新课标版数学必修二(新高考 新课程)作业29高考调研精讲精练
最新高中数学必修二(人教A版)课时作业29空间直角坐标系 含解析

最新人教版数学精品教学资料课时作业29 空间直角坐标系——基础巩固类——1.在空间直角坐标系中,点P(1,2,3)关于x轴对称的点的坐标为()A.(-1,2,3) B.(1,-2,-3)C.(-1,-2,3) D.(-1,2,-3)解析:关于x轴对称,横坐标不变.答案:B2.在空间直角坐标系中,点P(3,4,5)关于yOz平面对称的点的坐标为()A.(-3,4,5) B.(-3,-4,5)C.(3,-4,-5) D.(-3,4,-5)解析:关于yOz平面对称,y,z不变.答案:A3.如图,在正方体OABC-O1A1B1C1中,棱长为2,E是B1B 上的点,且|EB|=2|EB1|,则点E的坐标为()A .(2,2,1)B .(2,2,23) C .(2,2,13) D .(2,2,43)解析:∵EB ⊥xOy 面,而B(2,2,0),故设E(2,2,z), 又因|EB|=2|EB 1|, 所以|BE|=23|BB 1|=43, 故E(2,2,43). 答案:D4.在长方体ABCD -A 1B 1C 1D 1中,若D(0,0,0)、A(4,0,0)、B(4,2,0)、A 1(4,0,3),则对角线AC 1的长为( )A .9 B.29 C .5D .2 6解析:由已知求得C 1(0,2,3),∴|AC 1|=29. 答案:B5.已知点A(1,a,-5),B(2a,-7,-2)(a∈R)则|AB|的最小值是()A.3 3 B.3 6C.2 3 D.2 6解析:|AB|2=(2a-1)2+(-7-a)2+(-2+5)2=5a2+10a+59=5(a+1)2+54.∴a=-1时,|AB|2的最小值为54.∴|AB|min=54=3 6.答案:B6.点B是点A(2,-3,5)关于xOy平面的对称点,则|AB|=________.解析:∵点B的坐标为B(2,-3,-5),∴|AB|=(2-2)2+(-3+3)2+(5+5)2=10.答案:107.已知A(1,-2,1),B(2,2,2),点P在z轴上,且|PA|=|PB|,则点P的坐标为________.解析:设P(0,0,c),由题意得(0-1)2+(0+2)2+(c-1)2=(0-2)2+(0-2)2+(c-2)2解之得c=3,∴点P的坐标为(0,0,3).答案:(0,0,3)8.如图所示,在长方体ABCO-A1B1C1O1中,OA=1,OC=2,OO 1=3,A 1C 1与B 1O 1交于P ,分别写出A ,B ,C ,O ,A 1,B 1,C 1,O 1,P 的坐标.解:点A 在x 轴上,且OA =1, ∴A(1,0,0).同理,O(0,0,0),C(0,2,0), O 1(0,0,3).B 在xOy 平面内,且OA =1,OC =2, ∴B(1,2,0).同理,C 1(0,2,3),A 1(1,0,3),B 1(1,2,3). ∴O 1B 1的中点P 的坐标为(12,1,3). 9.(1)已知A(1,2,-1),B(2,0,2), ①在x 轴上求一点P ,使|PA|=|PB|;②在xOz 平面内的点M 到A 点与到B 点等距离,求M 点轨迹. (2)在xOy 平面内的直线x +y =1上确定一点M ,使它到点N(6,5,1)的距离最小.解:(1)①设P(a,0,0),则由已知得 (a -1)2+(-2)2+12=(a -2)2+4,即a 2-2a +6=a 2-4a +8,解得a =1, 所以P 点坐标为(1,0,0).②设M(x,0,z),则有(x -1)2+(-2)2+(z +1)2 =(x -2)2+(z -2)2,整理得2x +6z -2=0,即x +3z -1=0. 故M 点的轨迹是xOz 平面内的一条直线. (2)由已知,可设M(x,1-x,0),则 |MN|=(x -6)2+(1-x -5)2+(0-1)2 =2(x -1)2+51.所以当x =1时,|MN|min =51,此时点M(1,0,0).——能力提升类——10.在空间直角坐标系中,一定点P 到三个坐标轴的距离都是1,则该点到原点的距离是( )A.62B.3C.32D.63解析:设P(x ,y ,z),由题意可知⎩⎪⎨⎪⎧x 2+y 2=1,y 2+z 2=1,x 2+z 2=1,∴x 2+y 2+z 2=32.∴x 2+y 2+z 2=62.答案:A11.在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的顶点A 的坐标为(3,-1,2),其中心M 的坐标为(0,1,2),则该正方体的棱长等于________.解析:设正方体的棱长为a ,由|AM|=9+4+0=13可知,正方体的体对角线长为3a =213,故a =2133=2393.答案:239312.如图所示,正方形ABCD ,ABEF 的边长都是1,并且平面ABCD ⊥平面ABEF ,点M 在AC 上移动,点N 在BF 上移动.若|CM|=|BN|=a(0<a<2).(1)求MN 的长度;(2)当a 为何值时,MN 的长度最短?解:因为平面ABCD ⊥平面ABEF ,且交线为AB ,BE ⊥AB ,所以BE ⊥平面ABCD ,所以BA ,BC ,BE 两两垂直.取B 为坐标原点,过BA ,BE ,BC 的直线分别为x 轴,y 轴和z 轴,建立空间直角坐标系.因为|BC|=1,|CM|=a ,点M 在坐标平面xBz 内且在正方形ABCD 的对角线上,所以点M(22a,0,1-22a).因为点N 在坐标平面xBy 内且在正方形ABEF 的对角线上,|BN|=a ,所以点N(22a ,22a,0).(1)由空间两点间的距离公式,得|MN|=(22a-22a)2+(0-22a)2+(1-22a-0)2=a2-2a+1,即MN的长度为a2-2a+1.(2)由(1),得|MN|=a2-2a+1=(a-22)2+12.当a=22(满足0<a<2)时,(a-22)2+12取得最小值,即MN的长度最短,最短为2 2.。
2019高中数学必修二:全册作业与测评课时提升作业(二十九).doc

课时提升作业(二十九)空间直角坐标系(15分钟30分)一、选择题(每小题4分,共12分)1.如图所示空间直角坐标系中,右手空间直角坐标系的个数为( )A.1B.2C.3D.4【解析】选C.(3)中坐标系不是右手空间直角坐标系,(1)(2)(4)均是.【补偿训练】(2013·成都高二检测)有下列说法:①在空间直角坐标系中,在x轴上的点的坐标一定可以写成(0,b,c);②在空间直角坐标系中,在yOz平面上的点的坐标一定可以写成(0,b,c);③在空间直角坐标系中,在z轴上的点的坐标一定可以写成(0,0,c);④在空间直角坐标系中,在xOz平面上的点的坐标是(a,0,c).其中正确的个数是( )A.1B.2C.3D.4【解析】选C.在空间直角坐标系中,在x轴上的点的坐标一定可以写成是(a,0,0),①错;在空间直角坐标系中,在yOz平面上的点的坐标一定可以写成(0,b,c),②对;在空间直角坐标系中,在z轴上的点的坐标一定可以写成(0,0,c),③对;在空间直角坐标系中,在xOz平面上的点的坐标是(a,0,c),④对.正确说法的个数为3.2.(2015·长治高一检测)已知点A(-1,2,7),则点A关于x轴对称的点的坐标为( )A.(-1,-2,-7)B.(-1,-2,7)C.(1,-2,-7)D.(1,2,-7)【解析】选A.点A关于x轴对称,则横坐标不变,其余两坐标变为原来的相反数,故选A.【补偿训练】在空间直角坐标系中,点A(1,2,-3)关于x轴的对称点为( )A.(1,-2,-3)B.(1,-2,3)C.(1,2,3)D.(-1,2,-3)【解析】选B.点A关于x轴对称,则横坐标不变,其余两坐标变为原来的相反数,故选B.3.(2015·赤峰高一检测)点(2,3,4)关于xOz平面的对称点为( )A.(2,3,-4)B.(-2,3,4)C.(2,-3,4)D.(-2,-3,4)【解析】选C.因为点(2,3,4)关于xOz平面的对称点的横坐标,竖坐标不变,纵坐标变为原来的相反数,故选C.【补偿训练】在空间直角坐标系中,点P(3,4,5)关于yOz平面的对称点的坐标为( ) A.(-3,4,5) B.(-3,-4,5)C.(3,-4,-5)D.(-3,4,-5)【解析】选A.因为点P(3,4,5)关于yOz平面的对称点的纵坐标,竖坐标不变,横坐标变为原来的相反数,故选A.二、填空题(每小题4分,共8分)4.(2015·塘沽高一检测)点P(1,2,-1)在xOz平面内的射影为B(x,y,z),则x+y+z= .【解析】点P(1,2,-1)在xOz平面内的射影为B(1,0,-1),所以x+y+z=1+0-1=0.答案:0【补偿训练】在空间直角坐标系Oxyz中,点(2,4,6)在x轴上的射影的坐标为,在平面xOy上的射影的坐标为,在平面yOz上的射影的坐标为.【解析】点(2,4,6)在x轴上的射影的坐标为(2,0,0),在平面xOy上的射影的坐标为(2,4,0),在平面yOz上的射影的坐标为(0,4,6).答案:(2,0,0) (2,4,0) (0,4,6)5.(2015·银川高一检测)已知点A(3,2,-4),B(5,-2,2),则线段AB中点的坐标是.【解析】设其中点为N(x,y,z),由中点坐标公式可得x=4,y=0,z=-1,即点N 的坐标是(4,0,-1).答案:(4,0,-1)【补偿训练】已知点A(-3,1,4),B(5,-3,-6),则点B关于点A的对称点C的坐标为.【解析】设点C的坐标为(x,y,z),由中点公式得错误!未找到引用源。
新课标版数学必修二(新高考 新课程)作业19高考调研精讲精练

