最优化模型与算法.
最优化方法(建模、原理、算法)

26
29
32
里程(km) 501~600 601~700 701~800 801~900 901~1000
运价(万元) 37
44
50
55
60
• 1000km以上每增加1至100km运价增加5 • 公路运输费用为1单位钢管每公里0.1万元(不足
整公里部分按整公里计算)。
SST
• 钢管可由铁路、公路运往铺设地点(不只是运到 点,而是管道全线)。
• (1)请制定一个主管道钢管的订购和运输计划, 使总费用最小(给出总费用)。
• (2)请就(1)的模型分析:哪个钢厂钢管的销 价的变化对购运计划和总费用影响最大,哪个钢 厂钢管的产量的上限的变化对购运计划和总费用 的影响最大,并给出相应的数字结果。
• (3)如果要铺设的管道不是一条线,而是一个树 形图,铁路、公路和管道构成网络,请就这种更 一般的情形给出一种解决办法,并对图二按(1) 的要求给出模型和结果。
SST
i 1234567 si 800 800 1000 2000 2000 2000 3000 pi 160 155 155 160 155 150 160 • 1单位钢管的铁路运价如下表:
里程(km) 运价(万元)
≤300 20
301~350 351~400 401~450 451~500
23
平均值 c [c1, c2,, cn ]T,协方差矩阵 V 。
希望利润期望值最大且方差最小,建立多目标优化模型:
v - min [ - c T x, xTVx ]
s. t. Ax b
x0
SST
• 问题扩展 b. 风险投资问题(参考98全国建模赛题)
将前面的产品换成投资项目,考虑投资 Aj 风险损失qj 。
最优化理论与算法完整版课件陈宝林

TP SHUAI
1
提纲
使用教材:
最优化理论与算法 陈宝林
参考书 :
数学规划 黄红选, 韩继业 清华大学出版社
1. 线性规划 对偶定理
2. 非线性规划 K-K-T 定理
3. 组合最优化 算法设计技巧
TP SHUAI
2
其他参考书目
Nonlinear Programming - Theory and Algorithms
j1
m
s.t xij bj
i1
xij 0
i 1, 2, , m
j 1, 2, n i 1, 2, , m j 1, 2, n
TP SHUAI
15
3 税下投资问题
• 以价格qi 购买了si份股票i,i=1,2,…,n
• 股票i的现价是pi
• 你预期一年后股票的价格为ri • 在出售股票时需要支付的税金=资本收益×30% • 扣除税金后,你的现金仍然比购买股票前增多 • 支付1%的交易费用 • 例如:将原先以每股30元的价格买入1000股股票,以
最优化首先是一种理念, 运筹学的“三个代表”
其次才是一种方法.
• 模型
• 理论
• 算法 TP SHUAI
5
绪论---运筹学(Operations Research - OR)
运筹学方法
最优化/数学规划方法
连续优化:线性规划、 非线性规划、非光滑优 化、全局优化、变分法、 二次规划、分式规划等
离散优化:组合优化、 网络优化、整数规划等
TP SHUAI
23
6.结构设计问题
p1
p2
h
2p
2L
B
d
受力分析图
数学建模最优化模型

有约束最优化问题的数学建模
有约束最优化模型一般具有以下形式:
m in f (x)
m ax f (x)
x
或
x
s .t. ......
s .t. ......
其中f(x)为目标函数,省略号表示约束式子,可以是 等式约束,也可以是不等式约束。
最优化方法主要内容
f1='-2*exp(-x).*sin (x)';
[xmax,ymax]=fminbnd (f1, 0,8)
运行结果: xmin = 3.9270 xmax = 0.7854
ymin = -0.0279 ymax = 0.6448
例2 有边长为3m的正方形铁板,在四个角剪去相等的正方形以 制成方形无盖水槽,问如何剪法使水槽的容积最大?
