储氢合金及应用
储氢合金储氢量

储氢合金储氢量
储氢合金是一种能够吸收和释放氢气的材料,被广泛应用于氢能源领域。
其储氢量是衡量其性能的重要指标之一。
储氢合金的储氢量取决于其晶体结构、化学成分、温度和压力等因素。
首先,储氢合金的晶体结构对储氢量有着重要影响。
一般来说,具有更大孔隙结构的晶体结构会有更高的储氢量。
这是因为更大的孔隙可以容纳更多的氢气分子,从而提高储氢效率。
其次,化学成分也是影响储氢量的重要因素。
不同的合金成分会对储氢性能产生显著影响。
例如,一些过渡金属合金能够形成氢化物,从而增加储氢量。
同时,添加催化剂等元素也能够提高储氢合金的储氢性能。
此外,温度和压力也是影响储氢量的重要因素。
一般来说,较低的温度和较高的压力有利于提高储氢合金的储氢量。
这是因为低温和高压能够促进氢气与储氢合金之间的吸附和脱附过程。
因此,要提高储氢合金的储氢量,可以通过优化合金的晶体结构和化学成分,以及控制温度和压力等手段来实现。
【试卷题目】
1.什么是储氢合金?
2.影响储氢合金储氢量的因素有哪些?
3.如何提高储氢合金的储氢量?。
镁基储氢合金

镁基储氢合金什么是镁基储氢合金?镁基储氢合金是一种将氢气吸附在镁基合金中储存的新型材料。
镁基合金由镁和其他金属或非金属元素混合而成,能够以化学反应的形式吸附和释放氢气。
镁基储氢合金具有高储氢容量、可逆吸附和释放氢气、低成本等优点,因此被广泛研究和应用于储氢领域。
镁基储氢合金的优势1. 高储氢容量镁基储氢合金具有高储氢容量的特点,可以在较小的体积内存储大量的氢气。
这对于氢能源的应用非常有利,可以有效提高能源的储存密度,降低储氢系统的体积和重量。
2. 可逆吸附和释放氢气镁基储氢合金具有可逆吸附和释放氢气的能力。
在一定的温度和压力条件下,合金可以从气相中吸附氢气并形成化合物。
当需要释放氢气时,可以通过控制温度和压力来使合金释放氢气。
这种可逆性使得镁基储氢合金具有很高的重复使用性和可靠性。
3. 低成本相比于其他储氢材料,镁基储氢合金具有低成本的优势。
镁是地壳中丰富存在的元素,而且成本相对较低。
合金的制备过程也相对简单,可以采用常规的冶金工艺进行生产,不需要额外的昂贵设备和技术。
4. 环保可持续镁基储氢合金在储氢和释放氢气的过程中没有任何污染物的排放,属于环保可持续的能源储存方式。
与燃烧化石燃料释放大量CO2等温室气体相比,镁基储氢合金可以有效减少对环境的影响。
镁基储氢合金的应用1. 氢能源储存镁基储氢合金可以作为氢能源储存的重要材料。
通过将合金与氢气反应生成化合物的方式,可以将氢气以可逆的形式储存起来。
储氢系统可以与燃料电池等氢能源装置配合使用,提供持久的、可再生的能源供应。
2. 汽车工业镁基储氢合金可以应用于汽车工业,用于汽车的燃料储存和传递。
目前,氢燃料电池汽车已经成为一种重要的可持续交通方式。
镁基储氢合金可以作为汽车燃料储存系统的关键部件,实现氢能源的高效利用。
3. 电力领域镁基储氢合金可以用于电力领域的能源储存和调节。
通过将合金与氢气反应储存,可以在需要时释放氢气,生成电能供应给电力系统。
这种储能方式可以有效平衡电力系统的供需关系,提高电网的稳定性和可靠性。
储氢合金的名词解释

储氢合金的名词解释储氢合金是一种用于储存和释放氢气的材料。
它是由一种或多种金属与氢气相结合形成的金属-氢的固体溶液。
储氢合金是一项重要的能源储存技术,能够解决氢气作为一种清洁能源的储存和运输问题,被广泛应用于氢能源行业、航空航天领域和可再生能源等领域。
1. 储氢合金的基本原理储氢合金的基本原理是利用金属与氢气之间的物理和化学相互作用来实现氢气的储存和释放。
