材料性能:1.1材料的常规力学性能

合集下载

材料的力学性能包括

材料的力学性能包括

材料的力学性能包括材料的力学性能是指材料在外力作用下所表现出的力学特性,包括强度、韧性、硬度、塑性等方面。

这些性能对于材料的选择、设计和应用具有重要的指导意义。

下面将分别介绍材料的力学性能。

首先,强度是材料抵抗外力破坏的能力。

材料的强度可以分为拉伸强度、压缩强度、剪切强度等。

拉伸强度是指材料在拉伸作用下抵抗破坏的能力,压缩强度是指材料在压缩作用下抵抗破坏的能力,剪切强度是指材料在剪切作用下抵抗破坏的能力。

强度的大小直接影响着材料的使用安全性和可靠性,因此在材料选择和设计中需要充分考虑材料的强度。

其次,韧性是材料在外力作用下抵抗破坏的能力。

韧性是材料抵抗断裂的能力,通常用断裂韧性来表示。

断裂韧性是指材料在受到外力作用下能够吸收能量并抵抗断裂的能力。

韧性越大,材料在外力作用下越不容易发生断裂,具有更好的抗破坏能力。

因此,韧性是衡量材料抗破坏能力的重要指标之一。

另外,硬度是材料抵抗划伤、压痕和穿透的能力。

硬度是材料抵抗外力作用而不易产生形变或破坏的能力。

硬度的大小直接影响着材料的耐磨性和耐久性,对于一些需要长期使用的材料来说,硬度是一个非常重要的性能指标。

最后,塑性是材料在外力作用下发生形变的能力。

塑性是指材料受到外力作用后能够发生持久性形变的能力,通常用屈服点和延伸率来表示。

塑性越大,材料在外力作用下发生形变的能力越强,具有更好的加工性能和变形能力。

总的来说,材料的力学性能是材料在外力作用下所表现出的力学特性,包括强度、韧性、硬度、塑性等方面。

这些性能直接影响着材料的使用安全性、耐久性和加工性能,对于材料的选择、设计和应用具有重要的指导意义。

因此,在材料研究和工程应用中,需要充分考虑材料的力学性能,以确保材料的使用安全和可靠。

木材的力学性能参数分析整理

木材的力学性能参数分析整理

木材的力学性能参数目录1.1木材的力学性质………………………………………………P32.1木材力学基础理论……………………………………………P3~ P82.1.1应力与应变2.1.2弹性和塑性2.1.3柔量和模量2.1.4极限荷载和破坏荷载3.1木材力学性质的特点…………………………………………P8~P203.1.1木材的各向异性3.1.2木材的正交对称性与正交异向弹性3.1.3木材的粘弹性3.1.4木材的松弛3.1.5木材塑性3.1.6木材的强度、韧性和破坏3.1.7单轴应力下木材的变形与破坏特点4.1木材的各种力学强度及其试验方法………………………P20~ P284.1.1力学性质的种类5.1木材力学性质的影响因素…………………………………P28~ P315.1.1木材密度的影响5.1.2含水率的影响5.1.3温度的影响5.1.4木材的长期荷载5.1.5纹理方向及超微构造的影响5.1.6缺陷的影响6.1木材的允许应力…………………………………………P31~ P336.1.1木材强度的变异6.1.2荷载的持久性6.1.3木材缺陷对强度的影响6.1.4构件干燥缺陷的影响6.1.5荷载偏差的折减6.1.6木材容许应力应考虑的因素7.1常用木材物理力学性能……………………………………P34~ P36 1.1木材的力学性质主要介绍:木材力学性质的基本概念、木材的应力—应变关系;木材的正交异向弹性、木材的黏弹性、木材的塑性;木材的强度与破坏、单轴应力下木材的变形与破坏特点;基本的木材力学性能指标;影响木材力学性质的主要因素等。

