ESG微震监测系统简介
ESG微震监测系统简介

2008
8
望风岗煤矿
2008
9
千秋煤矿
2008
10
跃进煤矿
2008
11
石人沟铁矿
2008
12
大连理工大学
2008
13
锦屏一级水电站
2009
14
锦屏二级水电站
2009
15
新立煤矿
2009
16
大岗山水电站
2010
17
锦屏二级水电站
2010
18
石人沟铁矿
2010
19
神20
煤矿
2011
1
定位过程,如图2所示。
微震位置
西安科技大学
传感器 1
传感器 2
传感器 3
图2 微震定位原理
3、系统优势
与传统技术相比,微震定位监测具有高精度、远距离、动态、 三维、实时监测的特点,还可根据震源情况确定破裂尺度和性质。 微震监测技术的最大优点是可以给出煤岩体破坏的时间、位置并 使灾害提前预报。因此,技术和管理人员可以有较为充足的时间 采取措施,避免或极大限度地降低生命和财产损失。
2、系统监测原理
在采动的影响下,煤岩发生破坏或原有的地质缺陷被激活产 生错动,能量是以弹性波的形式释放并传播出去,微裂隙的产生 与扩展伴随有弹性波或应力波在周围岩体快速释放和传播,从而 产生微震,如图1所示。
微震
弹性波
煤岩体
图1 微震监测原理
如果在震源周围以一定的网度布置若干数量的传感器,组成 传感器三维几何阵列,当监测范围内出现微震时,传感器即可将 信号拾取,即可确定微震源的时空参数,达到定位的目的,微震
4、系统简介
微震(声发射)现象是 20 世纪 30 年代末由美国 L.阿伯特及 W.L.杜瓦尔发现的。上世纪 90 年代以来,伴随着信息通讯技术与 计算机技术的发展,微震监测技术得到了全面的改善,逐渐得到
微地震反演技术介绍

精细地质建模及油藏检测中正发挥越来越重要的作用。因此,发展物探技术不仅
是油田勘探的需求,更是油田开发的需求。
微地震技术概况
■
简
介
微地震监测是利用传感器监测储层 岩石破裂产生的地震信号进而研究岩石 破裂状况的一种地球物理方法。其工作 原理类似天然地震预测方法,即通过监 测天然地震信号确定震源位置及其性质。 从技术上分为无源驱动(Passive,或称 被动型)和有源驱动( Active ,或称主 动型)两类。目前在实际应用中主要应 用无源驱动的观测方法。 主要用途: 确定裂缝方位和倾角 裂缝位置 大小(长度、宽度和高度) 裂缝复杂程度
微地震技术需求
◆微地震定位技术
■
资料处理技术
● 震源-速度联合反演
由于微震是水力压裂引起的,因此速度结构实际上是随数据采集时间而变化的。为了减小这种变化 的影响。
Block等1994年提出利用微地震纵横波初至时间的震源—速度联合反演法.
联 合 反 演 思 路
震源-速度联合反演
1
2 2
速度模型反演
震源位置反演
微地震技术概况
技术类型 微地震监测 Tiltmeters Fracture Model RA Tracer Temp. Log Well Testing
主要的专业服务公司
法国Magnitude公司 美国MicroSeismic公司 美国Pinnacle公司
■裂缝监测技术对比
裂缝高度 裂缝长度 裂缝对称性 探测范围 Far Far Far Wellbore Wellbore Far
◆
微地震特点
弱、高、短
压裂使得岩石破裂时产生地震波。由于岩石破裂 规模有限, 释放出的能量很小, 诱生的地震波是很微 弱的, 震级在0级以下。 ●裂缝发射的微震频率很高, 频带为200 ~1 500 Hz, 其主频在700 Hz左右。 ●持续时间小于1s
千秋煤矿重大冲击地压事故调查报告

义马煤业集团股份有限公司千秋煤矿“11·3”重大冲击地压事故调查报告日前,《义马煤业集团股份有限公司千秋煤矿“11·3”重大冲击地压事故调查报告》已经国家煤矿安全监察局批复结案,现予发布。
2012年10月16日义马煤业集团股份有限公司千秋煤矿“11·3”重大冲击地压事故调查报告2011年11月3日19时18分,义马煤业集团股份有限公司(以下简称“义煤集团”)千秋煤矿发生重大冲击地压事故,造成10人死亡、64人受伤,直接经济损失2748.48万元。
事故发生后,党中央、国务院和国家安全监管总局、国家煤矿安监局及河南省委、省政府高度重视。
11月4日,温家宝总理和张德江副总理相继作出重要批示。
国家安全监管总局局长骆琳,时任国家安全监管总局副局长、国家煤矿安监局局长赵铁锤率有关司局负责人于11月4日凌晨赶往事故现场,指导协调抢险救援工作。