在储氢合金中,金属作为吸附剂,扮演着吸附和储存氢气的角色。
当储氢合金暴露在氢气环境中时,氢气会进入金属晶格并与金属原子相结合,形成金属-氢化物化合物。
当需要释放氢气时,通过改变温度、压力或其他条件,可以使金属-氢化物化合物分解,释放出储存的氢气。
2. 储氢合金的优势储氢合金在能源储存领域具有很多优势。
首先,与传统的气体或液态氢储存方式相比,储氢合金可以以更高的体积和质量比存储更多的氢气。
其次,储氢合金具有较高的储氢容量和储氢速率,能够满足高强度和长时间的氢气需求。
此外,储氢合金具有良好的循环稳定性和循环寿命,能够多次重复吸附和释放氢气而不损失性能。
最重要的是,储氢合金是一种可再生的储氢材料,可以通过简单的处理方法,如升温、降压等,使其重新恢复吸附氢气能力。
3. 储氢合金的应用领域储氢合金在多个领域都有广泛的应用。
在氢能源领域,储氢合金被用作储存和释放氢气的媒介,为氢燃料电池、氢气发动机等提供持续稳定的氢气供应。
在航空航天领域,储氢合金被应用于火箭推进系统和宇航器动力系统,可以提供高能量密度和高可靠性的氢气储存解决方案。
在可再生能源领域,储氢合金可以将太阳能和风能等不稳定的可再生能源转化为可储存和可输送的氢气,提供可靠的能源供应。
4. 储氢合金的挑战与发展方向储氢合金作为一种新兴的能源储存技术,目前还存在一些挑战。
首先,储氢合金的设计与制备需要更深入的研究和优化,以获得更高的储氢容量和释氢速率。
其次,储氢合金的储氢和释氢过程中可能伴随着金属的结构变化和疲劳损伤,影响储氢合金的循环稳定性和使用寿命。
ab2储氢合金密度

ab2储氢合金密度ab2储氢合金是一种具有高储氢容量和较低储氢温度的材料,它在储氢领域具有广泛的应用前景。
本文将从储氢合金的定义、储氢性能、制备方法以及应用领域等方面对ab2储氢合金进行详细介绍。
第一部分:储氢合金的定义储氢合金是指能够将氢气吸附储存在其晶格中的金属合金。
ab2储氢合金是指由A、B两种金属组成的合金,其中金属A通常为钛或锆,金属B通常为镍、铁、钴等。
这种合金具有较高的储氢容量和较低的储氢温度,因此被广泛研究和应用于储氢领域。
第二部分:储氢性能ab2储氢合金具有优异的储氢性能,其储氢容量可达到理论值的70%以上。
这是因为合金晶格中的金属A和金属B之间存在着较强的相互作用力,使得氢气可以被吸附并储存在晶格空隙中。
同时,ab2储氢合金的储氢温度较低,通常在室温下就可以实现储氢。
这使得ab2储氢合金成为一种理想的储氢材料。
第三部分:制备方法ab2储氢合金的制备方法主要有机械合金化法和电化学沉积法两种。
机械合金化法是将金属A和金属B的粉末按一定比例混合,并在高温下进行球磨,使其发生固态反应形成储氢合金。
电化学沉积法则是通过电化学方法将金属A和金属B依次沉积在电极上,并在适当的条件下使其发生反应生成储氢合金。
这两种制备方法都能够得到高质量的ab2储氢合金。
第四部分:应用领域ab2储氢合金在储氢领域具有广泛的应用前景。
首先,在新能源汽车领域,ab2储氢合金可以作为储氢材料用于制备燃料电池汽车的储氢罐,实现氢能源的高效利用。
其次,在能源储存领域,ab2储氢合金可以作为储氢材料用于储存和释放电能,实现能源的高效转换和利用。
此外,ab2储氢合金还可以应用于氢能源站的储氢设备、航空航天领域的燃料储存等。
ab2储氢合金作为一种具有高储氢容量和较低储氢温度的材料,在储氢领域具有重要的应用价值。
随着科学技术的进步和应用需求的增加,相信ab2储氢合金将会在未来得到更广泛的研究和应用。
储氢材料的贮氢原理及应用

储氢材料的贮氢原理及应用1. 前言随着环境保护意识的不断增强以及对可再生能源的需求日益增长,储氢技术得到了广泛关注。