1.1.1木材的力学性质:木材在外力作用下,在变形和破坏方面所表现出来的性质。

1.1.2木材的力学性质主要包括:弹性、塑性、蠕变、抗拉强度、抗压强度、抗碗强度、抗减强度、冲击韧性、抗劈力、抗扭强度、硬度和耐磨性等。

1.1.3木材力学性质的各向异性:与一般钢材、混凝土及石材等材料不同,木材属生物材料,其构造的各向异性导致其力学性质的各向异性。

材料在静载荷下的力学性能

材料在静载荷下的力学性能

k
l0
延伸率测量值与试样尺寸有关
RAL 1 材料在静载荷下的力学性能
l b l u ml 0 n A0 m n A0
k
l0
b
u
l0
l0
A0 l0
必须取常数,(1/11.3或1/5.65)
(2) 断面收缩率ψ
A0 Ak 100%
A0
RAL 1 材料在静载荷下的力学性能
1.1.2 脆性材料的拉伸性能
<1 表示硬的应力状态。
对于不同的材料,其力学性能指标τs,τK和σK也 各不相同,只有选择与应力状态相适应的试验 方法进行试验时,才能显示出不同材料性能上 的特点。
RAL 1 材料在静载荷下的力学性能
1.2.2 扭转
试 样:圆柱形试样 试验过程:试样两端施加扭矩,随扭矩增加,
标距间两个截面产生相对转动, 测量扭矩与扭转角关系曲线 -扭转图。
SP Ai
RAL 1 材料在静载荷下的力学性能
根据在塑性变形前后材料体积不变的近似假定,即
A0l0 Aili
则得到 S P P l i l 0 l (1 l )
Ai A0 l 0
l0
l0
所以 S (1 )
RAL 1 材料在静载荷下的力学性能
真应变:瞬时应变
n
l e d
整个长度上的塑性变形始终是均匀发生的,不出现静拉伸时所出现的颈缩现象, 因此,对于那些塑性很好的材料,用这种试验方法可以精确地测定其应力和应 变关系。
③ 扭转试验可以明显地区别材料的断裂方式是正断还是切断。 ④ 扭转试验时,试样横截面上沿直径方向切应力和切应变的分布是不均 匀的,表面的应力和应变最大。因此,扭转可以灵敏地反映材料的表面缺陷, 如金属工具钢的表面淬火微裂纹。还可以用扭转试验的这种特点对表面淬火、 化学热处理等表面强化工艺进行研究。 ⑤ 扭转试验的缺点是:截面上的应力分布不均匀,在表面处最大,越往 心部越小。对显示材料体积性缺陷,特别是靠近心部的材质缺陷不敏感。

