大空间建筑室内气流组织数值模拟与舒适性分析

合集下载

大空间分层空调气流组织数值模拟及热舒适性分析研究

大空间分层空调气流组织数值模拟及热舒适性分析研究

大空间分层空调气流组织数值模拟及热舒适性分析研究【摘要】本文结合工程实例介绍大空间空调系统的布置方案,利用star-ccm软件对典型大空间工程实例进行模拟分析,为大空间空调系统设计提供参考依据。

【关键词】气流组织;分层空调;star-ccm数值模拟引言近年来,随着我国经济的快速发展,高大空间建筑急剧增加(体育馆,展览馆大会堂音乐厅),大空间建筑中空调能耗占整个建筑能耗的37%[1],目前对于改进室内空气品质和降低空调能耗,成为人们关注的焦点。

针对大空间建筑高度较高,空调气流具有明显分层现象在垂直高度上梯度较大,同时还具有体积大、空调负荷大、能源消耗大等特点,使得节能问题相当突出[2]。

因此,应采用合理的气流组织,使大空间建筑室内具有良好的热环境以节约能源。

分层空调是大空间建筑典型的空调方式,利用合理的气流组织,仅对下部空间(空气调节区域)进行空气调节,而对上部较大非空调区域进行通风排热。

分层空调目前建筑工程领域中最为常见的一种技术手段[3]。

经过多年的研究总结得出,在一些大空间建筑结构中这一技术的采用有着传统空调技术无可比拟的节能优势,是一个节省初期投资、运行费用和节能性能好的空调体系。

故此这一技术在大型的公共空间采用极为常见,据有关研究显示,高大空间分层空调与全室空调相比,在夏季可实现节能30%[3]。

本文通过star-ccm软件对某市新建车站的大厅进行数值模拟并对热舒适性进行分析。

1 建筑实物与模型1.1 工程介绍某市新建车站是一两层的东西对称大空间建筑结构,其空间尺寸长约76m、宽为60m、高20m,其中包含了一、二层贯通的进展厅以及二层的候车室。

在空调系统中,采用了全空气低速送风方式来进行室内温度调节的,是由屋顶机房集中进行制冷,经过两条送风管将冷风分别输送到进站候车厅以及候车室,对于候车室内部的温度控制为26℃。

在温度调节上,按照夏季分层空调的调节方法来进行设计和布置,其中进展厅距离地面6m的高度处沿着墙壁均匀的布置了25个球形喷风口下侧送风,沿着东西两侧的墙壁上设置了6个球形的喷风口,其方向也是朝下。

270气流组织对室内空气环境质量影响的数值模拟

270气流组织对室内空气环境质量影响的数值模拟

气流组织对室内空气环境质量影响的数值模拟XX大学土木工程学院焦俊军龚光彩邵春生摘要:室内空气环境包括室内热湿环境和室内空气品质,而合理的气流组织是实现室内热湿环境和保证空气品质的最终环节。

本文采用CFD方法,应用Airpak软件,针对常见的办公室环境,分别对置换通风、顶送下回两种不同送回风方式下的速度场、温度场、污染物浓度分布、PMV-PPD分布等进行模拟计算,并对模拟结果进行分析,得出结论:置换通风在速度场、温度场及热舒适性方面优于顶送下回方式,但当污染源位置较低时,置换通风方式对污染物的控制效果弱于顶送下回方式。

因此,在保证室内空气环境质量的工程设计中,并不存在普遍意义的最佳方案,须针对具体工况,设计合理的气流组织。

关键词:气流组织热舒适室内空气品质CFD数值模拟Numerical Simulation ofthe Influence of Air Distribution on Indoor Air Environment Quality Civil EngineeringCollege of HunanUniversityJiao Junjun Gong Guangcai Shao Chunsheng Abstract: The air distribution is the final linkof the indoor air environment including the thermal and humidity environment and the indoor air quality. By the numerical simulation method with CFD Airpaksoftware, calculated the velocity, temperature,pollution concentration and PMV-PPDdistribution in the normal officesunder different modes of air flow organization such as replacement ventilation and top-supplying with down-exhausting air distribution, and drew some conclusions thatthe velocity, temperaturedistribution and thermal fortof replacement ventilationwas superior to that ofthe top-supplying with down-exhausting air distribution, but the pollutant controlwas inferior if the pollution source was at the low position. Consequently, there isn’t a unique design schemesuitable for any practical projects to obtain high indoor air environment quality, and it’s essential to considerthe specific conditions in order to obtain the optimal air distribution.Key words: Air distribution, Thermal fort, Indoor air quality, CFD,Numerical simulation1.前言室内空气环境包括室内热湿环境和室内空气品质,而合理的气流组织是实现室内热湿环境和保证空气品质的最终环节。