例1:求函数y=2x3+3x2-12x+14在区间[-3,4]上的最 大值与最小值。
解:令f(x)=y=2x3+3x2-12x+14
f’(x)=6x2+6x-12=6(x+2)(x-1) 解方程f’(x)=0,得到x1= -2,x2=1,又 由于f(-3)=23,f(-2)=34,f(1)=7,f(4)=142, 综上得, 函数f(x)在x=4取得在[-3,4]上得最大值f(4)=142,在 x=1处取得在[-3,4]上取得最小值f(1)=7
ya11a3ln1a2expxa5a4
其中 a1 a2 a3 a4 和a 5 待定参数,为确定这些参数,
对x.y测得m个实验点: x 1 ,y 1 ,x 2 ,y 2, x m ,y m .
试将确定参数的问题表示成最优化问题.
网络优化模 型与算法-V1

网络优化模型与算法-V1网络优化模型与算法随着互联网技术的不断发展,网络优化问题变得越来越重要。
无论是商业领域还是科研领域,网络优化都在扮演着重要的角色。
本文将重点介绍网络优化模型与算法。
一、网络优化模型网络优化模型是指将网络中的各个元素和关系用数学模型表示出来,并根据所要优化的目标给出相应的优化模型。
常见的网络优化模型有最小生成树模型、最短路模型、网络流模型等。
1. 最小生成树模型最小生成树模型是指在一个网络中找到一棵生成树,使得这个生成树的总权值最小。
在最小生成树模型中,边的权值代表着连接两个节点的代价。
经典的最小生成树算法有Prim算法和Kruskal算法。
2. 最短路模型最短路模型是指在一个网络中找到一条路径,使得这条路径的总权值最小。
在最短路模型中,边的权值代表着从一个节点到另一个节点的距离或代价。
经典的最短路算法有Dijkstra算法和Floyd算法。
3. 网络流模型网络流模型是指在一个网络中找到一种流量分配方式,使得流量的总和最大或成本最小。
在网络流模型中,节点之间的流量代表着信息传递的速度或物质的流动量,边的容量代表着流量的上限。
经典的网络流算法有最大流算法和最小费用最大流算法。
二、网络优化算法网络优化算法是指利用数学模型和算法求解网络优化问题的方法。
不同的网络优化问题需要不同的算法。
本节将介绍一些常见的网络优化算法。
1. Prim算法Prim算法是用于求解最小生成树的一种贪心算法。
它从一个起点开始,每次找到与当前最小生成树距离最近的节点,将这个节点加入最小生成树中。
2. Kruskal算法Kruskal算法是用于求解最小生成树的一种贪心算法。
它将所有边按照权值从小到大排序,依次加入最小生成树中。
如果加入一条边会形成环,则舍弃这个边。
3. Dijkstra算法Dijkstra算法是用于求解最短路的一种贪心算法。
它从起点开始,每次找到距离起点最近的节点,并更新其它与该节点相邻的节点的距离。
《最优化基础——模型与方法》系列教材

《最优化基础 —— 模型与方法》系列教材编委会 1998 年 5 月
系列教材编委会成员名单 ( 姓氏笔划为序)
主编: 姜启源 谭泽光 编委: 刘宝碇 邢文训 陈宝林 林翠琴 胡冠章
黄红选 谢金星
目 录
序言 ……………………………………………………………… Ⅶ
第 1 章 概论……………………………………………………… 1 1. 1 组合最优化问题 ……………………………………… 1 1. 2 计算复杂性的概念 …………………………………… 5 1. 3 邻域概念……………………………………………… 11 1. 4 启发式算法…………………………………………… 13 1. 5 NP , N P-C 和 NP -hard 概念 ………………………… 28 1. 6 小结…………………………………………………… 48 练习题 ……………………………………………………… 49 参考文献 …………………………………………………… 51
《最优化基础—— 模型与方法》系列教材
现代优化计算方法
邢文训 谢金星 编著
清华大学出版社
( 京) 新登字 158 号
内 容 简 介