材料的力学性能

材料的力学性能

材料的力学性能
材料的力学性能是指材料在外力作用下所表现出的性能,主要包括强度、韧性、硬度、塑性等指标。

这些性能对于材料的选择、设计和应用具有重要意义。

下面将分别对材料的强度、韧性、硬度和塑性进行介绍。

首先,强度是材料抵抗破坏的能力,通常用抗拉强度、抗压强度、抗弯强度等
指标来表示。

强度高的材料具有较好的抗破坏能力,适用于承受大外力的场合。

例如,建筑结构中常使用高强度钢材,以保证结构的安全稳定。

其次,韧性是材料抵抗断裂的能力,也可以理解为材料的延展性。

韧性高的材
料在受到外力作用时能够延展变形而不断裂,具有较好的抗震抗冲击能力。

例如,汽车碰撞安全设计中常使用高韧性的材料,以保护乘车人员的安全。

再次,硬度是材料抵抗划伤和压痕的能力,通常用洛氏硬度、巴氏硬度等指标
来表示。

硬度高的材料具有较好的耐磨损性能,适用于制造耐磨损零部件。

例如,机械设备中常使用高硬度的合金材料来制造齿轮、轴承等零部件。

最后,塑性是材料在受力作用下发生塑性变形的能力,通常用延伸率、收缩率
等指标来表示。

具有良好塑性的材料能够在加工过程中较容易地进行成型和加工,适用于复杂零部件的制造。

例如,塑料制品的生产常使用具有良好塑性的材料,以满足复杂形状的加工需求。

综上所述,材料的力学性能是材料工程领域中的重要指标,对于材料的选择、
设计和应用具有重要意义。

强度、韧性、硬度和塑性是衡量材料力学性能的重要指标,不同的应用场合需要选择具有不同力学性能的材料,以满足工程需求。

因此,深入了解和掌握材料的力学性能,对于材料工程师和设计师来说是非常重要的。

第1章 工程 材料的种类和力学性能

第1章 工程 材料的种类和力学性能

传统的无机非金属材料 之一:陶瓷
陶瓷按其概念和用途不同 ,可分为两大类,即普通陶瓷 和特种陶瓷。
根据陶瓷坯体结构及其基 本物理性能的差异,陶瓷制品 可分为陶器和瓷器。
陶瓷制品
陶瓷发动机
• 普通陶瓷即传统陶瓷,是指以粘土为主要原料与其它天然矿物原料经过 粉碎混练、成型、煅烧等过程而制成的各种制品。包括日用陶瓷、卫生 陶瓷、建筑陶瓷、化工陶瓷、电瓷以及其它工业用陶瓷。
材料的强度、塑性指标是通过拉伸实验 测定的。
应力 σ=F/S0
σ (N /m2) ;
F —作用力,(N) S0—试样原始截面 积(m2)。
剪应力τ=F/SO
材料单位面积上的内力称为应力(Pa),以
σ表示。
应变ε(%) ⊿L—试样标距部分伸长量,(mm);
L0 —试样标距部分长度(mm)。ε=⊿L/L0
根据用途不同,特种玻璃分为防辐射玻璃、激光玻璃、 生物玻璃、多孔玻璃、非线性光学玻璃和光纤玻璃等。
传统的无机非金属材料 之三:水泥
水泥是指加入适量水 后可成塑性浆体,既能在 空气中硬化又能在水中硬 化,并能够将砂、石等材 料牢固地胶结在一起的细 粉状水硬性材料。
水泥的种类很多,按其用途和性能可分为: 通用水泥、专用水泥和特性水泥三大类;按其所 含的主要水硬性矿物,水泥又可分为硅酸盐水泥 、铝酸盐水泥、硫铝酸盐水泥、氟铝酸盐水泥以 及以工业废渣和地方材料为主要组分的水泥。目 前水泥品种已达一百多种。
l lO
ll lO
lO lO
l
100lO% lO
100%
剪应变 γ 剪模量 G
a h
tan
且有 G
• 弹性变形 形①的弹外性力变撤形除:后当,产变生形变随σ 即消失。

第一章 金属材料的力学性能

第一章  金属材料的力学性能


A、C标尺为100
B标尺为130
机 械 制



§1.2 硬度
第一章 金属材料的力学性能
二、洛氏硬度
标注——用符号HR表示, A标尺HRA B标尺HRB C标尺HRC
如: 42 HRA


硬度值 A标尺




§1.2 硬度
第一章 金属材料的力学性能
三、维氏硬度 测定原理——基本上和布氏硬度相同,只是所用 压头为金刚石正四棱锥体
冲击韧度高

•冲击能量高时, --材料的冲击韧度主要取决于材料的塑性,塑性高则
韧度高
械 制



第一章 金属材料的力学性能
第一章 金属材料的力学性能
§1.1 强度和塑性
§1.2 硬度
§1.3 冲击韧度
§1.4 疲劳强度
本章小结






§1.4 疲劳强度
第一章 金属材料的力学性能
疲劳强度
Sl110000%%Sl10lS0 110100%0%
Sl 二者的值越大塑性越好 00
lS0 0
机 械 制
原始原横始截标面距积
试样拉试断样后断的裂标处距截面积
造 基