室内气流组织数值模拟与舒适度分析

室内气流组织数值模拟与舒适度分析

室内气流组织数值模拟与舒适度分析摘要:分别对采用百叶侧送侧回、喷口侧送侧回、散流器顶送下回、分层空调、置换通风方式的室内空调室内气流的速度场和温度场进行了数值模拟,并对其结果进行了实验验证。

根据ADPI指标对这几种送回风方式进行了热舒适性评价。

结果表明,分层空调和置换通风是室内中较好的气流组织方式。

关键词:室内;气流组织;速度场;温度场;数值模拟;热舒适引言传统空调系统的气流组织是以送风射流为基础的,通过反复迭代检查温度和速度。

最后,找到合理的回风方案和参数。

空调房间内的供气射流大多是多个非等温湍流射流,一般设计方法是基于单股等温紊流射流的规律,射流约束修正系数、射流重合度和非等温射流的修正系数。

介绍。

这种方法忽略了很多其他因素,如排风口的尺寸和位置、热源的性质和位置等,因此必然有一定的误差,在某些情况下甚至有很大的误差。

若简单地将这种方法用于空间空调系统的气流组织设计,是不合适的。

空间空调系统的气流设计没有成熟的理论和实验结论。

主要研究方法是将气流的数值分析与模型相结合。

由于气流的数值分析涉及到各种可能的内部扰动、边界条件和初始条件,所以可以完全反映房间内的气流分布,从而确定气流的最佳方案。

1室内空气流动的有限元数值模拟机械通风房间内的空气流动多属于非稳态湍流流动,直接模拟尚不现实。

在解决实际问题时,需要对物理模型进行一定的假设和简化处理。

笔者作了以下假设:1)室内空气为低速不可压缩气体,且符合 Boussinesq 假设;2)室内空气流动为准稳态湍流流动;3)忽略能量方程中粘性效应引起的能量耗散。

2各种送风方式下大空间室内气流组织数值模拟2.1研宄对象本文的研宄对象为有内热源、尺寸为12 mX &4 mX5.0 m(长X宽X高)的长方体建筑模型(如图1所示),风口设在外墙侧。

人员和设备由于不断放出热量,对室内气流分布特性有重要影响,将其视作内热源处理。

内热源模型为0.4 mX1.2 mX 1.3 m(长X宽X高)的长方体。

大空间建筑室内热环境的数值模拟

大空间建筑室内热环境的数值模拟
大气压力 10 2 a室 内设计干球温度 2 0 .6P ; 5℃, 相对湿度 5 %; 0 冬
季室外计算干球温度 一9℃, 冬季室外 最冷月相对湿度 4 %, 5 室外
平均风速 3m/, s大气压力 12 0 P , 内设计干球温度 2 0 .4k a室 2℃ ,




_ 豢 ~ _ 爨
4 4 3 3
・2 1 1 ・
1 4℃ , 内设计冷负荷 为 9 W , 负荷 指标为 3 3W/ , 室 0k 冷 0 m2总送 于室 内空气 的流动 , 但不利 于室内污染物 的直接排除 。 致} 董
风量 为 2 0 / 。顶 送 、 排 风 散 流 器 的 尺 寸 均 为 3 0rm × 20 0m3h 顶 6 f 3. 分 层 空 调 工 况 室 内热 环 境 的 数 值 模 拟 l 2
刷机 。房间西墙 、 南墙 为 内墙 , 他墙为外 墙 , 有 门均为 内 门。 其 所 所建立厂房的物理模 型如 图 1 所示 。 枷l 渤 粥暑 抛 § m 躺甓 ; 糯s ; m 枷; } { 姒姗 猫