卢展工书记对救援及善后工作提出明确要求。
省长郭庚茂、副省长李克、陈雪枫和河南省有关部门主要负责人以及彭苏萍、张铁岗院士立即赶赴现场,成立了以郭庚茂省长为组长、陈雪枫副省长为副组长的事故抢险救援指挥部,义煤集团公司立即启动应急预案,调集抢险救援力量,成功开展了事故抢险救援工作。
根据《生产安全事故报告和调查处理条例》、《煤矿安全监察条例》等规定,2011年11月8日,河南煤矿安全监察局会同河南省工信厅、公安厅、监察厅、安监局、总工会、检察院等单位组成事故调查组,并聘请了以彭苏萍院士为组长的专家组协助事故调查。
经过现场勘察、调查取证、技术鉴定和综合分析,查明了事故原因和经过,认定了事故性质和责任,提出了对事故责任者的处理建议,并制定了防范措施。
现将事故调查情况报告如下:一、千秋煤矿基本情况(一)矿井概况千秋煤矿是义马煤业集团股份有限公司(上市公司名称:河南大有能源股份有限公司)骨干矿井之一,位于河南省义马市南1~2km,始建于1956年,1958年简易投产,矿井设计生产能力60万t/a,1960年达到设计能力,经过多次技术改造,2007年核定矿井生产能力为210万t/ a。
微震监测系统ppt课件

2
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
13
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
3、设备技术指标、特点
其他技术指标
现场布线支持串联、并联等多种网络拓扑结构
100米内可使用网线或光纤实时传输采样数据 80千米内采用光纤实时传输采样数据 远程通过手机GPRS无线邮件传送微震事件,
➢ 可进行震源定位校正与各种震源参数的分析,3D界面 实时、动态地显示产生的微震事件的时间与空间定位
17
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
3、设备技术指标、特点
设备特点(3)
➢ 可导入待监测范围内的边坡、矿体、隧道等几 何三维模型,提供可视化三维界面,实时、动态地 显示产生的微震事件的时空定位、震级与震源参数 等信息,并可查看历史事件的信息及实现监测信息 的动态演示。
实时发送故障信息
14
火灾袭来时要迅速疏散逃生,不可蜂 拥而出 或留恋 财物, 要当机 立断, 披上浸 湿的衣 服或裹 上湿毛 毯、湿 被褥勇 敢地冲 出去
3、设备技术指标、特点
设备特点(1)
➢ 高精度、高灵敏度单轴、三轴速度/加速度型传感器
➢ 数据采样率高、光纤网络传输、最大可级联2048道,
微震监测

微震监测技术在地下工程中的应用摘要:微震监测技术是一种高科技信息化的地下工程动力监测技术。
随着设备硬件技术、信号处理技术和数字化技术的快速发展,微震监测技术的应用在国际上也越来越多,目前国内出现了对该技术的应用研究热。
本文介绍了微震技术的特点及微震技术在地下工程安全监测中的作用。
根据微震监测技术在国内外的应用,概括了该技术在地下工程安全监测和防灾减灾监测的若干方面的应用。
0 引言微地震监测技术(Microseismic Monitoring Technique,简称MS)基于声发射学和地震学,现已发展成为一种新型的高科技监控技术。
它是通过观测、分析生产活动中产生的微小地震事件,来监测其对生产活动的影响、效果及地下状态的地球物理技术。
当地下岩石由于人为因素或自然因素发生破裂、移动时,产生一种微弱的地震波向周围传播,通过在破裂区周围的空间内布置多组检波器并实时采集微震数据,经过数据处理后,采用震动定位原理,可确定破裂发生的位置,并在三维空间上显示出来。
1 微震监测在工程中的应用历史[2]微地震监测技术在地下工程中的应用最早始于上世纪初的南非约翰内斯堡地区的金矿开采诱发的地震监测。
南非对微地震的早期监测是采用常用的地震监测仪器,20多年后,60年代大规模的矿山微震研究在南非各主要金矿山展开,并随之在l970-1980年代以来各采金矿山先后建立了矿山微震监测台站。
到上世纪中叶,在波兰、美国、前苏联、加拿大等采矿大国都先后开展了矿山地震研究,且随着电子技术和信号处理技术的发展,多通道的微地震监测技术也开始得到应用,最突出的有以美国斯波坎的Electrolab公司为代表研制和生产多通道微震监测技术和设备,并在美国的金属矿山得到应用,微震监测技术在非矿山行业之外的核能、地下油气存储库、地下隧道工程等领域也得到应用,如加拿大原子能地下实验室就采用了微震监测系统口。