课时作业(十九)1.两条不重合直线,其平行的条件是( ) A .斜率相等 B .斜率乘积等于-1 C .倾斜角相等 D .倾斜角的绝对值等于90°答案 C解析 当直线垂直于x 轴时,倾斜角为90°,斜率不存在,所以只要倾斜角相等,两条直线平行.2.已知直线l 1经过两点(-1,-2),(-1,4),直线l 2经过两点(2,1),(x ,6),且l 1∥l 2,则x =( )A .2B .-2C .4D .1答案 A解析 l 1:经过两点(-1,2),(-1,4),倾斜角为90°, 又∵l 1∥l 2,∴l 2倾斜角也为90°,∴x =2.3.直线l 1,l 2的斜率分别为-1a ,-23,若l 1⊥l 2,则实数a 的值是( )A .-23B .-32C.23D.32 答案 A解析 l 1⊥l 2⇔k 1·k 2=-1,∴(-1a )·(-23)=-1,∴a =-23,选A.4.若点P(a ,b)与Q(b -1,a +1)关于直线l 对称,则l 的倾斜角为( ) A .135° B .45° C .30° D .60° 答案 B解析 由题意知k PQ =a +1-bb -1-a =-1,k l ·k PQ =-1,∴k l =1,即l 的倾斜角为45°.故选B.5.(2017·陕西榆林高一测试)直线l 1,l 2的斜率是方程x 2-3x -1=0的两根,则l 1与l 2的位置关系是( ) A .平行B .重合C .相交但不垂直D .垂直答案 D解析 由韦达定理知,x 1x 2=-1,∴l 1与l 2垂直.6.过点E(1,1)和点F(-1,0)的直线与过点M(-k 2,0)和点N(0,k4)的直线位置关系是( )A .平行B .重合C .平行或重合D .相交或重合答案 C解析 ∵k EF =1-01-(-1)=12,k MN =k4-00-(-k 2)=k4k 2=12,∴选C.7.已知l 1⊥l 2,直线l 1的倾斜角为45°,则直线l 2的倾斜角为( ) A .45° B .135° C .-45° D .120°答案 B8.下列三点能构成三角形的三个顶点的为( ) A .(1,3),(5,7),(10,12) B .(-1,4),(2,1),(-2,5) C .(0,2),(2,5),(3,7) D .(1,-1),(3,3),(5,7) 答案 C解析 分别计算第一点与第二点连线及第二点与第三点连线的斜率.9.过点(0,73)与点(7,0)的直线l 1,过点(2,1)与点(3,k +1)的直线l 2与两坐标轴围成的四边形内接于一个圆,则实数k 为( ) A .3 B .-3 C .-6 D .6答案 A解析 由题意知kl 1=0-737-0=-13,kl 2=k +1-13-2=k ,l 1⊥l 2,即kl 1·kl 2=-1,解得k =3.故选A.10.已知直线l 经过点(3,2)和(m ,n).①若l 与x 轴平行,则m ,n 的取值情况是________; ②若l 与x 轴垂直,则m ,n 的取值情况是________. 答案 ①m ≠3,n =2; ②m =3,n ≠2.11.直线l 平行于经过点A(-4,1),B(0,-3)的直线,则l 的倾斜角为________. 答案 135° 解析 由题意知k AB =-3-10-(-4)=-1,∴直线AB 的倾斜角为135°,又直线l 平行于直线AB ,∴直线l 的倾斜角为135°.12.在▱ABCD 中,已知A(2,3),B(5,3),C(6,6),则点D 坐标为________. 答案 (3,6)13.已知点A(-4,2),B(6,-4),C(12,6),D(2,12),那么下面四个结论中正确的序号为________.①AB ∥CD ;②AB ⊥CD ;③AC ∥BD ;④AC ⊥BD. 答案 ①④解析 ∵k AB =-4-26-(-4)=-35,k AC =6-212-(-4)=14,k CD =12-62-12=-35,k BD =12-(-4)2-6=-4,∴k AB =k CD ,k AC ·k BD =-1, ∴AB ∥CD ,AC ⊥BD ,故填①④.14.已知A(1,-a +13),B(0,-13),C(2-2a ,1),D(-a ,0)四点.(1)当a 为何值时,直线AB 和直线CD 平行? (2)当a 为何值时,直线AB 和直线CD 垂直?解析 k AB =-13-(-a +13)0-1=-a 3,k CD =0-1-a -(2-2a )=12-a (a ≠2).(1)直线AB 与直线CD 平行,则k AB =k CD ,∴-a 3=12-a ,即a 2-2a -3=0.∴a =3或a =-1.当a =3时,k AB =-1,k BD =0-(-13)-3-0=-19≠k AB ,∴AB 与CD 平行不重合.当a =-1时,k AB =13,k BC =1+134=13=k AB ,∴AB 与CD 重合.当a =2时,k AB =-23,k CD 不存在.∴AB 与CD 不平行.综上所述,当a =3时,直线AB 和直线CD 平行.(2)直线AB 与直线CD 垂直,则k AB k CD =-1,∴-a 3·12-a =-1,解得a =32.当a =2时,k AB =-23,直线CD 的斜率不存在.∴直线AB 与CD 不垂直.综上所述,当a =32时,直线AB 与CD 垂直.15.在平面直角坐标系中,四边形OPQR 的顶点按逆时针顺序依次是O(0,0),P(1,t),Q(1-2t ,2+t),R(-2t ,2),其中t ∈(0,+∞),试判断四边形OPQR 的形状并给出证明. 解析 四边形OPQR 为矩形,证明如下: OP 边所在直线斜率k OP =t. QR 边所在直线的斜率k QR =t. OR 边所在直线的斜率k OR =-1t.PQ 边所在直线的斜率k PQ =(2+t )-t (1-2t )-1=-1t .∵k OP =k QR ,k OR =k PQ ,∴OP ∥QR ,OR ∥PQ. ∴四边形OPQR 为平行四边形. 又∵k QR ·k OR =t ×(-1t )=-1,∴QR ⊥OR.∴四边形OPQR 为矩形.16.已知△ABC 的顶点坐标为A(5,-1),B(1,1),C(2,m),若△ABC 为直角三角形,试求m 的值.解析 k AB =-1-15-1=-12,k AC =-1-m 5-2=-m +13,k BC =m -12-1=m -1.若AB ⊥AC ,则有-12·(-m +13)=-1,所以m =-7;若AB ⊥BC ,则有-12·(m -1)=-1,所以m =3;若AC ⊥BC ,则有-m +13·(m -1)=-1,所以m =±2.综上可知,所求m 的值为-7,±2,3.1.下列说法中不正确的是( )A .若两条不重合直线l 1与l 2的斜率相等,则l 1∥l 2B .若直线l 1∥l 2,则两直线的斜率相等C .若两条不重合直线l 1,l 2的斜率均不存在,则l 1∥l 2D .若两直线的斜率不相等,则两直线不平行 答案 B解析 不重合直线的斜率相等,两条直线一定平行;两条直线平行,斜率不一定相等,当两条直线斜率不存在时,两条直线仍平行.2.(2017·广东肇庆期中)以A(-1,1),B(2,-1),C(1,4)为顶点的三角形是( ) A .锐角三角形B .钝角三角形C .以A 点为直角顶点的直角三角形D .以B 点为直角顶点的直角三角形答案 C解析 ∵k AB =-23,k AC =32,∴k AB ·k AC =-1,则AB ⊥AC.故选C.3.不重合直线l 1和l 2的斜率分别是一元二次方程x 2-4x +4=0的两个根,那么l 1和l 2的位置关系是( ) A .平行 B .垂直 C .不平行 D .无法判断 答案 A解析 ∵k 1=k 2=2,又l 1与l 2不重合,∴l 1∥l 2.4.顺次连接A(-4,3),B(2,5),C(6,3),D(-3,0)所构成的图形是( ) A .平行四边形 B .直角梯形 C .等腰梯形 D .以上都不对 答案 B解析 由于k AB =k DC ,k AD ≠k BC ,k AD ·k AB =-1,故构成的图形为直角梯形.5.将直线l 沿x 轴的正方向平移2个单位,再沿y 轴负方向平移3个单位,又回到原来的位置,则直线l 的斜率是________. 答案 -326.已知矩形ABCD 的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求顶点D 的坐标.解析 由题意可得矩形ABCD 各边所在直线的斜率均存在,设D 的坐标为(x ,y). ∵AD ⊥CD ,AD ∥BC ,∴k AD ·k CD =-1,且k AD =k BC .∴⎩⎪⎨⎪⎧y -1x -0·y -2x -3=-1,y -1x -0=2-03-1,解得⎩⎪⎨⎪⎧x =2,y =3,∴顶点D 的坐标为(2,3).。
新课标版数学必修二(新高考新课程)作业15高考调研精讲精练

新课标版数学必修⼆(新⾼考新课程)作业15⾼考调研精讲精练课时作业(⼗五)(第⼀次作业)1.直线a是平⾯α的斜线,过a且和α垂直的平⾯有()A.0个B.1个C.2个D.⽆数个答案 B2.给定下列四个命题①若⼀个平⾯内的两条直线与另⼀个平⾯都平⾏,则这两个平⾯相互平⾏;②若⼀个平⾯经过另⼀个平⾯的垂线,则这两个平⾯相互垂直;③垂直于同⼀直线的两条直线相互平⾏;④若两个平⾯垂直,则⼀个平⾯内与它们的交线不垂直的直线与另⼀个平⾯也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④答案 D3.若m,n是两条不同的直线,α,β,γ是三个不同的平⾯,则下列命题中的真命题是() A.若m?β,α⊥β,则m⊥αB.若α∩γ=m,β∩γ=n,m∥n,则α∥βC.若m⊥β,m∥α,则α⊥βD.若α⊥γ,α⊥β,则β⊥γ答案 C解析若m?β,α⊥β,则m与α的关系可能平⾏也可能相交,则A为假命题;选项B中,α与β可以平⾏也可能相交,则B为假命题;选项D中β与γ也可能平⾏或相交(不⼀定垂直),则D为假命题.故选C.4.在如图所⽰的三棱锥中,AD⊥BC,CD⊥AD,则有()A.⾯ABC⊥⾯ADC B.⾯ABC⊥⾯ADBC.⾯ABC⊥⾯DBC D.⾯ADC⊥⾯DBC答案 D5.正⽅体ABCD-A1B1C1D1中,P为CC1的中点,则平⾯PBD垂直于()A.平⾯A1BD B.平⾯D1BDC.平⾯PBC D.平⾯CBD答案 A6.在空间四边形ABCD中,AB=BC,AD=CD,E为对⾓线AC的中点,下列判断正确的是()A.平⾯ABD⊥平⾯ADC B.平⾯ABC⊥平⾯ABDC.平⾯ABC⊥平⾯ADC D.平⾯ABC⊥平⾯BED答案 D7.(2016·浙江)已知互相垂直的平⾯α,β交于直线l,若直线m,n满⾜m∥α,n⊥β,则()A.m∥l B.m∥nC.n⊥l D.m⊥n答案 C解析因为α∩β=l,所以l?β,所以n⊥l.故选C.8.如图,正⽅体ABCD-A1B1C1D1中,O为底⾯ABCD的中⼼,M为棱BB1的中点,则下列结论中错误的是()A.D1O∥平⾯A1BC1B.MO⊥平⾯A1BC1C.异⾯直线BC1与AC所成的⾓等于60°D.⼆⾯⾓MACB等于90°答案 D解析对于选项A,连接B1D1,BO,交A1C1于E,则四边形D1OBE为平⾏四边形,所以D1O∥BE,因为D1O?平⾯A1BC1,BE?平⾯A1BC1,所以D1O∥平⾯A1BC1,故正确;对于选项B,连接B1D,因为O为底⾯ABCD的中⼼,M为棱BB1的中点,所以MO∥B1D,易证B1D⊥平⾯A1BC1,所以MO⊥平⾯A1BC1,故正确;对于选项C,因为AC∥A1C1,所以∠A1C1B为异⾯直线BC1与AC 所成的⾓,因为△A1C1B为等边三⾓形,所以∠A1C1B=60°,故正确;对于选项D,因为BO⊥AC,MO⊥AC,所以∠MOB为⼆⾯⾓MACB的平⾯⾓,显然不等于90°,故不正确.综上知,选D.9.如图,已知六棱锥P-ABCDEF的底⾯是正六边形,PA⊥平⾯ABC,PA=2AB,则下列结论正确的是________(填序号).①PB⊥AD;②平⾯PAB⊥平⾯PAE;③BC∥平⾯PAE;④直线PD与底⾯ABC所成的⾓为45°.答案②④解析由于AD与AB不垂直,因此得不到PB⊥AD,①不正确;由PA⊥AB,AE⊥AB,PA∩AE=A,得AB⊥平⾯PAE,因为AB?平⾯PAB,所以平⾯PAB⊥平⾯PAE,②正确;延长BC,EA,两者相交,因此BC与平⾯PAE相交,③不正确;由于PA⊥平⾯ABC,所以∠PDA就是直线PD与平⾯ABC所成的⾓,由PA=2AB,AD=2AB,得PA=AD,所以∠PDA=45°,④正确.10.