储氢材料作为储氢技术领域的重要组成部分,其贮氢原理以及应用前景备受关注。
本文将介绍储氢材料的贮氢原理,并探讨其在能源存储、氢能源应用等方面的应用。
2. 储氢材料的贮氢原理储氢材料是指能够在相对较低压力下吸纳氢气并在适当条件下释放氢气的材料。
其贮氢原理主要有以下两种:2.1 吸附贮氢吸附贮氢是一种通过物理吸附的方式将氢气储存在材料中的方法。
储氢材料通过其较大的比表面积和适当的孔隙结构,使氢气分子在作用力的驱使下被吸附在其表面或孔隙中。
常见的吸附贮氢材料包括活性炭、金属有机框架材料(MOFs)等。
吸附贮氢具有储氢容量大、吸附-解吸过程迅速等优点,但同时也存在充放氢速率较慢、操作条件要求较高等问题。
2.2 吸氢合金贮氢吸氢合金贮氢是一种通过金属与氢气的化学反应实现贮氢的方法。
一些金属和合金在特定的温度和压力下能够与氢气发生吸氢反应,形成吸氢合金。
典型的吸氢合金包括钛镍合金、镁铝合金等。
吸氢合金贮氢具有充放氢速度快、充氢压力较低等优点,但同时也存在吸氢热效应大、吸氢合金稳定性差等问题。
3. 储氢材料的应用储氢材料不仅在能源存储领域具有广阔的应用前景,还在氢能源应用、氢燃料电池等方面有着重要的应用价值。
以下是储氢材料的一些主要应用:3.1 能源存储储氢材料可以作为一种高容量、高效率的能源储存手段,将可再生能源转化为氢气储存起来。
在能源需求高峰期或不稳定的能源供应情况下,释放储存在储氢材料中的氢气,为能源供应提供支持。
这种能源存储方式可以缓解能源供需矛盾,提高能源利用效率。
3.2 氢能源应用储氢材料可以提供氢气作为一种清洁能源用于各种氢能源应用。
例如,将储存在储氢材料中的氢气用于燃料电池发电,实现清洁能源的利用。
此外,氢气还可用于燃料电池汽车、氢动力机械等领域,替代传统石油能源,减少环境污染。
储氢合金

储氢合金由于石油和煤炭的储量有限,而且在使用过程中会带来环境污染等问题,使氢能作为新的清洁燃料成为研究热点。
在氢能利用过程中,氢的储运是重要环节,而储氢合金顾名思义就是用于储运氢的。
储氢合金是由两种特定金属构成的合金,其中一种可以大量吸氢,形成稳定的氢化物,而另一种金属虽然与氢的亲和力小,但氢很容易在其中移动。
Mg、Ca、Ti、Zr、Y和La等属于第一种金属,控制储氢量;Fe、Co、Ni、Cr、Cu和Zn等属于第二种金属,控制释放氢的可逆性。
通过合理配制,调节合金的吸放氢性能,制得在室温下能够可逆吸放氢的较理想的储氢材料。
别看储氢合金的金属原子之间缝隙不大,但储氢本领却比氢气瓶的本领可大多了,具体来说,相当于储氢钢瓶重量1/3的储氢合金,其体积不到钢瓶体积的1/10,但储氢量却是相同温度和压力条件下气态氢的1000倍。
采用储氢合金来储氢,不仅具有储氢量大、能耗低,工作压力低、使用方便的特点,而且可免去庞大的钢制容器,从而使存储和运输方便而且安全。
目前储氢合金主要包括有钛系、锆系、铁系及稀土系储氢合金。
那么这种合金又是如何发展得来的呢?20世纪60年代,材料王国里出现了能储存氢的金属和合金,统称为储氢合金(hydrogen storage metal),这些金属或合金具有很强的捕捉氢的能力,它可以在一定的温度和压力条件下,氢分子在合金(或金属)中先分解成单个的原子,而这些氢原子便“见缝插针”般地进入合金原子之间的缝隙中,并与合金进行化学反应生成金属氢化物(metal hydrides),外在表现为大量“吸收”氢气,同时放出大量热量。
而当对这些金属氢化物进行加热时,它们又会发生分解反应,氢原子又能结合成氢分子释放出来,而且伴随有明显的吸热效应。