近年来,利用微震监测技术进行地下灾害救助等方面,也得到应用。
微震监测技术

为诱发地震等。
iSeismograph™ 地 震 仪 能 与 强 大 的 Hyperion 地震处理及报 告软件完美结合。
监测地震及诱发地震
• 小,轻,坚固,低功耗 • 多通道24bit数字化分辨率 • 采样频率 1-1000SPS • 带宽 0.01-250HZ • 连续式和触发式记录 • 短周期/宽频带地震器 • 标准以太网TCP/IP遥远测技术 • 内置校准功能 • 内置固态储存 • Web界面 • 精确至1 μsec GPS时间
微震监测传感器 ESG公司提供全系列包括标准的和定制的地震检波 仪和加速 度计。这些坚固的传感器配以防水的不锈钢外壳,可 在恶 劣的环境下正常使用。可通过钻孔或板式安装配置单轴和 三轴传感器。传感器有不同的尺寸以满足不同的需求。
加速度计 加速度计使用在发生高频地震事件的环境中。有大量硬 岩 的地方通常配备单轴或三轴加速度计。微机电式传感器和 压电 式传感器可获得更高的灵敏性。 地震检波仪 地震检波仪使用在软岩或沙质环境中,因为它们可以 探测 到有低频成分的地震事件。还可通过配置强地动系统监测 大型的地震事件。 钻孔排列 在地下监测中,传感器可以以自定义的间距多级排列。
ESG 微震监测系统技术指标
产品概述:
微地震监测系统是通过监测岩体破裂产生的震动或其他物体的震动,对监测对象的破坏 状况、安全状况等作出评价,从而为预报和控制灾害提供依据的成套设备和技术。该监测系
统可广泛应用于矿山岩体破裂的定位监测,是预测预报顶板垮落、矿井突水、煤与瓦斯突出、 冲击地压等的有效工具,也可根据监测到的岩体破裂的范围和破裂程度,确定导水裂隙带高
有
17
功能
自动短期,中期岩爆
18
资料油田公司赴加拿大ESG公司技术交流团组工作小结.doc

****公司2019年6月赴加拿大ESG公司技术交流团组工作小结2019年9月,****管理局**项目部与**阳光杰科科技有限公司签署《呼图壁**微地震监测》技术服务合同,包括专用设备、软硬件系统、安装、调试、服务和应用的全过程,服务期限至2019年12月31日。
阳光杰科公司按照合同要求,完成了设备的安装及调试工作,整套系统运行正常。
由于微地震监测是一项新技术,为了确保系统正常运行,在合同期限内**阳光杰科科技有限公司与加拿大ESG (Engineering Seismology Group)合作,为**库提供处理技术服务,此后将该技术全部移交****公司,并保证**公司可以独立处理分析微地震信号,获得的解释成果为呼图壁**安全生产运行提供有力保障。
应加拿大ESG公司邀请,****公司经**公司批准,由****公司**一厂王明锋带队,****公司开发处罗刚、生产运行处张金生、基本建设工程处蒋程彬、**开发研究院苏航、开发公司赵光辉等6人参加,于2019年6月7日出境,前往加拿大金斯顿,于2019年6月21日顺利返回**。
在加拿大期间,主要开展了如下技术交流1、微地震监测的方法、原理;2、微地震监测技术应用;3、微地震监测系统可行性论证方法;4、微地震监测系统运行评价;5、微地震资料处理和解释;6、系统操作及日常维护;7、设备故障诊断及处理;8、监测技术在****田开发中的应用实例;9、现场参观ESG公司设备仪器生产车间。
通过本次技术交流,对微地震监测系统有了更深一步的认识,该系统技术成熟、应用广泛、操作简便、界面清晰,对于****藏安全运行有着积极的作用。
1、技术成熟、应用广泛微震监测系统(Micro-seismic Monitoring System, MMS),开发于上世纪七十年代初期,伴随着信息技术、计算技术的发展和计算机水平的提高而日趋成熟,主要是利用声学、地震学和地球物理学原理和计算机强大的计算功能来实现微震事件的精确定位和级别大小的确定。
@2008-岩爆及其判据和防治

第27卷 第10期岩石力学与工程学报 V ol.27 No.102008年10月 Chinese Journal of Rock Mechanics and Engineering Oct .,2008收稿日期:2008–06–10;修回日期:2008–07–15作者简介:张镜剑(1931–),男,1956年毕业于清华大学水利水电工程系水工结构研究生班,现任教授,主要从事水工结构和岩土工程方面的教学与研究工作。