本书 系 统 介 绍 了 禁 忌 搜 索 、模 拟 退 火 、遗 传 算 法 、人 工 神 经 网 络 和 拉 格 朗 日 松 弛等 现 代 优 化 计 算 方 法 的 模 型与 理 论 、应 用技 术 和 应 用 案 例 。
解决实际生活中优化问题的手段大致有以下几种: 一是靠经 验的积累, 凭主观作判断; 二是做试验选方案, 比优劣定决策; 三是 建立数学模型, 求解最优策略。虽然由于建模时要作适当简化, 可 能使结果不一定非常完善, 但是它基于客观数据, 求解问题简便、 灵活、经济, 而且规模可以很大( 将来会越来越大) 。人们还可以吸 收从经验得到的规则, 用实验来不断校正建立的模型。随着数学方 法和计算机技术的进步, 用建模和数值模拟解决优化问题这一手 段, 将会越来越显示出它的效能和威力。显然, 在决策定量化、科学 化的呼声日益高涨的今天, 数学建模方法的推广应用是符合时代 潮流和形势发展需要的。
最优化理论与方法

1.有穷性 对于任意一组合法输入值,在 执行有穷步骤之后一定能结束,即: 算法中的每个步骤都能在有限时间内完成;
2.确定性 对于每种情况下所应执行的操 作,在算法中都有确切的规定,使算法的 执行者或阅读者都能明确其含义及如何执 行。并且在任何条件下,算法都只有一条 执行路径;
3.可行性 算法中的所有操作都必须足够 基本,都可以通过已经实现的基本操作运 算有限次实现之;
11
1.1 组合优化问题
数学模型:
min dij xij i j
(1.4) 总路长
n
s.t. xij 1.i 1, 2,L , n, j 1
(1.5) 只从城市i出来一次
n
xij 1. j 1, 2,L , n,
i 1
(1.6) 只走入城市j一次
xij s 1, 2 s n 1, s 1, 2,L , n, (1.7) 在任意城市子集中不形成回路
(1.1)总价值
n
s.t. ai xi b, i 1
xi 0,1, i 1, , n.
(1.2)包容量限制 (1.3)决策变量
其中xi
1,装第i物品 0,不装第i物品
D 0,1n.
10
1.1 组合优化问题
例2 旅行商问题(TSP,traveling salesman problem) 管梅谷教授1960年首先提出,国际上称 之为中国邮递员问题。 问题描述:一商人去n个城市销货,所有 城市走一遍再回到起点,使所走路程最 短。
最优化理论与方法
(现代优化计算方法)
1
内容
概论 递归、分治、贪心、回溯 禁忌搜索、爬山算法 模拟退火、蚁群算法 遗传算法 神经网络 元胞自动机 随机算法
2
最优化模型

星期日 星期一 星期二 星期三 星期四 星期五 星期六
2、模型
决策变量:设x j为第j天开始休息的人数( j 1, 2,, 7)
目标函数: min x1 x2 x3 x4 x5 x6 x7 约束条件: x1 x2 x3 x4 x5 28 x2 x3 x4 x5 x6 15 x3 x4 x5 x6 x7 24 x4 x5 x6 x7 x1 25 x5 x6 x7 x1 x2 19 x6 x7 x1 x2 x3 31 x7 x1 x2 x3 x4 28 x1 , x2 , x3 , x4 , x5 , x6 , x7 0, 整数
例(挑选球员问题)某篮球教练要从8名业余队员中 挑选3名队员参加专业球队,使平均身高达到最高。 队员的号码、身高及所擅长的位置如下。要求:中 锋1人;后卫1人;前锋1人,但1号、3号与6号队员 中必须保留1人给业余队。
号码 1 2 3 4 5 6 7 8 身高(米) 1.92 1.91 1.90 1.86 1.85 1.83 1.80 1.79 位置 中锋 中锋 前锋 前锋 前锋 后卫 后卫 后卫 挑选变量 x1 x2 x3 x4 x5 x6 x7 x8
例(选址问题)设有n个市场,第j个市场的位置为(aj,bj), 对某种货物的需要量为qj, j=1,…,n,现计划建立m个仓库, 第i个仓库的容量为ci,i=1,…,m,试确定仓库的位置,使各 仓库到各市场的运输量与路程乘积之和最小. 解:设第i个仓库的位置为(xi,yi),运输量为wij.