20世纪70年代,LaNi5和Mg2Ni在荷兰Philips与美国Brookhaven 实验室相继被发现具有可逆的吸放氢能力并伴随的一系列物理化学机理变化。
1973年起,LaNi5开始被试图作为二次电池负极材料采用,但由于其循环性能较差,未能成功。
储氢合金应用的原理

储氢合金应用的原理1. 储氢合金的概述储氢合金是一种可用于储存氢气的材料,其具有高储氢密度、稳定性和可逆性等优势。
储氢合金广泛应用于氢能源领域,可以用于氢燃料电池车辆、储能系统以及化工、航天等领域。
2. 储氢合金的工作原理储氢合金的工作原理基于吸氢和解氢的过程。
当氢气与储氢合金接触时,氢分子会进入合金的晶格中,与合金中的金属原子发生相互作用,形成金属氢化物。
此时,储氢合金中氢的储存量会增加。
3. 储氢合金的优点储氢合金相对于其他氢储存材料具有以下优点:•高储氢密度:储氢合金的储氢密度较高,可以存储更多的氢气。
•快速充放氢速度:储氢合金具有较高的吸氢和解氢速度,在储氢和释放氢气时具有较好的响应速度。
•安全稳定:储氢合金对氢气的吸附和解吸是可逆的过程,同时具有较高的热稳定性,不易发生爆炸或泄漏等安全问题。
4. 储氢合金的应用领域储氢合金在氢能源领域有着广泛的应用,包括但不限于以下几个方面:4.1 氢燃料电池车辆储氢合金可以作为氢燃料电池车辆的氢气储存材料。
在氢燃料电池车辆中,储氢合金可以存储大量的氢气,在需要时将其释放给燃料电池产生电能,驱动电动机运转。
4.2 氢能储能系统储氢合金还可以应用于氢能储能系统中。
在这种系统中,储氢合金可以存储超过电池容量的电能,当需要释放电能时,储氢合金可以通过放出氢气来驱动发电机发电,提供能源给电网或负载。
4.3 化工和航天领域储氢合金在化工和航天领域也有着重要的应用。
在化工领域,储氢合金可以用于氢气的存储和运输,提供给化生产过程中的需要。
在航天领域,储氢合金可以用于航天器中的气体储存和供应,满足航天器在太空中的气体需求。
5. 储氢合金的发展前景随着氢能源的发展和不断成熟的储氢合金技术,储氢合金在未来将有着广阔的应用前景。
储氢合金可以提高氢能源的储存密度和使用效率,为氢能源的推广和应用提供支持。
6. 结论储氢合金应用的原理基于吸氢和解氢的过程,具有高储氢密度、快速充放氢速度以及安全稳定等优点。
储氢合金

储氢合金材料何洋 材料科学与工程一班 200911102016摘要:由于石油等资源有限以及保护环境的要求,改变能源的构成已成为迫切的问题。
作为绿色能源的氢能登上历史舞台,本文介绍了金属储氢的相关原理,以及储氢材料的应用范围。
关键词:储氢合金;原理;应用氢是一种非常重要的二次能源。
它的资源丰富;发热值高,燃烧1kg 氢可产生142120kJ 的热量,比任何一种化学燃料的发热值都高;氢燃烧后生成水,不污染环境。
因此,氢能是未来能源最佳选择之一。
氢气是可再生和最清洁的气体能源,这使关于氢能的研究更具重要性。
氢的利用主要包括氢的生产、储存和运输、应用三个方面。
而氢的储存是其中的关键。
氢气储存技术的滞后,限制了氢的大规模应用,特别是交通工具上的应用。
而后者要求系统储氢能力必须达到6.5wt%(重量能量密度)。
据报道,美国能源部所有氢能研究经费中有50%用于氢气的储存。
氢能作为一种新型的能量密度高的绿色能源,正引起世界各国的重视。
储存技术是氢能利用的关键。
储氢材料是当今研究的重点课题之一,也是氢的储存和输送过程中的重要载体那么什么是储氢合金呢?储氢合金——一种新型合金,一定条件下能吸收氢气,一定条件能放出氢气。
虽然可将氢气存贮于钢瓶中,但这种方法有一定危险,而且贮氢量小(15MPa ,氢气重量尚不到钢瓶重量的1/100),使用也不方便。