E-mail :zhang_jing_jian@岩爆及其判据和防治张镜剑1,傅冰骏2(1. 华北水利水电学院 水利工程系,河南 郑州 450011;2. 中国科学院 地质与地球物理研究所,北京 100029)摘要:岩爆研究可以追溯到18世纪上半叶。
迄今为止,虽然诸多科研成果已经问世,但岩爆仍然是一个世界性难题。
作为一般性的论述,首先提供一些背景材料,涉及到国内外一些工程实例、研究方法等。
然后,叙述国际范围内常用的一些岩爆判据和岩爆分级方法;论述岩爆的预测和预报;对岩爆防治,包括应力解除钻孔、注水湿化和锚固等方法进行综述。
最后,对锦屏二级水电站辅助洞发生的岩爆实例进行重点介绍,并在综合已有资料的基础上对岩爆判据、分级及防治等提出意见和建议。
关键词:爆炸力学;岩爆判据;岩爆分级;岩爆防治中图分类号:O 38;TU 45 文献标识码:A 文章编号:1000–6915(2008)10–2034–09ROCKBURST AND ITS CRITERIA AND CONTROLZHANG Jingjian 1,FU Bingjun 2(1. Department of Water Conservancy Engineering ,North China Institute of Water Conservancy and Hydroelectric Power ,Zhengzhou ,Henan 450011,China ;2. Institute of Geology and Geophysics ,Chinese Academy of Sciences ,Beijing 100029,China )Abstract :The research on rockburst could be traced back to the first half of the 18th century. Since then ,although a great deal of scientific achievements have been published ,this topic is still an outstanding problem worldwide so far. As an overall review ,this paper presents first some background information relating case histories ,research methodologies etc. at home and abroad. And then ,the criteria and classification of rockburst commonly used at home and abroad are described. The forecast and prediction of rockburst phenomena are discussed too. After that ,the rockburst control ,including stress relief drilling ,water injecting ,anchoring etc. are overviewed. Finally ,a key case history related to the rockburst phenomena occurring in the auxiliary adit of the Jinping II Hydropower Station is described emphatically. On the basis of analyzing the previous information ,some practical methods for classification ,prevention and mitigation of rockburst are proposed.Key words :explosion mechanics ;rockburst criteria ;classification of rockburst ;rockburst control1 引 言在深埋、硬脆性围岩的地下洞室或隧洞(隧道)中,有可能产生岩爆这样一种特殊的岩石力学现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