1 O
b k=2 5 m温度场
4. 9 1 e+ 0 0

相对湿度 5 %_ 。房间长 3 . 宽 9 0m, 0 2 j 3 0m, . 吊顶高度 7 8m, . 建
筑 面 积 为 2 7m2 9 。
2 数值 模 拟
2. 物 理 模 型 1 根据厂房的建筑尺 寸建立三维立体模 型 , 以东 、 高度 、 南作为 坐标 的 ., , 向。吊顶布置两排风 口, 2 Y 方 7 北侧为送 风 口, 侧为 南
1 0 x 0 60 0 20 0×1 O 0 8

高大空间建筑室内气流组织分析

高大空间建筑室内气流组织分析

高大空间建筑室内气流组织分析高大空间建筑有其各自的特点,对于体育馆、音乐厅等建筑,其室内气流组织是空调系统设计的重点。

本文结合工程实例,介绍了工程的计算区域及设计参数,围绕垂直温度分布、垂直速度分布、气流分布特点及送风能耗比较这几方面对计算结果进行分析,为高大空间建筑室内环境的改善提供依据。

标签高大空间;建筑室内;设计参数;气流组织;分析随着我国社会经济建设步伐的不断加快,体育馆、音乐厅等高大空间建筑数量日益增加,逐渐成为城市建设的时代标志。

这些建筑具有体积大、围护结构传热量大、人员灯光密集,空调负荷较大等特点,其室内热环境状态参数随时可能发生变化,选取合理的气流组织方式对空调系统的设计有着重要的影响。

大空间气流组织指的是对气流流向和均匀度按一定要求进行组织,主要采用的方式有分层空调、置换通风、地板送风以及碰撞射流,如图1所示。

目前我国建筑室内空调系统的气流组织设计仍处于发展的阶段,并没有完善的理论体系和试验结论。

因此,通过对高大空间建筑室内气流组织的分析,确定合理的气流组织设计,对改善建筑室内的环境具有重要意义。

图1 大空间四种空调方式示意图1 计算区域及设计参数某公共建筑,结构南北对称,计算区域选取北边一半,计算区域层高约12m,占地面积约7450m2,属高大空间建筑。

计算区域按非结构网格划分。

人员工作区(高度0~2m)气流扰动较大,网格较密,非人员工作区网格相对稀疏。

根据FLUENT软件选取RNGk-ε两方程紊流模型,近壁面区域则选用标准壁面函数法,速度-压力耦合采用SIMPLE算法。

边界条件见表1,照明、设备及外墙负荷指标均参照原设计计算书选取,其中人员散热量均布在地面上。

为达到夏季室内人员工作区的要求设计温度25±0.5℃,参考相关文献资料,计算得到四种空调方式各自的设计参数,汇总于表2。

2 结果分析2.1 垂直温度分布不同高度上的平均温度值汇总于图2。

可以看出,四种空调方式都满足人员工作区的设计温度25±0.5℃,且分层效果明显。

某大型会议室气流组织分析

某大型会议室气流组织分析

某大型会议室气流组织分析摘要:某大型会议室长度方向20m,进深方向16m,吊顶后净高6m,采用一次回风全空气空调系统,其中送风方式采用散流器顶送风,回风方式采用单层百叶顶回风。

通过CFD软件对会议室室内的气流组织进行模拟分析,结果表明:会议室中人员主要活动区域的速度集中分布在0.2-0.3m/s附近,温度主要分布在23-26℃附近,满足该房间舒适性空调的室内设计要求。

关键词:空调系统设计,气流组织,室内空气质量0 引言随着人们对室内环境品质要求的不断增高,这就对暖通专业的空调通风等设计提出了更高标准的要求,房间内采用不同的气流组织对应有不同的速度场、温度场[1],大型会议室的特点就是人员密度大,对室内的空气品质要求较高,因此合理的气流组织不仅可以为人们提供健康、舒适的环境,还可以在一定程度上提高人们的工作效率。

文章分析了某大型会议室的空调系统设计及房间内的气流组织形式。

1 工程概况与空调系统设计该项目位于西南某公共建筑内的大型会议室,建筑长度方向20m,进深方向16m,房间布置的有吊顶,做完吊顶后的净高为6m,空调室外计算干球温度为32.6℃,会议室房间夏季室内设计参数为26℃。

混合式系统是集中式空调系统中最常用的方式之一,即处理的空气一部分来自新鲜的空气,一部分来自室内的回风,常用于公共建筑等较大空间可提供风管设置的场所[2]。

一次回风全空气系统是比较常见的一种空调系统形式,该系统具有以下特点:设备简单,初始投资较小;可以对室内房间进行有效的通风换气;可以保证房间全年的多工况运行;设备的使用寿命较长等[3]。