液态氢比气态氢的密度高许多倍,固然少占容器空间,但是氢气的液化温度是-253℃,为了使氢保持液态,还必须有极好的绝热保护,绝热层的体积和重量往往与贮箱相当。
大型运载火箭使用液氢作为燃料,液氧作为氧化剂,其存贮装置占去整个火箭一半以上的空间。
自20世纪60年代中期发现LaNi5和FeTi 等金属间化合物的可逆储氢作用以来,储氢合金及其应用研究得到迅速发展。
储氢合金能以金属氢化物的形式吸收氢,是一种安全、经济而有效的储氢方法。
金属氢化物不仅具有储氢特性,而且具有将化学能与热能或机械能相互转化的机能,从而能利用反应过程中的焓变开发热能的化学储存与输送,有效利月各种废热形式的低质热源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等
• 储氢量一般在1-3wt.%
非金属储氢材料: • 目前主要包括碳系材料(碳纳米管、石墨纳米纤维、高比 表面积活性炭等)、玻璃微球等非金属材料 • 均属于物理吸附型储氢材料
• 利用极大的活性比表面积,在一定的温度和压力下,吸取 大量氢气,当提高温度或减压时,放出氢气
• 吸氢量一般均大于金属储氢材料,可达4-10wt.%
物储存,复杂氢化物储存等
各种方法的储氢能力
休息15分钟
输氢技术: • 氢有多种多样的输送方式,可根据地点、用途、用氢方式、 距离、用量、用户分布、输送成本等因素综合考虑输送方 案
• 气体氢输送,可采用管道、车(船)载高压钢瓶等方式, 前者效率高,建造成本高,后者灵活性大
• 液氢输送,可采用罐车、油轮或管道等方式,效率高,但
• 氢的燃烧性能好,点燃快,可燃范围宽,燃点高,燃烧速
度快
• 在所有气体中,氢气的导热性最好,比大多数气体的导热 系数高10倍,是极好的传热载体
• 用途广泛,可直接用作发动机燃料、燃料电池燃料、化工 原料等
• 氢可以以气态、液态或固态的金属氢化物形式存在,能适 应储运及各种应用环境的不同要求 • 可作为储能介质,经济和有效地输送能源,作为二次能源, 氢的输送与储存损失比电力小
系统复杂,成本高
• 氢化物输送,可用桶或罐装金属氢化物,灵活、安全和经 济
综合输氢方案示意图
氢的利用技术: • 工业应用,化工(合成氨、合成甲醇、煤液化、石油精制 等),冶金(直接还原金属、光亮热处理等),半导体 (制取多晶硅、外延生长等),玻璃,化肥等 • 交通运输,氢发动机、氢能汽车等
• 航天工业,液氢液氧火箭发动机
金属储氢材料:
• 氢几乎可以同元素周期表中的各种金属元素反应,生成金 属氢化物 • 但并不是所有金属氢化物都能做为储氢材料 • 只有那些能在温和条件下大量可逆吸放氢的金属或合金氢
化物才能作为储氢材料使用
• 目前已开发的具有实用价值的金属氢化物:稀土系AB5型; 锆、钛系AB2型;钛系AB型;镁系A2B型;钒系固溶体型
• 氢发电,氢氧燃料电池(固定电站、便携式电源、动力电 源)
• 家庭应用,Ni-MH电池,清洁燃料等
家庭用氢前景图
复合能源系统:
• 氢作为储能介质 → 太阳能-氢能系统
• 阳光充足的夏季和白天 → 光发电电解水制氢,通过储氢 材料储氢,太阳能 → 转化成氢的化学能 • 夜晚和冬季 → 利用氢运行燃料电池,或氢气的其它利用
21世纪能源结构体系
(2)氢能系统与氢能技术
氢能系统: • 一个有机联系的系统工程 • 包括制氢(hydrogen production)、氢储存和输运 (hydrogen storage and transportation)、氢的利用
(hydrogen utilization)三大关键系统
• 每个系统都在发展各自的相应技术
• 氢能是一种理想的二次能源