如图,在直三棱柱ABC-A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C.求证:(1)EF∥平⾯ABC;(2)平⾯A1FD⊥平⾯BB1C1C.证明(1)因为E,F分别是A1B,A1C的中点,所以EF∥BC,⼜EF?⾯ABC,BC?⾯ABC,所以EF∥平⾯ABC.(2)因为直三棱柱ABC-A1B1C1,所以BB1⊥⾯A1B1C1,BB1⊥A1D.⼜A1D⊥B1C,BB1∩B1C=B1,所以A1D⊥⾯BB1C1C.⼜A1D?⾯A1FD,所以平⾯A1FD⊥平⾯BB1C1C.11.如图,四棱锥S-ABCD中,四边形ABCD为菱形,SD=SB.(1)求证:平⾯SAC⊥平⾯SBD;(2)求证:平⾯SAC⊥平⾯ABCD.证明(1)连接AC,BD,使AC∩BD=O.∵底⾯ABCD为菱形,∴BD⊥AC.∵SB=SD,O为BD中点,∴SO⊥BD,⼜SO∩AC=O,∴BD⊥平⾯SAC,⼜∵BD?平⾯SBD,∴平⾯SAC⊥平⾯SBD.(2)由(1)知BD⊥平⾯SAC,BD?平⾯ABCD,∴平⾯SAC⊥平⾯ABCD.12.如图,△ABC为正三⾓形,EC⊥平⾯ABC,BD∥CE,且CE=CA=2BD,M是EA的中点,求证:(1)DE=DA;(2)平⾯BDM⊥平⾯ECA;(3)平⾯DEA⊥平⾯ECA.证明(1)取AC中点N,连接MN,BN,则MN∥EC,∵EC⊥平⾯ABC,∴平⾯EAC⊥平⾯ABC.∴MN⊥平⾯ABC,⼜BN?平⾯ABC,∴MN⊥BN,且MN=BD,MN∥BD,∴四边形MNBD为矩形,∴DM∥BN,∵CN=AN,BC=AB,∴BN⊥CA,⼜CA ∩MN =N ,∴BN ⊥平⾯AEC ,∴DM ⊥⾯EAC ,∴DM ⊥AE.∴DE =DA. (2)由(1)知,DM ⊥⾯EAC ,DM ?⾯BDM ,∴平⾯BDM ⊥平⾯ECA.(3)由(1)知,DM ⊥⾯EAC ,DM ?⾯ADE ,∴平⾯DEA ⊥平⾯ECA.13.如图所⽰,在矩形ABCD 中,已知AB =12AD ,E 是AD 的中点,沿BE 将△ABE 折起⾄△A ′BE 的位置,使A ′C =A ′D ,求证:平⾯A ′BE ⊥平⾯BCDE.证明如图所⽰,取CD 的中点M ,BE 的中点N ,连接A ′M ,A ′N ,MN ,则MN ∥BC.∵AB =12AD ,E 是AD 的中点,∴AB =AE ,即A ′B =A ′E ,⼜BN =NE ,∴A ′N ⊥BE.∵A ′C =A ′D ,∴A ′M ⊥CD. 在四边形BCDE 中,CD ⊥MN ,⼜MN ∩A ′M =M ,∴CD ⊥平⾯A ′MN ,⼜A ′N ?平⾯A ′MN ,∴CD ⊥A ′N. ∵DE ∥BC 且DE =12BC ,∴BE 必与CD 相交.⼜A ′N ⊥BE ,A ′N ⊥CD ,∴A ′N ⊥平⾯BCDE. ⼜A ′N ?平⾯A′BE ,∴平⾯A ′BE ⊥平⾯BCDE.课时作业(⼗五)(第⼆次作业)1.(2015·浙江)设α,β是两个不同的平⾯,l ,m 是两条不同的直线,且l ?α,m ?β.( ) A .若l ⊥β,则α⊥β B .若α⊥β,则l ⊥m C .若l ∥β,则α∥βD .若α∥β,则l ∥m答案 A解析⾯⾯垂直的证明主要是找线⾯垂直,此题在选项中直接给出两个条件,便于考⽣根据判定定理进⾏直接选择,相对较为基础.如果采⽤排除法,思维量会增加.2.在正四⾯体P-ABC 中,D ,E ,F 分别是AB ,BC ,CA 的中点,下⾯四个结论不成⽴的是( )A .BC ∥平⾯PDFB .DF ⊥平⾯PAEC .平⾯PDF ⊥平⾯ABCD .平⾯PAE ⊥平⾯ABC答案 C解析∵D ,E ,F 分别为AB ,BC ,AC 的中点,∴DF ∥BC.∴BC ∥平⾯PDF.故A 正确.连接AE ,PE ,则AE ⊥BC.PE ⊥BC ,∴BC ⊥平⾯PAE.∴DF ⊥平⾯PAE.故B 正确.⼜∵BC ?平⾯ABC ,∴平⾯PAE ⊥平⾯ABC.故D 正确.∴选C.3.把正⽅形ABCD 沿对⾓线BD 折成直⼆⾯⾓,则△ABC 是( ) A .正三⾓形 B .直⾓三⾓形 C .锐⾓三⾓形 D .钝⾓三⾓形答案 A4.在正⽅体ABCD-A 1B 1C 1D 1中,截⾯A 1BD 与底⾯ABCD 所成⼆⾯⾓A 1-BD-A 的正切值为( ) A.32B.22C. 2D. 3答案 C解析如图所⽰,连接AC 交BD 于点O ,连接A 1O ,O 为BD 中点,∵A 1D =A 1B ,∴在△A 1BD 中,A 1O ⊥BD.⼜∵在正⽅形ABCD 中,AC ⊥BD ,∴∠A 1OA 为⼆⾯⾓A 1-BD-A 的平⾯⾓.设AA 1=1,则AO =22,∴tan ∠A 1OA =AA 1AO =122= 2.故选C. 5.如图,在四棱锥P-ABCD 中,PA ⊥平⾯ABCD ,底⾯ABCD 是矩形,则图中互相垂直的平⾯有( )A.2对B.3对C.4对D.5对答案 D解析∵PA⊥平⾯ABCD,∴平⾯PAB⊥平⾯ABCD,平⾯PAD⊥平⾯ABCD.∵AB⊥AD,PA⊥AB,∴AB⊥平⾯PAD,∴平⾯PAB⊥平⾯PAD.同理,平⾯PCD⊥平⾯PAD,平⾯PAB⊥平⾯PBC.共有5对平⾯互相垂直.故选D.6.若⼀个⼆⾯⾓的两个半平⾯分别垂直于另⼀个⼆⾯⾓的两个半平⾯,那么这两个⼆⾯⾓()A.相等B.互补C.相等或互补D.关系⽆法确定答案 D解析如图所⽰,平⾯EFDG⊥平⾯ABC,当平⾯HDG绕DG转动时,平⾯HDG始终与平⾯BCD垂直,所以两个⼆⾯⾓的⼤⼩关系不确定,因为⼆⾯⾓H-DG-F的⼤⼩不确定.故选D.7.四边形ABCD是正⽅形,以BD为棱把它折成直⼆⾯⾓A-BD-C,E为CD的中点,则∠AED的⼤⼩为()A.45°B.30°C.60°D.90°答案 D解析设BD中点为F,则AF⊥BD,CF⊥BD,∴∠AFC=90°,∴AF⊥⾯BCD.∵E,F分别为CD,BD的中点,∴EF∥BC,⼜∵BC⊥CD,∴CD⊥EF,⼜AF⊥CD,∴CD⊥平⾯AEF,⼜AE?平⾯AEF,∴CD⊥AE.故选D.8.如图,在三棱锥P-ABC中,PA⊥平⾯ABC,∠BAC=90°,则⼆⾯⾓B-PA-C的⼤⼩为()A.30°B.45°C.60°D.90°答案 D解析∵PA⊥平⾯ABC,∴BA⊥PA,CA⊥PA,∴∠BAC为⼆⾯⾓BPAC的平⾯⾓.∵∠BAC=90°,∴⼆⾯⾓的⼤⼩为90°.9.如图,在四棱锥V-ABCD中,底⾯ABCD是这长为2的正⽅形,其他四个侧⾯都是侧棱长为5的等腰三⾓形,则⼆⾯⾓V-AB-C 的度数是________.答案60°解析如图,取AB的中点E,CD的中点F,连接VE,EF,VF,由题意知,AB⊥VE,AB⊥EF,所以∠VEF为⼆⾯⾓V ABC的平⾯⾓.易知△VEF为正三⾓形,所以∠VEF=60°.10.如图所⽰,在长⽅体ABCD-A1B1C1D1中,BC=2,AA1=1,E,F分别在AD和BC上,且EF∥AB,若⼆⾯⾓C1-EF-C等于45°,则BF=________.答案 1解析∵AB⊥平⾯BC1,C1F?平⾯BC1,CF?平⾯BC1,∴AB⊥C1F,AB⊥CF,⼜EF∥AB,∴C1F⊥EF,CF⊥EF,∴∠C1FC是⼆⾯⾓C1EFC的平⾯⾓,∴∠C1FC=45°,∴△FCC1是等腰直⾓三⾓形,∴CF=CC1=AA1=1.⼜BC=2,∴BF=BC-CF=2-1=1.11.如图,四边形ABCD是平⾏四边形,直线SC⊥平⾯ABCD,E是SA的中点,求证:平⾯EDB⊥平⾯ABCD.证明连接AC交BD于点F,连接EF.∴EF是△SAC的中位线,∴EF∥SC.∵SC⊥平⾯ABCD,∴EF⊥平⾯ABCD.⼜EF?平⾯BDE,∴平⾯BDE⊥平⾯ABCD.12.如图,四棱锥P-ABCD的底⾯是边长为a的正⽅形,PB⊥平⾯ABCD.(1)求证:平⾯PAD⊥平⾯PAB;(2)若平⾯PDA与平⾯ABCD成60°的⼆⾯⾓,求该四棱锥的体积.解析(1)证明:∵PB⊥平⾯ABCD,AD?平⾯ABCD,∴PB⊥AD.⼜∵AD⊥AB,且AB∩PB=B,∴AD⊥平⾯PAB.⼜∵AD?平⾯PAD,∴平⾯PAD⊥平⾯PAB.(2)由(1)的证明知,∠PAB为平⾯PDA与平⾯ABCD所成的⼆⾯⾓的平⾯⾓,即∠PAB=60°,∴PB=3a.∴V P-ABCD=13·a2·3a=3a33.13.如图所⽰,四棱锥P-ABCD的底⾯ABCD是边长为1的菱形,∠BCD=60°,E是CD 的中点,PA⊥底⾯ABCD,PA= 3.(1)求证:平⾯PBE⊥平⾯PAB;(2)求⼆⾯⾓A-BE-P的⼤⼩.解析(1)证明:如图所⽰,连接BD.由ABCD是菱形且∠BCD=60°知,△BCD是等边三⾓形.因为E是CD的中点,所以BE⊥CD,⼜AB∥CD,所以BE⊥AB,⼜因为PA⊥平⾯ABCD,BE?平⾯ABCD,所以PA⊥BE,⽽PA∩AB=A,因此BE⊥平⾯PAB.⼜BE ?平⾯PBE,所以平⾯PBE⊥平⾯PAB.(2)由(1)知,BE⊥平⾯PAB,PB?平⾯PAB,所以PB⊥BE.⼜AB⊥BE,所以∠PBA是⼆⾯⾓A-BE-P的平⾯⾓.在Rt△PAB中,tan∠PBA=PAAB=3,∠PBA=60°.故⼆⾯⾓A-BE-P 的⼤⼩为60°.1.如图,⼆⾯⾓αlβ的⼤⼩是60°,线段AB?α,B∈l,AB与l所成的⾓为30°,则AB与平⾯β所成的⾓的正弦值是________.答案3 4解析如图所⽰,过点A作平⾯β的垂线,垂⾜为C,在β内过C作l的垂线,垂⾜为D,连接AD,由线⾯垂直判定定理可知l⊥平⾯ACD,则l⊥AD,故∠ADC为⼆⾯⾓α-l-β的平⾯⾓,即∠ADC=60°.⼜∠ABD=30°,连接CB,则∠ABC为AB与平⾯β所成的⾓,设AD=2,则AC=3,CD=1,AB=ADsin30°=4,∴sin ∠ABC =AC AB =34.2.(2017·辽宁省育才学校阶段测试)如图,在⼏何体ABDCE 中,AB =AD ,M 是BD 的中点,AE ⊥平⾯ABD ,MC ∥AE,AE =MC.(1)求证:平⾯BCD ⊥平⾯CDE ;(2)若N 为线段DE 的中点,求证:平⾯AMN ∥平⾯BEC. 证明 (1)∵AB =AD ,M 为线段BD 的中点,∴AM ⊥BD.∵AE ⊥平⾯ABD ,MC ∥AE ,∴MC ⊥平⾯ABD. ∴MC ⊥AM.⼜MC ∩BD =M ,∴AM ⊥平⾯CBD.⼜MC ∥AE ,MC =AE ,∴四边形AMCE 为平⾏四边形,∴EC ∥AM ,∴EC ⊥平⾯CBD ,⼜EC ?平⾯CDE ,∴平⾯BCD ⊥平⾯CDE.(2)∵M 为BD 中点,N 为ED 中点,∴MN ∥BE. 由(1)知EC ∥AM 且AM ∩MN =M ,BE ∩EC =E ,∴平⾯AMN ∥平⾯BEC.3.在如图所⽰的⼏何体中,四边形ABCD 是正⽅形,MA ⊥平⾯ABCD ,PD ∥MA ,E ,G ,F 分别为MB ,PB ,PC 的中点,且AD =PD =2MA. (1)求证:平⾯EFG ⊥平⾯PDC ;(2)求三棱锥P-MAB 与四棱锥P-ABCD 的体积之⽐.解析 (1)证明:因为MA ⊥平⾯ABCD ,PD ∥MA. 所以PD ⊥平⾯ABCD.⼜BC ?平⾯ABCD ,所以PD ⊥BC. 因为四边形ABCD 为正⽅形,所以BC ⊥DC.⼜PD∩DC=D,所以BC⊥平⾯PDC.在△PBC中,因为G,F分别为PB,PC的中点,所以GF∥BC,所以GF⊥平⾯PDC.⼜GF?平⾯EFG,所以平⾯EFG⊥平⾯PDC.(2)因为PD⊥平⾯ABCD,四边形ABCD为正⽅形,不妨设MA=1,则PD=AD=2,所以V P-ABCD=13S正⽅形ABCD ·PD=83.由题意易知DA⊥平⾯MAB,且PD∥MA,所以DA即为点P到平⾯MAB的距离,所以V P-MAB=13×12×1×2×2=23.所以V P-MAB∶V P-ABCD=1∶4.。