基于上述分析,该项目空调形式采用一次回风全空气空调系统,送风方式采用散流器顶送风,回风方式采用单层百叶顶回风。

2 气流组织分析CFD数值模拟是以流体力学为理论基础,流体的流动满足质量守恒、动量守恒及能量守恒方程,本文的基本假设包括空气为不可压缩理想气体,并且与外界没有热量交换,通风视为定常流动。

建筑物空气流动场数值模拟及优化研究

建筑物空气流动场数值模拟及优化研究

建筑物空气流动场数值模拟及优化研究作为建筑工程师,如何保证建筑物的空气质量和室内环境是一个重要的问题。

空气流动场数值模拟及优化研究便成为了解决这个问题的重要方法。

建筑物内部的空气流动场会受到很多因素的影响,如建筑的形式、通风系统的设计、室内设备的位置等。

这些因素结合在一起会影响室内的空气质量和舒适度。

数值模拟能够帮助建筑工程师更好地了解建筑物内部的流动场,从而进行优化设计。

数值模拟采用计算流体力学(CFD)技术,可以模拟建筑物内部的气流运动,包括空气的流速、压力、温度等等,从而帮助工程师找到潜在的问题。

数值模拟需要建立合适的模型,考虑到建筑物的形式、通风系统的设计、室内设备的位置等因素。

一旦模型建立完毕,就可以使用计算机进行模拟,得出建筑物内部的气流运动以及各种参数分布情况。

通过分析数据,可以发现可能存在的问题,并且进行优化研究。

数值模拟优化研究的目的就是通过优化设计来改善建筑物内部的空气质量和舒适度。

优化的方法包括改变建筑物的形式、优化通风系统的设计,以及调整室内设备的位置等等。

这样做可以让建筑物内部的气流运动更加合理,从而改善室内环境。

另外,数值模拟还可以用于预测新建建筑的气流运动,提前发现潜在的问题。

当建筑物尚处于设计阶段时,进行数值模拟可以帮助建筑工程师更好地评估建筑的形式和通风系统的设计。

这使得工程师可以在建筑开始建造之前就进行必要的调整。

总的来说,数值模拟是一种非常有效的建筑物内部空气流动场研究方法。

通过数值模拟和优化研究,可以更好地了解建筑物内部的气流运动,从而优化建筑设计方案,达到改善室内环境的目的。

某综合体项目办公大堂空调气流组织的CFD模拟分析

某综合体项目办公大堂空调气流组织的CFD模拟分析

某综合体项目办公大堂空调气流组织的CFD模拟分析摘要:高大空间建筑有体积大、空调负荷大、能源消耗量大、对空调质量要求高等特点,其气流组织方式和空调节能问题尤显重要。

有效地通风和合理的气流组织对于改善室内空气品质,保证实现健康建筑、健康舒适性空调有着重要的意义。

做好大空间内气流组织的CFD模拟分析,可以从人员舒适性角度考虑风口布置的合理性,满足大空间档次提升需求。

同时可在室内精装设计阶段作为风口布置参考。

关键词:高大空间;气流组织 CFD模拟分析;速度场;温度场引言:空调的使用越来越普及,人们对居住和工作环境的要求也越来越高,对通风空调技术也提出了更高的要求。

在空调房间内,气流组织是通风和空调系统的重要组成部分,直接影响室内空调效果,是关系着房间工作区的温度、湿度基数、精度及区域温差、工作区的气流速度及清洁程度和人们舒适感的重要因素。

随着计算机技术的发展,越来越多的项目在设计阶段利用CFD技术对空调房间气流组织进行优化和研究,从而了解由空调通风所形成的室内空气速度场、温度场、湿度场以及有害物浓度场等的分布情况,以制定出最佳的气流组织方案。