min n m w ( x a ) 2 ( y b ) 2 i j i j j 1 i 1 ij n s.t. j 1 wij ci i 1, 2, , m m i 1 wij q j j 1, 2, , n wij 0 i 1, 2, , m j 1, 2, , n
最优化建模算法与理论

最优化建模算法与理论最优化建模算法与理论最优化建模是以一种有效的方式来求解优化问题的过程。
它是一种用于处理优化问题的综合算法,其中包括搜索算法、随机算法、组合算法等。
最优化建模的主要目标是通过有效的算法和理论,寻找最优解来解决优化问题。
本文将从以下几个方面讨论最优化建模中的算法和理论:一、基本最优化模型基本最优化模型是一种描述变量之间关系的模型,它一般用于求解优化问题。
基本最优化模型一般由目标函数、约束条件、决策变量等组成。
目标函数是描述求解问题的目标,约束条件是指处理问题的要求,决策变量是用于描述最优化问题的变量。
基本最优化模型一般可以用数学模型来表示,如线性模型、非线性模型等。
二、最优化搜索算法最优化搜索算法是用于最优化问题的一类算法,它可以在有限的时间内搜索出最优解,因此被用来求解最优化问题。
最优化搜索算法主要包括贪心算法、模拟退火算法、遗传算法等。
贪心算法是一种局部最优搜索算法,它通过从一个状态进行评估,不断的求解局部最优解,最终求得全局最优解。
模拟退火算法是一种基于概率的搜索算法,它通过增加概率来接受新的状态,从而最终接受最优解。
遗传算法是一种进化算法,它通过迭代的过程,不断的进化出更优的解。
三、最优化理论最优化理论是指用于求解最优化问题的一系列理论,它可以帮助我们更好地理解和分析最优化问题。
最优化理论主要包括多目标优化理论、随机优化理论、优化系统理论等。
多目标优化理论是指在求解多目标优化问题时,按照一定的准则,构造出最优解的理论。
随机优化理论是指在求解随机优化问题时,按照一定的准则,构造出最优解的理论。
优化系统理论是指在求解优化系统问题时,按照一定的准则,构造出最优解的理论。
四、应用最优化建模算法和理论已被广泛应用于各个领域。
在工程中,最优化建模算法和理论可用于解决结构优化、供应链管理等问题。
在管理学中,最优化建模算法和理论可用于解决生产调度、经营决策等问题。
在经济学中,最优化建模算法和理论可用于解决价格机制、资源分配等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
优化求解一般步骤
针对具体工程问题建立 优化设计的数学模型 建立目标函数文件 建立约束函数文件 建立调用优化工具函数 的M文件或命令文件 运行优化工具函数的M文 件或命令文件求解
min f (x1, x2, …, xn) s.t. g(x) ≤ 0
不等式约束条件 表示成g(X) ≤ 0的 形式
无约束非线性规划问题的MATLAB函数
设置优化选项参数
初始点
目标函数 返回最优设计变量 返回目标函数值
例 求y=2x13 +4x1x23-10x1x2+x22 的最小值点. 解:>>X=fminsearch('2*x(1)^3+4*x(1)*x(2)^310*x(1)*x(2)+x(2)^2', [0,0]) 结果为: X= 1.0016 0.8335 或在MATLAB编辑器中建立函数文件. function f=myfun(x) f=2*x(1)^3+4*x(1)*x(2)^3-10*x(1)*x(2)+x(2)^2; 保存为myfun.m,在命令窗口键入 >> X=fminsearch ('myfun', [0,0]) 或 >> X=fminsearch(@myfun, [0,0]) 结果为: X= 1.0016 0.8335
5
MATLAB优化工具箱
常用的优化功能函数
求解线性规划问题的主要函数是linprog。 求解二次规划问题的主要函数是quadprog。 求解无约束非线性规划问题的主要函数是fminbnd、fminunc和
fminsearch。Fra bibliotek 求解约束非线性规划问题的函数是 fmincon 。 多目标优化问题的MATLAB函数有fgoalattain和fminimax。
函数 fmincon 格式 x = fmincon(fun,x0,A,b) x = fmincon(fun,x0,A,b,Aeq,beq) x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub) x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon) x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options) [x,fval] = fmincon(…) [x,fval,exitflag] = fmincon(…) [x,fval,exitflag,output] = fmincon(…) [x,fval,exitflag,output,lambda] = fmincon(…) [x,fval,exitflag,output,lambda,grad] = fmincon(…) [x,fval,exitflag,output,lambda,grad,hessian] = fmincon(…)
有约束的多元函数最小值 数学模型形式:
min f (X) s.t. AX≤b (线性不等式约束) AeqX=beq (线性等式约束) C(X)≤0 (非线性不等式约束条件) Ceq(X)=0(非线性等式约束) Lb ≤X ≤Ub (边界约束条件) 其中:x、b、beq、lb、ub是向量,A、Aeq为矩阵,C(x)、 Ceq(x)是返回向量的函数,f(x)为目标函数,f(x)、C(x)、 Ceq(x)可以是非线性函数.