新课标版数学必修二(新高考 新课程)作业20高考调研精讲精练

课时作业(二十)1.过点P(-2,0),斜率为3的直线方程是()A.y=3x-2B.y=3x+2C.y=3(x-2) D.y=3(x+2)答案 D2.已知直线的方程是y+2=-x-1,则()A.直线经过点(-1,2),斜率为-1 B.直线经过点(2,-1),斜率为-1 C.直线经过点(-1,-2),斜率为-1 D.直线经过点(-2,-1),斜率为1 答案 C解析直线方程y+2=-x-1可化为y-(-2)=-[x-(-1)],故直线经过点(-1,-2),斜率为-1.3.(2017·合肥一中检测)已知直线的倾斜角为60°,在y轴上的截距为-2,则此直线的方程为()A.y=3x+2 B.y=-3x+2C.y=-3x-2 D.y=3x-2答案 D解析直线的倾斜角为60°,则其斜率为3,利用斜截式直接写方程.4.直线y=-x+b一定经过()A.第一、三象限B.第二、四象限C.第一、二、四象限D.第二、三、四象限答案 B5.方程y=k(x-2)表示()A.通过点(-2,0)的所有直线B.通过点(2,0)的所有直线C.通过点(2,0)且不垂直于x轴的直线D.通过点(2,0)且除去x轴的直线答案 C解析直线x=2也过(2,0),但不能用y=k(x-2)表示.6.经过点(-1,1),斜率是直线y=22x-2的斜率的2倍的直线是()A.x=-1 B.y=1C.y-1=2(x+1) D.y-1=22(x+1)答案 C7.过点(1,3)且斜率不存在的直线方程为()A.x=1 B.x=3C.y=1 D.y=3答案 A解析紧扣直线的斜率不存在这一条件,从而直线必与x轴垂直.8.在等腰三角形AOB中,|AO|=|AB|,点O(0,0),A(1,3),而点B在x轴的正半轴上,则直线AB的方程为()A.y-1=3(x-3) B.y-1=-3(x-3)C.y-3=3(x-1) D.y-3=-3(x-1)答案 D解析由对称性知B的坐标为(2,0).9.直线y=kx+b(b≠0)不过第二象限,则()A.kb<0 B.kb≤0C.kb>0 D.kb≥0答案 B解析由于直线y=kx+b(b≠0)不过第二象限,所以必须要求kb≤0.10.如图,在同一坐标系中,表示直线y=ax与y=x+a正确的是()答案 C解析方法一:(1)当a>0时,直线y=ax的倾斜角为锐角,直线y=x+a在y轴上的截距a>0,A,B,C,D都不成立;(2)当a=0时,直线y=ax的倾斜角为0°,所以A,B,C,D都不成立;(3)当a<0时,直线y=ax的倾斜角为钝角且过原点,直线y=x+a的倾斜角为锐角,且在y轴上的截距a<0,C项正确.方法二:(排除法)A 选项中:直线y =ax 的倾斜角为锐角,所以a>0,而直线y =x +a 在y 轴上的截距a<0,所以不满足.同理可排除B ,D ,从而得C 正确. 11.过点(2,1),且倾斜角α满足tan α=43的直线方程是________.答案 y =43x -5312.已知直线l 1:y =3x +5,将直线l 1向下平移2个单位长度,再向右平移4个单位长度得到直线l 2,则直线l 2的方程是________. 答案 y =3x -9解析 根据直线y =kx +b 的平移规律,可得直线l 2的方程为y =3(x -4)+5-2,即y =3x -9.13.直线l 的倾斜角为45°,且过点(4,-1),则这条直线被坐标轴所截得的线段长是________. 答案 5 2解析 由题意知,直线l 过点(4,-1)且斜率为1,则方程为y +1=x -4,即y =x -5,与x 轴,y 轴的交点分别为(5,0),(0,-5),∴直线l 被坐标轴截得的线段长为5 2.14.光线自点M(2,3)射到y 轴的点N(0,1)后被y 轴反射,求反射光线所在直线的方程.解析 根据物理学知识,入射角等于反射角, 可确定反射线的斜率.如图所示,入射线经过M ,N 点,其斜率是k =3-12-0=1,∴倾斜角为45°,即∠MNP =45°.由物理学知识,得∠M ′NP =45°,即反射线的倾斜角为135°,其斜率为-1. ∴反射线所在直线的方程为y -1=-1(x -0), 即y =-x +1.15.直线l 经过点P(-2,3),且与x 轴,y 轴分别交于A ,B 两点,若P 恰为线段AB 的中点,求直线l 的方程.解析 设A ,B 两点的坐标分别为(a ,0)和(0,b).因为点P(-2,3)为线段AB 的中点,由中点坐标公式可得a =-4,b =6,∴直线l 的方程为y =32x +6.16.设直线l 的方程为(a +1)x +y +2-a =0. (1)若l 在两个坐标轴上的截距相等,求l 的方程; (2)若l 不经过第二象限,求a 的取值范围.解析 (1)l :(a +1)x +y +2-a =0,当x =0时,y =a -2,当y =0时,x =a -2a +1.∴a -2=a -2a +1,∴a 2-2a =0,∴a =0或a =2.∴直线方程为x +y +2=0或3x +y =0.(2)∵l 不经过第二象限,∴⎩⎪⎨⎪⎧-(a +1)≥0,-(2-a )≤0.∴a ≤-1.17.(1)求斜率为34,且与坐标轴围成的三角形周长是12的直线l 的方程.(2)求与直线y =43x +53垂直,并且与两坐标轴围成的三角形面积为24的直线l 的方程.解析 (1)设直线l 的方程为y =34x +b ,易求直线l 与x ,y 轴的交点分别为A(-43b ,0),B(0,b),∴|AB|=(-43b )2+b 2=53|b|.∴53|b|+43|b|+|b|=12,∴b =±3. ∴直线l 的方程为y =34x ±3.(2)由直线l 与直线y =43x +53垂直,可设直线l 的方程为y =-34x +b ,则直线l 在x 轴,y 轴上的截距分别为x 0=43b ,y 0=b.又因为直线l 与两坐标轴围成的三角形的面积为24,所以S =12|x 0||y 0|=24,即12⎪⎪⎪⎪43b |b|=24,b 2=36,解得b =6,或b =-6. 故所求的直线方程为y =-34x +6,或y =-34x -6.1.直线y -2=-3(x +1)的倾斜角和所过的定点为( ) A .60°,(1,2) B .120°,(-1,2) C .60°,(-1,2)D .120°,(-1,-2)答案 B2.直线2x -3y =6在x 轴,y 轴上的截距分别为( ) A .3,2 B .-3,0 C .3,-2 D .-3,-2答案 C解析 当x =0时,y =-2;当y =0时,x =3.3.已知直线y =kx +b 通过第一、三、四象限,则有( ) A .k>0,b>0 B .k>0,b<0 C .k<0,b>0 D .k<0,b<0 答案 B解析 若y =kx +b 通过第一、三、四象限,则必有斜率k>0,在y 轴上的截距b<0,选B. 4.在△ABC 中,已知A(1,-4),B(2,6),C(-2,0),AD ⊥BC 于点D ,求直线AD 的点斜式方程.解析 显然,直线AD 的斜率存在. 设直线AD 的方程为y +4=k AD (x -1). 由题意知k BC =6-02-(-2)=32.∵AD ⊥BC ,∴k AD ·k BC =-1,∴k AD =-23.故直线AD 的点斜式方程为y +4=-23(x -1).5.过A(4,3)点的四条直线的倾斜角的比是1∶2∶3∶4,第二条直线过原点,求这四条直线的方程.答案 l 1:x -3y +5=0,l 2:3x -4y =0, l 3:13x -9y -25=0,l 4:24x -7y -75=0.6.直线l 过点P(2,-3),倾斜角比直线y =2x -1的倾斜角大45°,求直线l 的方程. 解析 设直线l 的倾斜角为α,直线y =2x -1的倾斜角为β,则有tan β=2,α=β+45°. ∴k =tan α=tan(β+45°)=tan β+tan45°1-tan βtan45°=2+11-2×1=-3.又因为直线l 过点P(2,-3), 所以直线方程为3x +y -3=0.7.等腰三角形ABC 的顶点A(-1,2),AC 的斜率为3,点B(-3,2),求直线AC ,BC及∠A的平分线所在的直线方程.解析AC:y=3x+2+ 3.∵AB∥x轴,AC的倾斜角为60°,∴BC的倾斜角α为30°或120°.当α=30°时,BC的方程为y=33x+2+3,∠A平分线的倾斜角为120°,∴∠A的平分线所在直线方程为y=-3x+2- 3.当α=120°时,BC的方程为y=-3x+2-33,∠A平分线的倾斜角为30°,∴∠A的平分线所在直线方程为y=33x+2+3 3.。
新课标版数学必修二(新高考 新课程)作业17高考调研精讲精练

课时作业(十七)1.(2016·浙江)已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A.m∥l B.m∥nC.n⊥l D.m⊥n答案 C解析因为α∩β=l,所以l⊂β,又n⊥β,所以n⊥l.故选C.2.设a,b是两条不同的直线,α,β是两个不同的平面,则下列命题错误的是() A.若a⊥α,b∥α,则a⊥b B.若a⊥α,b∥a,b⊂β,则α⊥βC.若a⊥α,b⊥β,α∥β,则a∥b D.若a∥α,a∥β,则α∥β答案 D解析由题意可知A,B,C选项显然正确,对于选项D,当α,β相交,且a与α,β的交线平行时,有a∥α,a∥β,但此时α与β不平行.故选D.3.设l,m,n为三条不同的直线,α,β为两个不同的平面,下列命题中正确的个数是() ①若l⊥α,m∥β,α⊥β,则l⊥m;②若m⊂α,n⊂α,l⊥m,l⊥n,则l⊥α;③若l∥m,m∥n,l⊥α,则n⊥α;④若l∥m,m⊥α,n⊥β,α∥β,则l∥n.A.1 B.2C.3 D.4答案 B解析对于①,直线l,m可能互相平行,①不正确;对于②,直线m,n可能是平行线,此时不能得知l⊥α,②不正确;对于③,由定理“平行于同一条直线的两条直线平行”与“若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面”得知,③正确;对于④,由l∥m,m⊥α,得l⊥α,由n⊥β,α∥β,得n⊥α,因此有l∥n,④正确.综上所述,其中命题正确的是个数是2.故选B.4.(2017·长春十一期中)空间四边形ABCD中,M,N分别是AB和CD的中点,AD=BC =6,MN=32,则AD和BC所成的角是()A.120°B.90°C.60°D.30°答案 B解析 如图,取AC 的中点H ,连接MH ,NH , 则MH 綊12BC =3,HN 綊12AD =3.又MN =32, ∴MN 2+HN 2=MN 2, ∴MH ⊥HN.