本文以南宁某综合体项目办公大堂为例,对设计的空调送回风系统进行CFD模拟分析。

一、CFD技术简介室内气流组织,是指一定的送风口形式和送风参数所带来的室内气流分布。

在实际工程中,常用的气流组织形式有:侧送侧回、上送下回、上送上回、下送上回等。

影响空调房间气流组织的主要因素是入口风速、进风口的位置、进回风口的相对位置等。

由于影响因素较多,加上实际工程中具体条件的多样性,因此难于用简单的理论或经验表达式来综合上述诸多因素的影响。

目前,在空间气流分布计算方面较多采用CFD技术进行模拟分析。

CFD是计算流体力学(Computational Fluid Dynamics)的简称,是流体力学和计算机科学相互融合的一门新兴交叉学科,它从计算方法出发,利用计算机快速的计算能力得到流体控制方程的近似解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大空间建筑室内气流组织数值模拟与舒适性分析
发表时间:2019-04-30T10:40:18.810Z 来源:《基层建设》2019年第4期作者:王雷谢恩
[导读] 摘要:在我国快速发展的过程中,我国的国民经济得到了快速的发展,分别对采用百叶侧送侧回、喷口侧送侧回、散流器顶送下回、分层空调、置换通风方式的大空间建筑空调室内气流的速度场和温度场进行了数值模拟,并对其结果进行了实验验证。

中建三局第一建设工程有限责任公司湖北武汉 430040
摘要:在我国快速发展的过程中,我国的国民经济得到了快速的发展,分别对采用百叶侧送侧回、喷口侧送侧回、散流器顶送下回、分层空调、置换通风方式的大空间建筑空调室内气流的速度场和温度场进行了数值模拟,并对其结果进行了实验验证。

根据ADPI指标对这几种送回风方式进行了热舒适性评价。

结果表明,分层空调和置换通风是大空间建筑中较好的气流组织方式。

关键词:大空间建筑;气流组织;速度场;温度场;数值模拟
引言
常规空调系统气流组织的设计是以送风射流为基础,通过反复迭代对温度和速度进行校核,最后找到合理的送回风方案和参数。

空调房间的送风射流大多属于多股非等温受限湍流射流,而一般的设计方法是在单股等温湍流送风射流规律的基础上,引入射流受限、射流重合和非等温射流修正系数,这种方法忽略了很多其他因素,如排风口的尺寸和位置、热源的性质和位置等,因此必然有一定的误差,在某些情况下甚至有很大的误差。

若简单地将这种方法用于高大空间空调系统的气流组织设计,是不合适的。

对于高大空间空调系统的气流组织设计,目前尚无成熟的理论和实验结论,主要研究手段是将气流数值分析和模型相结合。

由于气流数值分析涉及室内各种可能的内扰、边界条件和初始条件,因此能全面地反映室内的气流分布情况,从而便于确定最优的气流组织方案。

1大空间气流组织的研究意义
对于现代的工艺空调车间,不但要满足工艺方面的要求,而且还要营造良好的室内人工环境。

在生产过程中必须保证生产工艺所要求的温度、风速、湿度,为生产提供条件,同时也要求提供合适的新风量,保证一定的洁净度和噪声标准,为工作人员提供良好的工作环境。

在各类工艺空调建筑内,空气调节是实现这些人工环境的最佳手段。

在大空间空调中,经过处理的空气由送风口进入,与室内空气进行热湿交换,经过回风口排出。

空气的进入与排出,必然引起室内空气的流动,而不同的空气流动状况有不同的空调效果,合理组织室内空气的流动,使室内空气的温度、湿度、流动速度等能更好地满足工艺要求,符合人们的舒适感觉。

由此可见,大空间气流组织直接影响室内的空调效果,是关系到工作区的温湿度基数、精度及区域温差、工作区的气流速度及洁净度和人们舒适感觉的重要因素,是空气调节的重要环节,对其进行研究己口渐成为一项重要的课题。

2大空间建筑室内气流组织有限元法数值模拟
2.1物理模型假设
机械通风房间内的空气流动多属于非稳态湍流流动,直接模拟尚不现实。

在解决实际问题时,需要对物理模型进行一定的假设和简化处理。

笔者作了以下假设:1)室内空气为低速不可压缩气体,且符合Boussinesq假设;2)室内空气流动为准稳态湍流流动;3)忽略能量方程中由于黏性作用引起的能量耗散。

4)控制方程求解与罚函数的采用应用K-ε两方程模型模拟湍流,加上连续性方程、动量方程、能量方程组成控制方程组。

方程组中空气密度ρ=1.1941kg/m3,黏度μ=1.81×10-5Pas,6个经验系数的取值如下:Cμ=0.09,C1=1.44,C2=1.92,σT=0.9~
1.0,σK=1.0,σε=1.3。