4
优化算法及其分类
什么是优化算法? 专门用于求解优化模型的方法叫做优化算法,优化算法与优化模型有本 质区别。
优化算法可分为两大类 1 梯度类算法 牛顿法、二分法、共轭梯度法、梯度下降法、单纯形法等,该类算法也 称为局部优化算法,明显缺陷是局部优化。Matlab优化工具箱多用该类算法。 2 非梯度类算法 (1)遍历搜索法,在组合优化中称为穷举法,计算量大,适用于小规模计算 求解。 (2)随机搜索法,包括遗传算法、模拟退火算法、群类算法、禁忌搜索法等, 又称为现代优化算法,是一类全局最优算法,求解的准确性与时间长度、迭 代次数直接相关。
参数说明: fun为目标函数,它可用前面的方法定义; nonlcon的作用是通过接受的向量x来计算非线性不等 约束和非线性等式约束分别在x处的估计C和Ceq,通 过指定函数名或函数名句柄来使用,如: >>x = fmincon(@myfun,x0,A,b,Aeq,beq,lb,ub,@mycon), 先建立非线性约束函数,并保存为mycon.m: function [C,Ceq] = mycon(x) C=… % 计算x处的非线性不等约束的函数值. Ceq = … % 计算x处的非线性等式约束的函数值. lambda是Lagrange乘子,它体现哪一个约束有效. output输出优化信息; grad表示目标函数在x处的梯度; hessian表示目标函数在x处的Hessian值.
最优化模型与算法
内容概要
优化模型简介 优化模型分类 优化算法及其分类 Matlab优化工具箱 现代智能优化算法
2
优化模型简介——概念、基本形式
什么是优化?就是从各种方案中选取一个最好的。从数学角度看,优化 理论就是研究如何在状态空间中寻找到全局最优点。 一般的优化具有下面形式: min f (x1, x2, …, xn) s.t. g(x) 0,xD 其中x1, x2, …, xnΩ(即问题的可行域,代表问题参数的选择范 围),即minf (X),其中XΩ(矢量形式)。f(x)是决策问题的数学模型, 也是决策问题的目标函数,g(x) 0是决策问题的约束条件, X是决策问 题的决策变量,D是决策问题的定义域(可行域)。问题归结为求极值。 极值点非常多,需要找到全局最小点。 注:求问题的最大和最小是同一个问题,算法完全一样。 分布模型的参数估计问题是典型的优化问题,最大似然估计模型是典型 的优化模型。
3
优化模型分类
1.根据是否存在约束条件 有约束模型,无约束模型 注:有约束问题通常采用转换方法将有约束模型转换为无约束模型再 求解。
2.根据目标函数和约束条件表达式的性质
线性规划,非线性规划,二次规划,多目标规划等 注:最常见的优化模型为非线性规划模型。
3.根据决策变量的连续性
连续性优化模型,离散性优化模型(典型的组合优化问题,最短路) 注:两类模型在求解方法上有较大不同,本次讲解针对前一种。
fminbnd
只求解单变量问题 要求目标函数为连续函数
fminsearch
适用于简单优化问题 可求解单变量和多变量问题
fminunc
可求解复杂优化问题
无约束多元函数最小值函数fminsearch 调用格式
返回算法的终止 指示变量值
[xopt,fopt,exitflag]=fminsearch(fun,x0,options)