∴∠MHN =90°,即AD 和BC 所成的角为90°.5.如图,四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°.将△ADB 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A-BCD ,则在三棱锥ABCD 中,下列命题正确的是( )A .平面ADC ⊥平面ABCB .平面ADC ⊥平面BDC C .平面ABC ⊥平面BDCD .平面ABD ⊥平面ABC答案 A解析 易知CD ⊥BD ,又平面ABD ⊥平面BCD , 且平面ABD ∩平面BCD =BD , ∴CD ⊥平面ABD ,又BA ⊂平面ABD , ∴CD ⊥BA.又BA ⊥AD ,且AD ∩CD =D , ∴BA ⊥平面ADC ,又BA ⊂平面ABC , ∴平面ADC ⊥平面ABC.6.(2017·天水市一中期中)如图所示,ABCD-A 1B 1C 1D 1是长方体,AA 1=a ,∠BAB 1=∠B 1A 1C 1=30°,则AB 与A 1C 1所成的角为________,AA 1与B 1C 所成的角为________.答案 30° 45°解析 AB 与A 1C 1所成的角即为A 1B 1与A 1C 1所成的角,即∠B 1A 1C 1=30°,∵AA 1=a ,∠BAB 1=30°,∴AB =3a. ∴B 1C 1=A 1B 1tan30°=3a ·33=a ,即B 1C 1=B 1B =A 1A =a ,∴四边形BB 1C 1C 是正方形,∴BB 1与B 1C 所成的角为45°,即AA 1与B 1C 所成的角为45°.7.设平面α∥平面β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于点S ,且点S 位于平面α,β之间,AS =8,BS =6,CS =12,则DS =________. 答案 9解析 因为直线AB 与CD 交于点S ,所以A ,B ,C ,D 四点共面.又平面α∥平面β,所以BD ∥AC ,△ACS 与△BDS 相似,所以AS BS =CS DS ,即86=12DS ,所以DS =9.8.如图所示,在四棱锥P-ABCD 中,底面ABCD 为平行四边形,∠ADC =45°,AD =AC =1,O 为AC 的中点,PO ⊥平面ABCD ,PO =2,M 为PD 的中点.(1)证明:PB ∥平面ACM ; (2)证明:AD ⊥平面PAC ;(3)求直线AM 与平面ABCD 所成角的正切值.解析 (1)证明:连接BD ,MO ,在平行四边形ABCD 中,因为O 为AC 的中点,所以O 为BD 的中点.又M 为PD 的中点,所以PB ∥MO.因为PB ⊄平面ACM ,MO ⊂平面ACM ,所以PB ∥平面ACM. (2)证明:因为∠ADC =45°,且AD =AC =1, 所以∠DAC =90°,即AD ⊥AC.又PO ⊥平面ABCD ,AD ⊂平面ABCD , 所以PO ⊥AD.而AC ∩PO =O ,所以AD ⊥平面PAC. (3)取DO 中点N ,连接MN ,AN. 因为M 为PD 的中点,所以MN ∥PO , 且MN =12PO =1.又由PO ⊥平面ABCD ,得MN ⊥平面ABCD , 所以∠MAN 是直线AM 与平面ABCD 所成的角.在Rt △DAO 中,AD =1,AO=12,所以DO =52.从而AN =12DO =54.在Rt △ANM 中,tan ∠MAN =MN AN =154=455,即直线AM 与平面ABCD 所成角的正切值为455. 9.如图,在四棱锥P-ABCD 中,底面ABCD 是矩形,AD ⊥PD ,BC =1,PC =23,PD =CD =2.(1)求异面直线PA 与BC 所成角的正切值; (2)证明:平面PDC ⊥平面ABCD ;(3)求直线PB 与平面ABCD 所成角的正弦值.解析 (1)如图,在四棱锥P-ABCD 中,因为底面ABCD 是矩形,所以AD =BC 且AD ∥BC. 故∠PAD 为异面直线PA 与BC 所成的角.又因为AD ⊥PD ,在Rt △PDA 中,tan ∠PAD =PDAD =2.所以异面直线PA 与BC 所成角的正切值为2.(2)证明:由于底面ABCD 是矩形,故AD ⊥CD ,又由于AD ⊥PD ,CD ∩PD =D ,因此AD ⊥平面PDC ,而AD ⊂平面ABCD ,所以平面PDC ⊥平面ABCD. (3)在平面PDC 内,过点P 作PE ⊥CD 交直线CD 于点E ,连接EB.由于平面PDC ⊥平面ABCD ,而直线CD 是平面PDC 与平面ABCD 的交线. 故PE ⊥平面ABCD ,由此得∠PBE 为直线PB 与平面ABCD 所成的角. 在△PDC 中,由于PD =CD =2,PC =23,可得∠PCD =30°. 在Rt △PEC 中,PE =PCsin30°= 3.由AD ∥BC ,AD ⊥平面PDC ,得BC ⊥平面PDC. 又PC ⊂平面PDC ,因此BC ⊥PC.在Rt△PCB中,PB=PC2+BC2=13.在Rt△PEB中,sin∠PBE=PEPB =3913.所以直线PB与平面ABCD所成角的正弦值为3913.10.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD ⊥底面ABCD.(1)证明:PA⊥BD;(2)设PD=AD=1,求棱锥D-PBC的高.解析(1)证明:因为∠DAB=60°,AB=2AD,由余弦定理,得BD=3AD.所以BD2+AD2=AB2,故BD⊥AD.又PD⊥底面ABCD,BD⊂底面ABCD,所以BD⊥PD.所以BD⊥平面PAD,又PA⊂平面PAD,故PA⊥BD.(2)如图,作DE⊥PB,垂足为E.已知PD⊥底面ABCD,BC⊂底面ABCD,故PD⊥BC.由(1)知BD⊥AD,因为BC∥AD,所以BC⊥BD,又PD∩BD=D,所以BC⊥平面PBD,而DE⊂平面PBD,所以BC⊥DE.又PB∩BC=B,则DE⊥平面PBC,即DE为棱锥D-PBC的高.由PD=AD=1知BD=3,PB=2.由DE·PB=PD·BD,得DE=32.所以棱锥D-PBC的高为32.11.(2016·北京)如图,在四棱锥P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.解析(1)证明:因为PC⊥平面ABCD,DC⊂平面ABCD,所以PC⊥DC.又因为DC⊥AC,PC∩AC=C,所以DC⊥平面PAC.(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.因为PC⊥平面ABCD,AB⊂平面ABCD,所以PC⊥AB,又AC∩PC=A,所以AB⊥平面PAC.又因为AB⊂平面PAB,所以平面PAB⊥平面PAC.(3)棱PB上存在点F,使得PA∥平面CEF.证明如下:取PB的中点F,连接EF,CE,CF.因为E为AB的中点,所以EF∥PA.又因为PA⊄平面CEF,EF⊂平面CEF,所以PA∥平面CEF.1.如图所示,将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D-ABC中,给出下列三个命题:①△DBC是等边三角形;②AC⊥BD;③三棱锥DABC的体积是2 6.其中正确命题的序号是________.(写出所有正确命题的序号)答案①②解析取AC的中点O,连接OD,OB.则AC⊥OD,AC⊥OB,∴∠BOD=90°,∴BD=1,故①正确;易知AC⊥面BOD,∴AC⊥BD,故②正确;V DABC=13×12×1×1×22=212,故③不正确.2.如图,已知四边形ABCD是矩形,PA⊥平面ABCD,M,N分别是AB,PC的中点.(1)求证:MN⊥AB;(2)若PA=AD,求证:MN⊥平面PCD.解析(1)证明:取PD的中点H,连接AH,NH.又由N为PC中点,∴HN∥CD且HN=12CD.∵M为AB中点,∴AM∥CD且AM=12CD.∴AM綊HN,∴四边形AMNH为平行四边形.∴AH∥MN.∵四边形ABCD为矩形,∴AB⊥AD,又∵PA⊥面ABCD,∴AB⊥面PAD.又∵AH⊂面PAD,∴AB⊥AH,∴AB⊥MN.(2)由(1)可知,AH⊥AB,又AB∥CD,∴AH⊥CD.∵PA=AD,∴AH⊥PD,又PD∩CD=D,∴AH⊥面PCD,∴MN⊥面PCD.3.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.证明(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF⊄平面PCD,PD⊂平面PCD,所以直线EF∥平面PCD.(2)连接BD.因为AB=AD,∠BAD=60°,所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF⊂平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF⊂平面BEF,所以平面BEF⊥平面PAD.。
新课标版数学必修二(新高考 新课程)综合卷1高考调研精讲精练

模块综合测试卷(一)第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每题5分,共60分)1.给出下列命题:①在所有的棱柱中,互相平行的面最多有三对;②三个面不能围成几何体;③各侧面是全等的等腰三角形的四棱锥的底面是正方形;④四棱锥中侧面最多有四个直角三角形.其中正确命题的个数是( ) A .1 B .2 C .3 D .4答案 B解析 ①不对,因为有的六棱柱中有四对互相平行的面;③不对,因为底面有可能为菱形,∴②④正确.2.垂直于同一条直线的两条直线的位置关系是( ) A .平行B .相交C .不在同一平面内D .A ,B ,C 均有可能 答案 D解析 可以利用正方体加以验证.3.一个直角梯形的两底长分别为2和5,高为4,绕其较长的底旋转一周,所得的几何体的表面积为( ) A .52π B .34π C .45π D .37π 答案 A解析 环绕一周得到的是一个圆锥与圆柱的组合体,圆锥、圆柱的底面半径为r =4,圆柱高为2,圆柱母线长为l 1=2,圆锥母线长为l 2=5,所以所求表面积S =2πrl 1+πr 2+πrl 2=52π.4.直线y =kx +2与圆x 2+y 2+2x =0只在第二象限有公共点,则实数k 的取值范围为( ) A .[34,1]B .[34,1)C .[34,+∞)D .(-∞,1) 答案 B解析 由题意可知y =kx +2恒过点(0,2),要使直线与圆只在第二象限有公共点,则k ∈[k 1,k 2).由题意得y =k 2x +2过(-2,0),(0,2)两点,∴k 2=1.又圆心为(-1,0),∴圆心到y =k 1x +2的距离d =|-k 1+2|k 12+1=1,∴k 1=34,∴k ∈[34,1).5.过点P(1,1)作直线l 与两坐标轴相交,所得三角形面积为10,则直线l 有( ) A .1条 B .2条 C .3条 D .4条答案 D解析 通过直线的截距式,再作对称即可以发现有4条.6.