第一章 金属材料的力学性能
第一章 金属材料的力学性能
§1.1 强度和塑性
§1.2 硬度
§1.3 冲击韧度
§1.4 疲劳强度
本章小结
第一章 金属材料的力学性能
由主金要属内材容料:制成的零、部件,在工作过
程中金都属要材承料受的外力力学性(或能称指载标荷和) 测作试用方而法产,

工程材料 第一章 材料的性能及应用意义

工程材料 第一章 材料的性能及应用意义
4. 硬度与工艺性能之间有联系,可作为评定材料工艺性能的参考。
5. 硬度能较敏感地反映材料的成分与组织结构的变化,可用来检验原材料和 控制冷热加工质量。
2020/12/11
一、力学性能
§1.2 材料的使用性能
硬度测试方法:
1. 布氏硬度 GB231-1984 2. 洛氏硬度 GB230-1991 3. 维氏硬度 GB4342-1984
2)磨粒磨损:是指滑动摩擦时,在零件表面摩擦区内存在硬质磨粒, 使磨面发生局部塑性变形、磨料嵌入和被磨料切割等过程,以致磨面材 料逐步磨耗。
2020/12/11
一、力学性能
§1.2 材料的使用性能
粘着磨损示意图
2020/12/11
粘着磨损磨痕
一、力学性能
§1.2 材料的使用性能
磨粒磨损示意图
2020/12/11
§1.2 材料的使用性能
2020/12/11
一、力学性能
§1.2 材料的使用性能
2020/12/11
一、力学性能
§1.2 材料的使用性能
(六)韧性——材料在塑性变形和断裂的全过程中吸收能量的能 力,它是材料强度和塑性的综合表现。
韧性不足可用脆性来表达。 韧性高低决定是韧性断裂,还是脆性断裂。
2020/12/11
2020/12/11
§1.3 材料的工艺性能
金属材料零件的一般加工过程
2020/12/11
§1.3 材料的工艺性能
1. 铸造性能:包括流动性、收缩、疏松、成分偏析、铸造应力、冷热裂纹倾向。 2. 锻造性能:通常用材料的塑性和强度及形变强化能力来综合衡量。 3. 焊接性能:包括焊接接头产生缺陷的倾向性和焊接接头的使用可靠性。 4. 切削加工性能:一般用材料的切削的难易程度、切削后表面粗糙度和刀具寿 命等方面来衡量。 5. 热处理性能:包括淬透性、淬硬性、耐回火性、氧化与脱碳倾向及热处理变 形与开裂倾向。

材料力学性能(Mechanical Properties of Materials)

材料力学性能(Mechanical Properties of Materials)

第1章材料在静载下的力学行为1.1 材料在静拉伸时的力学行为概述静拉伸是材料力学性能试验中最基本的试验方法。

用静拉伸试验得到的应力-应变曲线,可以求出许多重要性能指标。

如弹性模量E,主要用于零件的刚度设计中;材料的屈服强度σs和抗拉强度σb则主要用于零件的强度设计中,特别是抗拉强度和弯曲疲劳强度有一定的比例关系,这就进一步为零件在交变载荷下使用提供参考;而材料的塑性,断裂前的应变量,主要是为材料在冷热变形时的工艺性能作参考。

图1-1 几种典型材料在温室下的应力-应变曲线图1-1表示不同类型材料的几种典型的拉伸应力-应变曲线。

可见,它们的差别是很大的。

对退火的低碳钢,在拉伸的应力-应变曲线上,出现平台,即在应力不增加的情况下材料可继续变形,这一平台称为屈服平台,平台的延伸长度随钢的含碳量增加而减少,当含碳量增至0.6%以上,平台消失,这种类型见图1-1a;对多数塑性金属材料,其拉伸应力-应变曲线如图1-1b所示,该图所绘的虽是一铝镁合金,但铜合金,中碳合金结构钢(经淬火及中高温回火处理)也是如此,与图1-1a不同的是,材料由弹性变形连续过渡到塑性变形,塑性变形时没有锯齿形平台,而变形时总伴随着加工硬化;对高分子材料,象聚氯乙烯,在拉伸开始时应力和应变不成直线关系,见图1-1c,即不服从虎克定律,而且变形表现为粘弹性。