对流场控制方程用有限元法求解。

为防止病态方程组出现,本文采用罚函数法。

罚函数模型是压力速度模型的变形形式,把连续方程作为罚函数约束导入动量方程从而消去压力项,得到只有速度项的动量方程,即令p=-λp(v)(1)式中λp是罚参数。

在求解其他变量之前,将压力从全部未知量中消去,这将减少求解未知量的数目。

压力在其他变量求出后重新求得。

2.2各种送风方式下大空间室内气流组织数值模拟
2.2.1下送风方式(置换通风)室内气流组织模拟
置换通风气流组织的影响因素很多,例如热源的大小和位置、送风温度以及障碍物的高度和位置等。

由于长方体内热源模型的假设不能很好反映置换通风的流动特点,所以在此将内热源简化为一个处于房间底部正中间的面积为0.4m×0.4m的面热源,热源温度为40℃。

为了模拟热源气流的上升,假设送风速度为0.3m/s,考虑冷气流的特点,假定地面温度为22℃,其余边界条件与前文相同。

置换通风的送风温差一般为2~4℃,本文取4℃,则送风温度为22℃,送风速度为0.25m/s,送风口尺寸为1.0m×0.5m。

尺寸为1.0m×0.5m的回风口布置在屋顶靠近置换装置的一侧,回风速度为0.35m/s。

模拟显示z=0.1m断面上平均温度为22.66℃,平均速度为0.025m/s。

2.2.2边界条件的处理
室内温度设定为(26±2)℃,内墙的温度设定为26℃,外墙为26.5℃,屋顶为26℃。

人体和设备的发热功率之和为600W。

本文应用有限元的非统一网格,在人体和设备周围、外墙附近及风口附近对网格进行加密,在壁面附近采用壁面函数法。

非线性方程组由FIDAP(流体力学有限元软件包)的求解器通过迭代求解。

2.3五种送回风方式室内气流分布特性评价
对舒适性空调来说,评价标准不外乎舒适性和经济性两个方面,前者是对气流在工作区形成的温度场、速度场能否满足人员的卫生和舒适要求的评价,后者则考虑为消除工作区的余热,送风的耗冷量是否最低。

对气流组织性能有多种评价指标,如温度不均匀系数kt,速度不均匀系数kv,符合给定条件测点比例数F,以及能量利用系数η等。

3送回风参数对地面附近温度场和速度场的影响
前面我们对子午胎车间在冬夏两季最不利情况下进行了气流组织模拟预测,并对其设计效果进行了评价,结果表明原来的设计将使车间内冬季温度偏高,夏季温度偏低,不利于节能。

这一章中我们将对夏季最不利工况进行研究,模拟预测子午胎车间在不同送风参数和回风口高度下的温度场和速度场,对比分析找出最佳送风参数和回风口高度,力图得出同类大空间车间的设计规律。

4结论
从流场情况看,上送风的几种形式中,百叶侧送侧回、喷口侧送侧回、散流器顶送下回、分层空调有相似的气流流动规律,但分层空调较为节能;喷口送风工作区平均温度、速度均较低,垂直温差、不均匀系数均较小,能量利用系数较大;散流器顶送下回方式气流在整个空间的分布较均匀,可较好地减少内热源对周围环境的热影响(z=1.1m平面上最高温度值比其他方式小),但其平均速度较大,在风口下部的人有吹风感;百叶
侧送侧回是最差的一种方式,其垂直温差最大,平均温度最高,不均匀系数较大,能量利用系数较低。

置换通风的造价相对较低,工作区内的温度场和速度场也较均匀,能量利用系数较高,有较好的节能效果。

结语
总之,从舒适、节能的要求看,上送风方式的分层空调、下送风方式的置换通风在大空间建筑空调中是较好的送风方式。

参考文献:
[1] 谭良才,陈沛霖.高大空间恒温气流组织设计方法研究[J].暖通空调,2002,32(2):14.
[2] 马国彬,魏学孟.重力循环空调房间气流组织的数值模拟[J].建筑热能通风空调,2002(2):4046.
[3] 范存养.大空间建筑空调设计及工程实录[M].北京:中国建筑工业出版社,2001:2223.
[4] 黄翔,连之伟.空调工程应用[M].北京:科学出版社,1999:8496.
[5] 胡定科.大空间建筑室内气流数值模拟及控制研究[D].石家庄:石家庄铁道学院,2003:3370.。

相关文档
最新文档