设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊂α,n ∥α,则m ∥n. ②若α∥β,β∥γ,m ⊥α,则m ⊥γ. ③若α∩β=n ,m ∥n ,则m ∥α且m ∥β.④若α⊥γ,β⊥γ,则α∥β.其中真命题的个数为( ) A .0 B .1 C .2 D .3 答案 B解析 ①m ∥n 或m ,n 异面,故①错误.②正确.③m ∥α或m ⊂α,m ∥β或m ⊂β,故③错误.④α,β的关系不确定,故④错误.故选B.7.若方程x 2+y 2+x +y +k =0表示一个圆,则k 的取值范围是( ) A .k>12B .k<12C .0<k<12D .k ≤12答案 B解析 通过圆的一般方程的判断即可解决.8.若圆C 1的方程是x 2+y 2-4x -4y +7=0,圆C 2的方程是x 2+y 2-4x -10y +13=0,则两圆的公切线有( ) A .2条 B .3条 C .4条 D .1条 答案 D解析 通过判断两圆的关系即可解决.9.直线y =x +1与直线y =ax +1的交点的个数为( ) A .0个 B .1个C .2个D .随a 的值变化而变化答案 D解析 若a =1,则有无数个交点;若a ≠1,则有一个交点.10.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则实数k 的取值范围是( ) A .[-43,0]B .[0,34]C .[0,43]D .(0,43]答案 C解析 圆C :(x -4)2+y 2=1,圆心C(4,0),半径r =1.∵直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴圆心C(4,0)到直线y =kx -2的距离d =|4k -2|k 2+1≤2,解得0≤k ≤43.11.如图,在多面体ABC-DEFG 中,平面ABC ∥平面DEFG ,EF ∥DG ,且AB =DE ,DG =2EF ,则( )A .BF ∥平面ACGDB .CF ∥平面ABEDC .BC ∥FGD .平面ABED ∥平面CGF答案 A解析 取DG 的中点M ,连接AM ,FM ,如图所示. 则由已知条件易证四边形DEFM 是平行四边形,∴DE 綊FM.∵平面ABC ∥平面DEFG ,平面ABC ∩平面ADEB =AB ,平面DEFG ∩平面ADEB =DE ,∴AB ∥DE ,∴AB ∥FM.又AB =DE ,∴AB =FM ,∴四边形ABFM 是平行四边形,即BF ∥AM.又AM ⊂平面ACGD ,BF ⊄平面ACGD ,∴BF ∥平面ACGD.故选A.12.正方体AC 1的棱长为1,过点A 作平面A 1BD 的垂线,垂足为点H ,则下列命题正确的是( )①AH ⊥平面CB 1D 1 ②AH =13AC 1③点H 是△A 1BD 的垂心 ④AH ∥平面BDC 1 A .①②③ B .②③④ C .①②④ D .①③④答案 A解析 如图,∵CD 1∥BA 1,CB 1∥DA 1,CD 1∩CB 1=C ,BA 1∩DA 1=A 1,∴平面A 1BD ∥平面CB 1D 1,又AH ⊥面A 1BD. ∴AH ⊥面CB 1D 1,故①正确. ∵V A 1-ABD =V A-A 1BD. ∴13·AH ·S △A 1BD =13·AA 1·S △ABD , ∴AH =33,∴AH =13AC 1,故②正确. ∵AA 1,AB ,AD 两两相互垂直,∴H 为△A 1BD 的垂心,故③正确. 由题知H 点在线段AC 1上,故④不正确.故选A.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.直线x -y +1=0与2x -2y -1=0是圆的两条切线,则该圆的面积是__________. 答案932π 解析 ∵直线x -y +1=0与2x -2y -1=0平行, ∴两平行直线间的距离即为圆的直径,∴2R =⎪⎪⎪⎪1+122=324.∴R =328,S 圆=πR 2=932π.14.过点P(3,6)且被圆x 2+y 2=25截得的弦长为8的直线方程为__________________. 答案 3x -4y +15=0或x =3解析 当斜率不存在时,显然成立.斜率存在时,由距离公式可得斜率为0.75.15.光线由点(-1,4)射出,遇直线2x +3y -6=0被反射,已知反射光线过点(3,6213),则反射光线所在直线方程为__________. 答案 13x -26y +85=0解析 先求P(-1,4)点关于直线2x +3y -6=0的对称点Q ,然后利用点Q 与点(3,6213)在反射光线所在直线上就可以解决.16.已知m ,l 是直线,α,β是平面,给出下列命题: ①若l 垂直于α内的两条相交直线,则l ⊥α; ②若l 平行于α,则l 平行α内所有直线; ③若m ⊂α,l ⊂β,且l ⊥m ,则α⊥β; ④若l ⊂β,且l ⊥α,则α⊥β; ⑤若m ⊂α,l ⊂β,且α∥β,则m ∥l.其中正确命题的序号是__________(把你认为正确的命题的序号都填上). 答案 ①④解析 通过正方体验证.三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知两条直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,问:当m 为何值时,l 1与l 2①相交;②平行;③重合.解析 若m =0,l 1:x =-6,l 2:2x -3y =0,此时l 1与l 2相交; 若m ≠0,由m -21=3m ,有m =-1或m =3,由3m =2m6,有m =±3.故①当m ≠1且m ≠3时,m -21≠3m ,l 1与l 2相交;②当m =-1时,m -21=3m ≠2m6,l 1与l 2平行;③当m =3时,m -21=3m =2m6,l 1与l 2重合.18.(本小题满分12分)如图,多面体ABCDEFG 中,AB ,AC ,AD 两两垂直,四边形ABED 是边长为2的正方形,AC ∥DG ∥EF ,BC ∥FG ,且AC =EF =1,DG =2.(1)求证:CF ⊥平面BDG ; (2)求多面体ABCDEFG 的表面积. 解析 (1)证明:如图,连接AE ,EG , ∵BC ∥FG ,∴B ,C ,G ,F 四点共面. 在Rt △BAC 中,BC =AB 2+AC 2=5,GF =DE 2+(DG -EF )2=5,即BC =GF =5,同理可证BF =CG = 5. ∴四边形BCGF 是菱形,∴CF ⊥BG ,∵AC ∥EF ,AC =EF =1,∴四边形AEFC 是平行四边形,∴AE ∥CF , 在正方形ABED 中,AE ⊥BD ,故CF ⊥BD. 又BG ∩BD =B ,∴CF ⊥平面BDG. (2)BG =BE 2+EG 2=BE 2+ED 2+DG 2=22+22+22=23,CF =AE =AB 2+BE 2=22,∴S 棱形BFGC =12×BG ×CF =12×22×23=26,∴多面体ABCDEFG 的表面积S =S △ABC +S 梯形DEFG +S 正方形ABED +S 梯形ADGC +S △BEF +S 菱形BFGC =12AB ·AC +12(EF +DG)·DE +DE 2+12(AC +DG)·AD +12BE ·EF +26 =1+3+4+3+1+26 =12+2 619.(本小题满分12分)如图,四棱锥P-ABCD 中,ABCD 为矩形,△PAD 为等腰直角三角形,∠APD =90°,面PAD ⊥面ABCD ,E ,F 分别为PC 和BD 的中点.(1)证明:EF∥面PAD;(2)证明:面PDC⊥面PAD.证明(1)如图,连接AC,∵ABCD为矩形且F是BD的中点,∴AC必经过F.又E是PC的中点,∴EF∥AP.∵EF在面PAD外,PA在面PAD内,∴EF∥面PAD.(2)∵面PAD⊥面ABCD,CD⊥AD,面PAD∩面ABCD=AD,∴CD⊥面PAD.又AP⊂面PAD,∴AP⊥CD.又∵AP⊥PD,PD和CD是相交直线,∴AP⊥面PCD.又AP⊂面PAD,∴面PDC⊥面PAD.20.(本小题满分12分)自点P(-3,3)发出的光线l经过x轴反射,其反射光线所在直线正好与圆x2+y2-4x-4y+7=0相切,求入射光线l所在直线的方程.解析设入射光线l所在的直线方程为y-3=k(x+3),反射光线所在直线的斜率为k1,根据入射角等于反射角,得k=-k1,而点P(-3,3)关于x轴的对称点P1(-3,-3),根据对称性,点P 1在反射光线所在直线上,故反射光线所在直线l 1的方程为y +3=-k(x +3),即kx +y +3+3k =0,又此直线与已知圆相切,所以圆心到直线l 1的距离等于半径r ,因为圆心为(2,2),半径为1,所以|2k +2+3+3k|1+k 2=1,解得k =-34或k =-43.故入射光线l 所在的直线方程为y -3=-34(x +3)或y -3=-43(x +3),即3x +4y -3=0或4x +3y +3=0.21.(本小题满分12分)设M 是圆x 2+y 2-6x -8y =0上一动点,O 是原点,N 是射线OM 上一点,若|OM|·|ON|=120,求N 点的轨迹方程. 解析 设M ,N 的坐标分别为(x 1,y 1),(x ,y), 由题意|OM|·|ON|=120, 得x 12+y 12·x 2+y 2=120.①当M 不在y 轴上时,x 1≠0,x ≠0,于是有y x =y 1x 1.设y x =y 1x 1=k ,代入①,化简得|x 1x|(1+k 2)=120. 因x 1与x 同号,于是x 1=120(1+k 2)x ,y 1=120k(1+k 2)x , 代入x 2+y 2-6x -8y =0并化简,可得3x +4y -60=0(x ≠0). 当x 1=0时,y 1=8,点N(0,15)也在直线3x +4y -60=0上, 所以,点N 的轨迹方程为3x +4y -60=0.22.(本小题满分12分)求半径为4,与圆x 2+y 2-4x -2y -4=0相切,且和直线y =0相切的圆的方程.解析 由题意,设所求圆的方程为圆C :(x -a)2+(y -b)2=r 2.圆C 与直线y =0相切,且半径为4,则圆心C 的坐标为C 1(a ,4),或C 2(a ,-4). 又已知圆x 2+y 2-4x -2y -4=0的圆心A 的坐标为(2,1),半径为3. 若两圆相切,则|CA|=4+3=7,或|CA|=4-3=1. (1)当圆心为C 1(a ,4)时,(a -2)2+(4-1)2=72, 或(a -2)2+(4-1)2=12(无解),故可得a =2±210.∴所求圆的方程为(x-2-210)2+(y-4)2=16,或(x-2+210)2+(y-4)2=16.(2)圆心为当C2(a,-4)时,(a-2)2+(-4-1)2=72或(a-2)2+(-4-1)2=12(无解),故a=2±2 6.∴所求圆的方程为(x-2-26)2+(y+4)2=16或(x-2+26)2+(y+4)2=16.综上,所求圆的方程为(x-2-210)2+(y-4)2=16或(x-2+210)2+(y-4)2=16或(x-2-26)2+(y+4)2=16或(x-2+26)2+(y+4)2=16.。