该微震监测系统由三部分组成,分别为:主机分析系统、数 据采集仪分站以及传感器,如图 3 所示。
4、系统简介
微震(声发射)现象是 20 世纪 30 年代末由美国 L.阿伯特及 W.L.杜瓦尔发现的。上世纪 90 年代以来,伴随着信息通讯技术与 计算机技术的发展,微震监测技术得到了全面的改善,逐渐得到
2
西安科技大学
了各领域的重视并进行了大量的研究与应用工作。目前,世界各 国逐渐把微震技术作为一种监测预警手段。如:德国、波兰、南 非、美国、英国、加拿大及澳大利亚等主要采矿国家,取得了较 好的成果。
21
朱集煤矿
2011
山东济南 湖南郴州 安徽淮南 安徽淮南 河南义马 河南义马 河北唐山 辽宁大连 四川雅砻江 四川雅砻江 黑龙江鹤岗 四川大渡河 四川雅砻江 河北唐山 新疆乌鲁木齐 新疆焦煤集团 安徽淮南
西安科技大学
突水监测 岩爆监测 煤与瓦斯突出 煤与瓦斯突出 冲击地压 冲击地压 岩爆监测 微震监测实验设备 边坡监测 岩爆监测 冲击地压 边坡监测 隧道岩爆监测(扩容) 边坡及岩爆监测(扩容) 冲击地压 煤与瓦斯突出 冲击地压
5
系统监测到的部分成果如下:
西安科技大学
图 5 巷道掘进断层构造带活化分布情况
图 6 工作面顶底板裂隙带高度分布情况 单位名称:西安科技大学 联系人: 刘超 手机:15289368370 2012 年 6 月 28 日
6
1
定位过程,如图2所示。
微震位置
西安科技大学
传感器 1
传感器 2
传感器 3
图2 微震定位原理
3、系统优势
与传统技术相比,微震定位监测具有高精度、远距离、动态、 三维、实时监测的特点,还可根据震源情况确定破裂尺度和性质。 微震监测技术的最大优点是可以给出煤岩体破坏的时间、位置并 使灾害提前预报。因此,技术和管理人员可以有较为充足的时间 采取措施,避免或极大限度地降低生命和财产损失。
2、系统监测原理
在采动的影响下,煤岩发生破坏或原有的地质缺陷被激活产 生错动,能量是以弹性波的形式释放并传播出去,微裂隙的产生 与扩展伴随有弹性波或应力波在周围岩体快速释放和传播,从而 产生微震,如图1所示。
微震Βιβλιοθήκη 弹性波煤岩体图1 微震监测原理
如果在震源周围以一定的网度布置若干数量的传感器,组成 传感器三维几何阵列,当监测范围内出现微震时,传感器即可将 信号拾取,即可确定微震源的时空参数,达到定位的目的,微震
微震监测系统
(Microseismic Monitoring System)
西安科技大学能源学院
中国·西安
西安科技大学
1、系统功能
微震监测系统主要用于煤矿动力灾害的分析、监测及预警, 包括:瓦斯突出及抽放、突(透)水、冲击地压、巷道围岩稳定 性分析、水力压裂与顶板断顶裂缝效果评价、注浆堵水帷幕危险 性评价等。
表 1 ESG 微震监测系统在国内的应用情况
套数 单位名称 时间
地址
监测目的
1
汕头石油
2000
2
凡口铅锌矿
2003
3
东北大学
2005
4
北京科技大学
2006
广东汕头 广东韶关 辽宁沈阳
北京
水压致裂 岩爆监测 微震及声发射实验设备 微震监测实验设备
4
5
张马屯铁矿
2006
6
柿竹园铅锌矿
2007
7
新庄孜煤矿
交换机 GPRS
专家系统
监控中心
决策系统
传感器
采集仪
主机系统 操作主机
图 3 系统组成及其网络结构
3
西安科技大学
5、系统应用案例
ESG 微震监测系统在全球已应用 200 多套,国内应用超过 20 多套,如图 4 所示。
北美
中国
图 4 加拿大 ESG 微震监测系统全球市场分布 近年来,ESG 微震监测系统在国内各个工程领域获得了广泛 的应用,尤其是用于煤矿动力灾害的监测预警方面,并得到了大 力推广,如表 1 所示。
2008
8
望风岗煤矿
2008
9
千秋煤矿
2008
10
跃进煤矿
2008
11
石人沟铁矿
2008
12
大连理工大学
2008
13
锦屏一级水电站
2009
14
锦屏二级水电站
2009
15
新立煤矿
2009
16
大岗山水电站
2010
17
锦屏二级水电站
2010
18
石人沟铁矿
2010
19
神华乌冬煤矿
2011
艾维尔沟
20
煤矿
2011