图1-1d为苏打石灰玻璃的应力-应变曲线,只显示弹性变形,没有塑性变形立即断裂,这是完全脆断的情形。

工程结构陶瓷材料象Al2O3,SiC等均属这种情况,淬火态的高碳钢、普通灰铸铁也属这种情况。

1.2 金属材料的弹性变形1.2.1 广义虎克定律已知在单向应力状态下应力和应变的关系为:一般应力状态下各向同性材料的广义虎克定律为:其中:如用主应力状态表示广义虎克定律,则有1.2.2 弹性模量的技术意义工程上把弹性模量E、G称做材料的刚度,它表示材料在外载荷下抵抗弹性变形的能力。

在机械设计中,有时刚度是第一位的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012-4-16
17
材料的力学性能---材料力学
� 材料的力学性能学习重点:
� 弹性、塑性、韧性、断裂、硬度、脆性
� 材料力学: 构件承载后---应力分布---变形 强度、刚度、稳定性
� 学习重点:杆件的受力分析及计算。
2012-4-16
18
不同形状的应力—应变曲线
(a)室温的玻璃、 陶瓷、岩石, 热固性聚合物, 低温下的体心 立方金属等。
2012-4-16
5
力-伸长曲线和应力-应变曲线
二、拉伸性能的作用 a.在工程应用中,拉伸性能是结构静强度
设计的主要依据之一。 b.提供预测材料的其它力学性能的参量,
如抗疲劳、断裂性能。
2012-4-16
6
工程应力、应变的定义(P.10)
� 工程应力σ=F/A0
F:载荷;A0:原始截面积
� 工程应变ε=Δl/l0
2012-4-16
9
2012-4-16
10
2012-4-16
11
1.1.2. 拉伸曲线 1.1.2.1 �载荷(力)--伸长曲线和 �应力--应变曲线
2012-4-16
12
1)P点以下,F和ΔL呈线性关系; 2)PE段:伸长开始偏离直线关系; 但卸载后可完全恢复;弹性变形 3)A点:出现塑性变形;在这一阶 段的变形过程中,最初试样局部区 域产生不均匀的塑性变形,曲线上 出现平台式锯齿(屈服平台),直 至C点结束; 4)CB:均匀塑性变形阶段; 5)B点:达到最大拉伸力; 6)BK:不均匀塑性变形阶段,局 部区域产生缩颈; 7)K点:、低
温下某些体心立
方金属等
2012-4-16
23
书P.12,表1-1-1 拉伸应力-应变曲线-典型材料举例
2012-4-16
24
拉伸应力-应变曲线-典型材料举例
2012-4-16
25
考虑:实际拉伸过程
•试样的截面积和长度会随着拉伸力的增加而 不断变化。 •工程应力--应变曲线并不能完全反映试验过程 中瞬时的真实情况。 •18分钟后的拉伸情况再以18分钟前的A0和l0 做依据,时间再长呢?这样的应力真实吗?
1 材料的常规力学性能
强度、弹性、塑性、韧性、硬度 � 试验方法:
拉伸变形、压缩变形、弯曲变形、 剪切变形、扭转变形、冲击变形、 硬度试验。 � 试样类型: 圆柱试样、片状试样; 缺口试样。
2012-4-16
1
材料的常规力学性能
1.1 单向静载荷试验与性能 1.2 其他静载荷下的力学试验及性能 1.3 缺口效应 1.4 硬度 1.5 冲击韧度
2012-4-16
19
(b)调质钢、 有色金属
(c)铝青铜、 高锰钢、
硬玻璃态聚合物、 高温下的陶瓷
2012-4-16
20
(d)正火、调质、退火态低碳钢, 低合金结构钢,工业纯铁等
2012-4-16
21
(e)软玻璃态 聚合物
2012-4-16
(f)橡胶、高 弹态聚合物