新课标版数学选修2-1作业29高考调研精讲精练

课时作业(二十九)1.若A(-1,0,1),B(1,4,7)在直线l 上,则直线l 的一个方向向量为( ) A .(1,2,3) B .(1,3,2) C .(2,1,3) D .(3,2,1)答案 A解析 它平行于AB →,而AB →=(2,4,6).2.若n =(2,-3,1)是平面α的一个法向量,则下列向量中能作为平面α的法向量的是( ) A .(0,-3,1) B .(2,0,1) C .(-2,-3,1) D .(-2,3,-1) 答案 D解析 它应该与n 平行.3.若两个不同平面α,β的法向量分别为a =(12,-1,-3),b =(-1,2,6),则( )A .α∥βB .α与β相交但不垂直C .α⊥βD .以上均不正确 答案 A解析 ∵a =-12b ,∴a ∥b ,∴α∥β.4.若直线l 的方向向量为a ,平面α的法向量为μ,则能使l ∥α的是( ) A .a =(1,0,0),μ=(-2,0,0) B .a =(1,3,5),μ=(1,0,1) C .a =(0,2,1),μ=(-1,0,1) D .a =(1,-1,3),μ=(0,3,1) 答案 D5.平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α与平面β的关系是( ) A .平行 B .相交但不垂直 C .相交且垂直 D .无法判定答案 C6.直线l 的方向向量为a ,平面α内两共点向量OA →,OB →,下列关系中能表示l ∥α的是( ) A .a =OA → B .a =kOB →C .a =pOA →+λOB →D .以上均不能 答案 D解析 A ,B ,C 均能表示l ∥α或l ⊂α.7.已知平面α的一个法向量a =(x ,2y -1,-14),b =(-1,2,1),c =(3,12,-2),且b ,c 都与α平行,则a 等于( ) A .(-952,-5326,-14)B .(-952,2752,-14)C .(-952,126,-14)D .(-2752,-5326,-14)答案 C解析 a 是平面α的法向量,b ,c 都与α平行.∴a 与b ,c 都垂直.∴⎩⎨⎧-x +4y -2-14=0,3x +y -12+12=0,即⎩⎪⎨⎪⎧-x +4y =94,3x +y =0.解得⎩⎨⎧x =-952,y =2752.∴a =(-952,126,-14).8.已知A(1,0,0),B(0,1,0),C(0,0,1),则平面ABC 的一个单位法向量是( )A .(33,33,-33) B .(33,-33,33) C .(-33,33,33) D .(-33,-33,-33) 答案 D9.已知平面α内两向量a =(1,1,1),b =(0,2,-1)且c =m a +n b +(4,-4,1).若c 为平面α的法向量,则m ,n 的值分别为( ) A .-1,2 B .1,-2 C .1,2 D .-1,-2答案 A10.已知l ∥α,且l 的方向向量为(2,m ,1),平面α的法向量为(1,12,2),则m =________.答案 -8解析 l 的方向向量与平面α的法向量垂直,(2,m ,1)·(1,12,2)=0,即2+12m +2=0,∴m =-8.11.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,则平面ACB 1的一个法向量为________. 答案 (1,1,-1)解析 建立空间直角坐标系,如图所示,则A(1,0,0),B(1,1,0),C(0,1,0),B 1(1,1,1),∴AC →=(-1,1,0),AB 1→=(0,1,1).设平面ACB 1的一个法向量为n =(x ,y ,z),则由n ⊥AC →,n ⊥AB 1→,得⎩⎪⎨⎪⎧-x +y =0,y +z =0.令x =1,得n =(1,1,-1).12.已知A(2,4,0),B(1,3,3),点Q 是线段AB 的靠近B 点的一个三等分点,求Q 点的坐标.解析 设Q(x ,y ,z),由题意得AQ →=23AB →,∴(x -2,y -4,z)=23(-1,-1,3).∴⎩⎨⎧x -2=-23,y -4=-23,z =2,∴⎩⎨⎧x =43,y =103,z =2,即Q(43,103,2).13.如图,正方体ABCD -A 1B 1C 1D 1的边长为4,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点.求证:平面AMN ∥平面EFBD. 证明 如图建立空间直角坐标系,则A(4,0,0),M(2,0,4),N(4,2,4),D(0,0,0),B(4,4,0),E(0,2,4),F(2,4,4).取MN 的中点G 及EF 的中点K ,BD 的中点Q ,则G(3,1,4),K(1,3,4),Q(2,2,0).∴MN →=(2,2,0),EF →=(2,2,0),AG →=(-1,1,4),QK →=(-1,1,4). 可见MN →=EF →,AG →=QK →,∴MN ∥EF ,AG ∥QK.又∵MN ⊄平面EFBD ,AG ⊄平面EFBD ,∴MN ∥平面EFBD ,AG ∥平面EFBD. 又∵MN ∩AG =G ,∴平面AMN ∥平面EFBD.14.如图,四棱锥P -ABCD 的底面是直角梯形,AB ∥CD ,AB ⊥AD ,△PAB 和△PAD 是两个边长为2的正三角形,DC =4,O 为BD 的中点,E 为PA 的中点.求证:OE ∥平面PDC.证明 过O 分别作AD ,AB 的平行线,以它们为x ,y 轴,以OP 为z 轴建立如图所示的空间直角坐标系.由已知得:A(-1,-1,0),B(-1,1,0),D(1,-1,0,),F(1,1,0),C(1,3,0),P(0,0,2),E(-12,-12,22),则OE →=(-12,-12,22),PF →=(1,1,-2),PD →=(1,-1,-2),PC →=(1,3,-2).∴OE →=-12PF →,∴OE ∥PF.∵OE ⊄平面PDC ,PF ⊂平面PDC , ∴OE ∥平面PDC.1.已知平面α内的两个向量a =(2,3,1),b =(5,6,4),则平面α的一个法向量为( ) A .(1,-1,1) B .(2,-1,1) C .(-2,1,1) D .(-1,1,-1)答案 C2.设平面α的法向量为(1,2,-2),平面β的法向量为(-2,-4,k),若α∥β,则k =( ) A .2 B .-4 C .4 D .-2答案 C3.已知直线l 1的一个方向向量为(-7,3,4),直线l 2的一个方向向量为(x ,y ,8),且l 1∥l 2,则x =________,y =________. 答案 -14 6解析 ∵l 1∥l 2,∴-7x =3y =48,∴x =-14,y =6.4.平面α外直线l 的方向向量为a =(3,-2,4),平面α内两不共线向量m =(1,0,2),n =(1,-2,1),则l 与α的关系是________. 答案 平行解析 由(3,-2,4)=(1,0,2)+2(1,-1,1), 即a =m +2n .∴l 与平面α平行.5.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F ,G 分别是C 1C ,D 1A 1,AB 的中点,建立空间直角坐标系,求平面EFG 的一个法向量.解析 建系如图,则E(0,2,1),F(1,0,2),G(2,1,0), GE →=(-2,1,1),GF →=(-1,-1,2). 设n =(x ,y ,z)是平面EFG 的法向量, 则⎩⎪⎨⎪⎧n ·GE →=0,n ·GF →=0.∴⎩⎪⎨⎪⎧-2x +y +z =0,-x -y +2z =0.∴⎩⎪⎨⎪⎧x =y ,y =z.∴n =(z ,z ,z),令z =1,此时n =(1,1,1), ∴平面EFG 的一个法向量为(1,1,1).6.如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形.求证:直线BC ∥EF.证明 过点F 作FQ ⊥AD ,交AD 于点Q ,连接QE ,由平面ABED ⊥平面ADFC ,知FQ ⊥平面ABED ,以Q 为坐标原点,QE →为x 轴正方向,QD →为y 轴正方向,QF →为z 轴正方向,建立如图所示空间直角坐标系. 由条件知E(3,0,0),F(0,0,3),B(32,-32,0),C(0,-32,32). 则有BC →=(-32,0,32),EF →=(-3,0,3).所以EF →=2BC →,即得BC ∥EF.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时作业(二十九)1.已知集合A={(x,y)|x,y为实数,且x2+y2=1},B={(x,y)|x,y为实数,且x+y=1},则A∩B中的元素个数为()A.4B.3C.2 D.1答案 C2.设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=() A.4 B.4 2C.8 D.8 2答案 C解析因为两圆都和两坐标轴相切,且都经过点(-4,1),所以两圆圆心均在第一象限的角平分线上.设两圆的圆心坐标分别为(a,a),(b,b),则有(4-a)2+(1-a)2=a2,(4-b)2+(1-b)2=b2,即a,b为方程(4-x)2+(1-x)2=x2的两个根,整理得x2-10x+17=0,所以a +b=10,ab=17,所以(a-b)2=(a+b)2-4ab=100-4×17=32,所以|C1C2|=(a+b)2+(a-b)2=32×2=8.3.已知曲线C:y=-x2-2x与直线l:x+y-m=0有两个交点,则m的取值范围是() A.(-2-1,2) B.(-2,2-1)C.[0,2-1) D.(0,2-1)答案 C解析曲线C是圆x2+y2+2x=0位于x轴上方的半圆,m是直线l:x+y-m=0在y轴上的截距,利用数形结合可得m的取值范围是[0,2-1).故选C.4.一辆卡车宽2.7米,要经过一个半径为4.5米的半圆形隧道(双车道,不得违章),则这辆卡车的平顶车蓬蓬顶距离地面的高度不得超过()A.1.4米B.3.0米C.3.6米D.4.5米答案 C解析如图所示,通过勾股定理解得|OD|=OC2-CD2=3.6(米).故选C.5.若圆B :x 2+y 2+b =0与圆C :x 2+y 2-6x +8y =0没有公共点,则b 的取值范围是________. 答案 b<-1006.已知直线ax +by +c =0与圆O :x 2+y 2=1相交于A ,B 两点,且|AB|=3,则OA →·OB →=________. 答案 -12解析 由于圆的半径为1,|AB|=3,所以O 到直线的距离为12,∠AOB =120°,|OA|=|OB|=1.所以向量OA →·OB →=|OA →||OB →|cos120°=-12.7.