶函数图象关于y轴对称.利用单调性比较大小、解不等式、研究函数的最值、函数单调性的讨论(含参)、零点问题和不等式恒成立的相关问题(包含不等式证明和由不等式恒成立求参数取值范围)是出题频率最高的;同时也要注意极值点偏移、双变量等热点问题。
高考数学函数与导数知识点

高考数学函数与导数知识点在高考数学中,函数与导数是重要的知识点。
理解和掌握这些知识点对于高考数学的学习非常关键。
本文将介绍函数与导数的基本概念、性质以及相关应用。
一、函数的基本概念函数是数学中一种重要的概念,定义如下:定义1:设A、B是两个非空集合,对于A中的每一个元素a,在B中都有唯一确定的元素b与之对应。
这样的对应关系称为函数,记作y=f(x)。
在函数的定义中,x是自变量,y是因变量,而f(x)则表示函数的值或函数表达式。
1.1 函数的表示方法函数可以通过多种方式来表示:1.1.1 函数的代数式表示:常用的代数式表示函数的方法有多项式函数、有理函数、指数函数、对数函数等。
1.1.2 函数的图像表示:通过绘制函数的图像,可以更直观地理解函数的性质。
1.1.3 函数的表格表示:将自变量与因变量的对应关系记录在表格中,方便观察函数的规律。
1.2 函数的性质函数具有以下一些基本性质:1.2.1 定义域和值域:函数的定义域是自变量的取值范围,值域是因变量的取值范围。
1.2.2 奇偶性:函数的奇偶性描述了函数关于y轴对称或关于原点对称的特点。
1.2.3 单调性:函数的单调性描述了函数在定义域内的增减趋势。
1.2.4 周期性:周期函数是一类具有周期性规律的函数,如正弦函数、余弦函数等。
二、导数的基本概念导数是函数的一个重要性质,用来描述函数在某一点的变化率。
导数的定义如下:定义2:设函数y=f(x)在点x0处有定义,当自变量x在x0的邻域内取得不同值时,对应的函数值f(x)也随之变化。
如果存在一个常数k,使得当x趋近于x0时,函数值的变化量与x-x0的差的比趋近于k,那么称函数y=f(x)在点x0处可导,常数k称为函数f(x)在点x0处的导数,记作f'(x0)。
2.1 导数的几何意义导数的几何意义可以从函数的图像中理解:2.1.1 函数的切线斜率:对于函数y=f(x),在点(x0, f(x0))处的切线的斜率就是函数在该点处的导数。
高三数学函数与导数

高三数学函数与导数函数与导数是高三数学重要的概念和内容。
函数是一种特殊的映射关系,而导数则是函数在某一点上的斜率。
本文将探讨函数与导数的相关性以及导数的一些基本性质。
一、函数与导数的相关性函数是数学中一种常见的表达方式,它描述了输入与输出之间的关系。
在函数中,自变量的变化引起了因变量的相应变化。
而导数则是函数在某一点上的斜率,表示函数在该点附近的变化趋势。
导数可以帮助我们研究函数的性质和特点。
通过求导数,我们可以判断函数在某一点上的增减性、凹凸性以及极值等。
导数还可以用来解决一些实际问题,比如求物体运动的速度和加速度,或者确定曲线的切线方程等。
二、导数的定义与求导法则导数的定义是函数在极限意义下的变化率。
对于函数y=f(x),其导数可以表示为f'(x)或者dy/dx。
导数的定义为:f'(x) = lim(h->0) [f(x+h) - f(x)] / h根据导数的定义,我们可以推导出许多求导法则,这些法则使我们能够更加方便地计算函数的导数。
一些常见的求导法则包括:1. 基本求导法则:例如,常数函数的导数为0,幂函数的导数可以通过指数减一求解。
2. 和差法则:对于两个函数的和或差,其导数等于这两个函数分别的导数的和或差。
3. 乘积法则:对于两个函数的乘积,其导数等于第一个函数的导数乘以第二个函数,再加上第一个函数乘以第二个函数的导数。
4. 商法则:对于两个函数的商,其导数等于分子函数的导数乘以分母函数,再减去分子函数乘以分母函数的导数再除以分母函数的平方。
这些求导法则为我们在计算导数时提供了便利,可以大大简化计算过程。
三、导数的几何意义导数的几何意义可以通过对函数图像的观察和分析来理解。
对于函数图像上的一点P(x, f(x)),其导数f'(x)表示了函数曲线在该点的切线斜率。
切线的斜率可以告诉我们曲线在该点处的变化速率以及变化的趋势。
当导数为正时,函数曲线是递增的;当导数为负时,函数曲线是递减的;而导数为0时,则对应了函数的极值点或拐点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
50.设奇函数 在 上是增函数,且 ,则不等式 的解集为.
51.函数 在定义域 内可导,其图
象如图,记 的导函数为 ,则不等式 的解集为_____________
52.由直线 , ,曲线 及 轴所围成的图形的面积是.
53.曲线y=ex在 处的切线方程是.