氢能的优点: • 氢是自然界中存在最普遍的元素,它构成宇宙质量的3/4, 在地球上主要以化合物形式存在于水中 • 从水中可分解出氢,氢燃烧反应又生成水,所以是取之不
尽、用之不竭的能源
• 氢本身无毒,氢燃烧反应不会像矿物燃料那样产生大量烟 尘和有害气体 → 清洁能源
• 氢的发热值在所有化石燃料、化工燃料和生物燃料中最高, (1.21-1.43)X105kJ/kg•H2,是汽油发热值的3倍,焦炭发热 值的4.5倍
有机液体储氢材料: • 苯、甲苯等有机液体,需要合适的催化剂作用 • 在较低压力和相对高的温度下 → 可作为氢载体(与H2发
生可逆反应)→ 储存和输送氢
• 储氢量可达7wt.%左右
• 储氢材料仅有30年的发展历史 → 新型功能材料 • 发展迅速,受到各国政府的高度重视
• 美国能源部用于氢储存方面的研究经费约占氢能研究经费 的50%
• 日本政府制定的“新阳光计划”中,储氢技术是氢能发电
计划中的三大内容之一
• 我国早在“八五”国家863计划中就把储氢材料列为重点 研究项目,之后又在国家973计划中列项支持
制氢技术:
• 化石燃料制氢,以煤、石油或天然气等作原料制氢,产量 大,效率高,但伴有大量CO2排放
• 水分解制氢,可通过电解、热化学循环分解、光化学分解
等方式进行,氢的纯度高,效率低,成本高
• 生物质制氢,包括生物质汽化或裂解制氢和微生物制氢, 前者效率高但氢气纯度低,后者规模和效率有待提高
储氢技术: • 氢气储存有物理和化学两大类方法 • 物理储氢:液氢储存,高压氢气储存,活性炭吸附储存, 碳纤维和碳纳米管储存,玻璃微球储存等 • 化学储氢:金属氢化物储存,有机液态氢化物储存,无机
太阳能-氢能系统的结构概念图
(3)储氢材料
储氢材料:
• 能在适当的温度和压力下,大量可逆地吸收、释放氢的材 料 • 储氢材料可大致地分为三大类:金属储氢材料、非金属储 氢材料、有机液体储氢材料 • 是氢能系统中作为氢储存与输送载体的重要候选材料 → 成为氢能技术开发中的关键材料之一 • 储氢材料的研究开发与应用已成为国内外的热门研究课题
氢能等 → 环境友好,取之不尽
• 清洁且可再生能源的开发和利用 → 国家经济可持续发展 的重要保障
(1)氢能
• 氢能 → 以氢及其同位素为主导的反应中(或在状态变化
过程中)所释放的能量
• 氢与氧化剂发生化学反应放出燃烧热或通过燃烧反应得化 学能 → 氢发动机、燃料电池等
• 氢的热核反应放出热核能或聚变能 → 氢弹、可控核聚变 反应
• 氢能源的开发引起各国政府的极大重视 • 上世纪90年代起,美、日、德等发达国家均制定了系统的 氢能研究与发展规划 • 中国、印度、墨西哥等发展中国家也有相应的规划考虑
• 短期目标 → 燃料电池汽车的商业化,在20年左右时间内, 使氢能在总能源系统中占有一定份额
• 长期目标 → 在化石能源枯竭时,承担起主体能源的角色
二、储氢合金及应用
1、氢能与储氢材料
• 能源、环境、可持续发展 → 当今社会发展的三大主题
•
• •
能源 → 人类活动的源泉
清洁能源 → 人类社会健康发展的基础 氢能(Hydrogen energy) → 面向21世纪的理想清洁能 源之一
• 化石能源——煤、石油、天然气 → 环境污染,资源渐趋 枯竭 • 可再生能源——太阳能、风能、海洋能、地热能、生物能、
• 随着科学技术的发展,氢能的应用不是遥远的未来,未来 的经济可望实现氢经济 • 氢能转化为动力 → 动力产生电能而走向家家户户 → 成为
人类今后长期依靠的一种通用燃料
• 与电力一起,成为21世纪能源体系的两大支柱
一次能源
二次能源
最终用户
氢 气 太阳能 风 能
汽车、飞机、船舶
海洋能
地热能 电 力 工业、农业、民生