一艘轮船沿直线返回港口的途中,接到气象台的台风预报,台风中心位于轮船正西70 km 处,受影响的范围是半径为30 km 的圆形区域,已知港口位于台风中心正北40 km 处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?解析 以台风中心为坐标原点,以东西方向为x 轴建立直角坐标系(如图所示),其中取10 km 为单位长度,则受台风影响的圆形区域所对应的圆的方程为x 2+y 2=9,港口所对应的点的坐标为(0,4),轮船的初始位置所对应的点的坐标为(7,0),则轮船航线所在直线l 的方程为x 7+y4=1,即4x +7y -28=0.圆心(0,0)到直线4x +7y -28=0的距离d =|28|42+72=2865,而半径r =3, ∴d>r ,即直线与圆相离,∴轮船不会受到台风的影响.8.如图所示,过圆外一点P(a ,b)作圆x 2+y 2=k 2的两条切线,切点为A ,B ,求直线AB 的方程.解析 设切点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),则切线AP ,BP 的方程分别为x 1x +y 1y =k 2,x 2x +y 2y =k 2. ∵这两条切线都过点P(a ,b), ∴ax 1+by 1=k 2,ax 2+by 2=k 2.由以上二式可以看出:A(x 1,y 1),B(x 2,y 2)的坐标都适合方程ax +by =k 2,它是一条直线方程,而过A ,B 的直线只有一条, ∴直线AB 的方程为ax +by =k 2.9.已知圆x 2+y 2=8,定点P(4,0),问过P 点的直线的倾斜角在什么范围内取值时,该直线与已知圆:(1)相切;(2)相交;(3)相离,并写出过点P 的切线方程.解析 设直线的斜率为k ,倾斜角为α,则过点P 的直线方程为y =k(x -4),即kx -y -4k =0.又圆心到直线的距离d =|-4k| k 2+1=|4k|1+k 2,(1)直线与已知圆相切,则d =4,∴4|k|1+k 2=22,∴k 2=1,k =±1,∴α=π4或α=3π4.即当α=π4或α=3π4时,直线与圆相切,切线方程为x -y -4=0或x +y -4=0. (2)直线与已知圆相交,则d<r ,∴4|k|1+k 2<22,∴k 2<1,∴-1<k<1,∴α∈[0,π4)∪(3π4,π).此时,直线与圆相交.(3)直线与已知圆相离,则d>r ,∴4|k|1+k 2>22,∴k 2>1,∴k>1或k<-1. ∴α∈(π4,π2)∪(π2,3π4).又当α=π2时,直线x =4与圆相离,∴α∈(π4,3π4) 时,直线与圆相离.10.已知圆x 2+y 2+x -6y +m =0与直线x +2y -3=0交于P ,Q 两点,且OP →·OQ →=0(O 为坐标原点),求该圆的圆心坐标及半径.解析 将x =3-2y 代入方程x 2+y 2+x -6y +m =0,得5y 2-20y +12+m =0. 设P(x 1,y 1),Q(x 2,y 2),则y 1,y 2满足条件y 1+y 2=4,y 1y 2=12+m5. ∵OP →·OQ →=0,∴x 1x 2+y 1y 2=0. 而x 1=3-2y 1,x 2=3-2y 2, ∴x 1x 2=9-6(y 1+y 2)+4y 1y 2.∴9-6×4+5×12+m5=0,解得m =3.此时Δ>0,圆心坐标为(-12,3),半径r =52.11.若实数x ,y 满足方程x 2+y 2-4x +1=0, (1)求yx 的最大值和最小值;(2)求y -x 的最小值;(3)求x 2+y 2的最大值和最小值. 解析 方法一:(1)圆方程化为(x -2)2+y 2=3,表示以点(2,0)为圆心,半径为3的圆.设yx =k ,即y =kx ,当直线y =kx 与圆相切时,斜率k 取最大值和最小值,此时有|2k -0|k 2+1=3,解得k =±3,故yx的最大值为3,最小值为- 3.(2)设y -x =b ,即y =x +b ,当y =x +b 与圆相切时,纵截距b 取得最大值和最小值,此时|2-0+b|2=3,即b =-2±6,故(y -x)max =-2+6,(y -x)min =-2- 6. (3)x 2+y 2表示圆上的点与原点距离的平方,由平面几何知识知原点与圆心连线与圆的两个交点处取得最大值和最小值.又圆心到原点的距离为3, 故(x 2+y 2)max =(2+3)2=7+43, (x 2+y 2)min =(2-3)2=7-4 3.方法二:设x =2+3cos θ,y =3sin θ,θ∈[0,2π), (1)设yx =u ,则u =3sin θ2+3cos θ.∴2u +3ucos θ=3sin θ,∴3sin θ-3ucos θ=2u. sin(θ-φ)=2u 3·u 2+1,(sin φ=u u 2+1,cos φ=1u 2+1)∵|sin(θ-φ)|≤1,∴2|u|3·u 2+1≤1.解之得-3≤u ≤3,故yx 的最大值为3,最小值为- 3.(2)y -x =3sin θ-2-3cos θ=-2+6sin(θ-π4).∵-1≤sin(θ-π4)≤1,故(y -x)max =-2+6,(y -x)min =-2- 6. (3)x 2+y 2=(2+3cos θ)2+(3sin θ)2=7+43cos θ, 故(x 2+y 2)max =(2+3)2=7+43, (x 2+y 2)min =(2-3)2=7-4 3.1.自点A(-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在的直线与圆x 2+y 2+4x -4y +7=0相切,求光线l 所在直线的方程.解析 设光线l 所在的直线的斜率为k ,由光学原理可知,反射光线所在的直线的斜率为-k ,且反射光线所在的直线经过点A ′且点A ′关于x 轴的对称点为点A(-3,3),故过A ′(-3,-3)的反射光线所在直线的方程为y +3=-k(x +3),即kx +y +3k +3=0,依题意,它与圆(x -2)2+(y -2)2=1相切,所以|2k +2+3k +3|k 2+1=1,解得k =-43或-34,故光线l 所在的直线方程为3x +4y -3=0或4x +3y +3=0.2.已知A(-2,0),B(2,0),点C ,D 满足|AC →|=2,AD →=12(AB →+AC →),求点D 的轨迹方程.解析 设C 坐标为(x 1,y 1),D 坐标为(x ,y), 由|AC →|=2,得(x 1+2)2+y 12=4.① 又由向量AD →=12(AB →+AC →),可得(x +2,y)=(4,0)+(x 1+2,y 1)2,即(2x +4,2y)=(6+x 1,y 1), 则有2x +4=6+x 1,2y =y 1, 即2x -2=x 1,2y =y 1.②把②式代入①式得,(2x)2+(2y)2=4化简得x 2+y 2=1,即为点D 的轨迹方程.3.平面上两点A(-1,0),B(1,0),在圆C :(x -3)2+(y -4)2=4上取一点P ,求使|AP|2+|BP|2取得最小值时点P 的坐标.解析 因为P 在圆C 上,所以可设P(3+2cos θ,4+2sin θ). 又因为A(-1,0),B(1,0),∴|AP|2+|BP|2=(3+2cos θ+1)2+(4+2sin θ)2+(3+2cos θ-1)2+(4+2sin θ)2=60+32sin θ+24cos θ=60+40sin(θ+φ)(tan φ=34).当sin(θ+φ)=-1,(|AP|2+|BP|2)min =20.此时60+24cos θ+32sin θ=20,即3cos θ+4sin θ=-5.又因为sin 2θ+cos 2θ=1,解得cos θ=-35,sin θ=-45,则P(95,165).4.已知方程x 2+y 2-2(t +3)x +2(1-4t 2)y +16t +9=0(t ∈R )表示的图形是圆. (1)求t 的取值范围; (2)求圆心的轨迹方程; (3)求其中面积最大的圆的方程;(4)若点P(3,4t 2)恒在所给圆内,求t 的取值范围. 解析 原方程可整理为[x -(t +3)]2+[y +(1-4t 2)]2=-7t 2+6t +1. (1)r 2=-7t 2+6t +1>0,解得-17<t<1.(2)设圆心坐标为P(x ,y),则⎩⎪⎨⎪⎧x =t +3,y =4t 2-1,消t 可得y =4x 2-24x +35,此即为圆心轨迹方程. (3)求圆面积最大即求圆半径最大,半径的平方最大. r 2=-7t 2+6t +1=-7(t -37)2+167,所以当t =37时,r 2最大为167,此时圆的面积最大,圆的方程为(x -247)2+(y +3649)2=167.(4)要使点P(3,4t 2)恒在所给圆内,那么把P 点坐标代入圆方程应满足[3-(t +3)]2+[4t 2+(1-4t 2)]2+7t 2-6t -1<0,即8t 2-6t<0,解得0<t<34.5.如图,已知定点A(2,0),点Q 是圆x 2+y 2=1上的动点,∠AOQ 的平分线交AQ 于M ,当Q 点在圆上移动时,求动点M 的轨迹方程. 解析 由三角形角平分线性质,得 |QM||MA|=|OQ||OA|=12,∴|QM||MA|=12. 设M ,Q 的坐标分别为(x ,y),(x 0,y 0),则⎩⎪⎨⎪⎧x =x 0+12×21+12,y =y 0+12×01+12,⇒⎩⎨⎧x 0=32x -1,y 0=32y.因为Q 在圆x 2+y 2=1上,所以x 02+y 02=1.所以(32x -1)2+(32y)2=1,所以动点M 的轨迹方程为(x -23)2+y 2=49.6.已知圆C :x 2+y 2+2x -4y +3=0.(1)若圆C 的切线在x 轴和y 轴上截距相等,求切线的方程;(2)从圆C 外一点P(x ,y)向圆引切线PM ,M 为切点,O 为坐标原点,且有|PM|=|PO|,求使|PM|最小的点P 的坐标.解析 (1)圆C :x 2+y 2+2x -4y +3=0的标准方程为(x +1)2+(y -2)2=2,所以圆心(-1,2),r = 2.设圆C 的切线在x 轴和y 轴上的截距分别为a ,b ,①当a =b =0时,切线方程可设为y =kx ,即kx -y =0,由点到直线的距离公式,得2=|-k -2|k 2+1⇒k =2±6. 所以切线方程为y =(2±6)x.②当a =b ≠0时,切线方程为x a +yb =1,即x +y -a =0.由点到直线的距离公式,得 2=|-1+2-a|12+12⇒a =-1,a =3.所以切线方程为x +y +1=0,x +y -3=0. 综上,所求切线方程为y =(2±6)x ,x +y +1=0,x +y -3=0. (2)连接MC ,则|PM|2=|PC|2-|MC|2, ∵|PM|=|PO|,∴|PC|2-|MC|2=|PO|2.即(x +1)2+(y -2)2-2=x 2+y 2. 整理得x =2y -32.∴|PM|=|PO|=x 2+y 2=(2y -32)2+y 2=5y 2-6y +94.当y =--610=35时,|PM|最小,此时x =-310, ∴P(-310,35).。