54.对于三次函数 给出定义:设 是函数 的导数, 是函数 的导数,若方程 有实数解 ,则称点 为函数 的“拐点”,某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心。给定函数 ,请你根据上面探究结果,计算
9.曲线 在 处的切线平行于直线 ,则 点的坐标为()
A BLeabharlann C 和 D 和10.曲线 在点 处的切线方程是
A. B.
C. D.
11.若质点P的运动方程为S(t)=2t2+t(S的单位为米,t的单位为秒),则当t=1时的瞬时速度为()
A 2米/秒B 3米/秒C 4米/秒D 5米/秒
12.函数 图象上关于原点对称点共有( )
高中高考数学专题复习<函数与导数>
1.下列函数中,在区间 上是增函数的是()
A. B. C. D.
2.函数 的图象关于()
A.y轴对称B.直线y=-x对称
C.坐标原点对称D.直线y=x对称
3.下列四组函数中,表示同一函数的是()
A.y=x-1与y= B.y= 与y=
C.y=4lgx与y=2lgx2D.y=lgx-2与y=lg
A.“函数与方程”的上位B.“函数与方程”的下位
C.“函数模型及其应用”的上位D.“函数模型及其应用”的下位
29.已知 ()
A、 B、 C、 D、
30.曲线 在x=2处切线方程的斜率是()
A. 4 B. 2 C. 1 D.
31.若定义在 上的函数 满足:对任意 有 ,且 时有 , 的最大值、最小值分别为M、N,则M+N=()
4.下列函数中,既不是奇函数又不是偶函数,且在 上为减函数的是()
A. B.
C. D.
5.已知 ,且 为幂函数,则 的最大值为
A. B. C. D.
6.下列函数中哪个是幂函数()
A. B.
C. D.
7. 的定义域为()
A. B.
C. D.
8.如果对数函数 在 上是减函数,则 的取值范围是
A. B. C. D.
A. B.
C. D.
17.若函数 在 上单调递减,则实数 的取值范围为()
A. B. C. D.
18.函数 的反函数为( )
A. B.
C. D.
19.已知可导函数 为定义域上的奇函数, 当 时,有 ,则 的取值范围为()
A. B. C. D.
20.已知函数f(x)= ( )
A . B. C. D.
21. ,若 ,则 的值为………………………………()
36..记实数 中的最小数为 ,设函数 = ,若 的最小正周期为1,则 的值为()
A. B.1C. D.
37.函数 的定义域()
A、 B、
C、 D、
38.函数 在 内有极小值,则实数 的取值范围为()
A. B. C. D.
39.已知 ,那么 用 表示为()
A. B. C. D.
40.已知函数 的值域是 ,则实数 的取值范围是( )
④一质点在直线上以速度 运动,从时刻 到 时质点运动的路程为 。
59.函数 的值域是.
60.函数 在点(2,4)处的切线方程是.
61.设函数f(x)在(0,+∞)内可导,且f(ex)=x+ex,则f′(1)=________.
A.0对B.1对C.2对D.3对
13.设a∈R,若函数y=ex+ax,x∈R有大于零的极值点,则()
(A)a<-1(B)a>-1
(C)a>- (D)a<-
14.函数 上的最大值和最小值之和为a,则a的值为()
A. B. C.2D.4
15.若 ,则 的大小关系为()
A. B. C. D.
16.使“ ”成立的一个充分不必要条件是()
55.定义运算min 。已知函数 ,则g(x)的最大值为______。
56.设函数 , ,则函数 的零点有 个.
57.已知lg2 = a,lg3 = b,试用a,b表示log36:______.
58.下列命题中正确的有.(填上所有正确命题的序号)
①若 取得极值;
②若 ,则f(x)>0在 上恒成立;
③已知函数 ,则 的值为 ;
46.设函数 ( )的导函数为 ,满足 ,则当 时, 与 的大小关系为
A. B. C. D.不能确定
47.已知函数 则对任意 ,若 ,
下 列不等式恒成立的是()
A. B.
C. D.
48. , 是定义在R上的函数, ,则“ , 均为偶函数”是“ 为偶函数”的
A.充要条件B.充分而不必要的条件
C.必要而不充分的条件D.既不充分也不必要的条件
A. ;B. ;C. ;D. .
41.已知函数 , ,则 与 图像在区间 内交点的个数为()
A、 B、 C、 D、
42.已知函数 满足 ,且当 时, ,则( )
A. B.
C. D.
43.若 ,则 的定义域为( )
A. B. C. D.
44. ________.
45.函数 的单调区间是()
A. B. C. D.
A. 2011 B. 2012 C. 4024 D. 4022
32.若函数 在区间 上无零点,则函数
的递减区间是
33.设 ,则
A. B. C. D.
34.若函数 满足 ,且 时, ,函数 ,则函数 在区间[-5,5]内与 轴交点的个数为()
A.5B.7 C.8D.10
35.已知三次函数 的图象如图所示,则该函数的导函数的图象是
25.已知函数 ,若数列 满足 ,且对任意正整数 都有 成立,则实数 的取值范围是( )
A. B. C. D.
26.已知 若 ,则 与 的由大到小的关系式为()
A. B.
C. D.
27.已知函数 ,则 的值是()
A. 4B. 48C. 240D. 1440
28.如图所示是《函数的应用》的知识结构图,如果要加入“用二分法求方程的近似解”,则应该放在()
A. B. C. D.
22. 是函数 在点 处取极值的()
A.充分不必要条件B必要不充分条件
C.充要条件D.既不充分也不必要条件
23.已知函数 ( ),如果 ( ),那么 的值是()
A. B.3 C.5 D.
24.已知函数f(x)= ,若| f(x)|≥ax,则a的取值范围是()
A、(-∞,0] B、(-∞,1] C、[-2,1] D、[-2,0]