22
(g)结晶态聚合物
(h)低溶质固溶体
Δl:伸长量;l0 :原始长度
2012-4-16
7
1.1.1 单向静拉伸试验
环材学院 耐热合金试验机 型号:WDW3200
拉力:200KN 20吨载荷
重力: G=mg(g=9.8N/kg)
2012-4-16
8
单向静拉伸试验
� 单向静拉伸
——最广泛的力学性能试验方法之一。
� 揭示: 过量弹变——塑变——断裂
2012-4-16
2
Introduction
�拉伸、压缩、弯曲、扭转、剪切 �单向静拉伸试验 � --拉伸曲线 σP: 比例极限 σe: 弹性极限 σs:屈服极限 σb:抗拉强度
2012-4-16
3
拉伸曲线
2012-4-16
4
材料性能学 -力学性能
1.1 单向静拉伸试验及性能
力-伸长曲线和应力-应变曲线 一、拉伸性能:通过拉伸试验可测材 料的弹性、强度、延性、应变硬化和 韧度等重要的材料基本力学性能。
2012-4-16
力--伸长曲线 应力--应变曲线13
典型的低碳钢拉伸曲线
2012-4-16
14
环材学院试验机45#碳钢 拉伸曲线
40000
35000
30000
25000
F(N)
20000
15000
10000
5000
0
0
5
10
15
20
25
30
35
40
纵轴:力(N);X横Axis轴Title :碳钢伸长
2012-4-16
15
环材学院试验机 铸铁 拉伸曲线
2012-4-16
F(N)
12000
10000
8000
6000
4000
2000
0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
S(mm)
位移
16
退火低碳钢拉伸时的力学响应:
� 弹性变形、 � 塑性变形、 � 断裂三个主要阶段。 塑性变形阶段还可以分为: � 微塑性变形阶段、(不均匀的塑性变形) � 屈服阶段、(均匀、不均匀塑性变形) � 应变加工硬化阶段、 (不均匀塑性变形) � 颈缩阶段。 (不均匀的塑性变形)
2012-4-16
29
二、真应变的推导
试样瞬时长度L为L+dL
应变的微分增量: de = dL L
工程应变ε=Δl/l0
试样自L0伸长至L后,总的应变量为
•真实应力:S= σT=P瞬时/A瞬时
2012-4-16
26
1.1.2.2 真应力-真应变曲线-P.13
工程应力σ=P/A0 工程应变ε=Δl/l0 真实应力S= σT;真实应变e= εT
它们与应力σ、应变ε之间有如下关系:
( ) 真实应力:S= σT = σ 1+ ε
( ) 真实应变:e= εT = ln 1+ ε
2012-4-16
27
一、真实应力的推导 实际拉伸过程中,瞬时截面积A除其相应的拉伸力F。
S= σT=F瞬时/A瞬时
真应力和工程应力的关系:
假设材料的拉伸变形是等体积变化过
=
程,根据体积不变条件:
lA = l0 A0
(1)
2012-4-16
∆l l = l0 + ∆l = l0 (1+ l0 ) = l0 (1+ ε )
(2)
A
=
A0

∆A
=
A0 (1 −
∆A) A0
=
A0 (1 −ψ
)
(3)
28
把2,3代入1得
1 1+ε =
1−ψ
(4)
或: ε = ψ 1−ψ
Ψ:断面收缩率,书 P.17
根据真应力的定义: 而且F瞬时=F 是恒力
F
F
S = σT = A = A0 (1−ψ ) = σ (1+ ε )
S =σT =σ(1+ε) 真应力大于工程应力
相关文档
最新文档