固体物理答案第六章1
黄昆版固体物理学课后答案解析答案

《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯= (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r 346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
固体物理答案陆栋.pdf

《固体物理学》习题解答( 仅供参考 )参加编辑学生柯宏伟(第一章),李琴(第二章),王雯(第三章),陈志心(第四章),朱燕(第五章),肖骁(第六章),秦丽丽(第七章)指导教师黄新堂华中师范大学物理科学与技术学院2003级2006 年 6 月第一章晶体结构1.氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为 a。
解:氯化钠与金刚石型结构都是复式格子。
氯化钠的基元为一个 Na+和一个 Cl-组成的正负离子对。
金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。
由于 NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:⎧⎪a1=a2( j + k)⎪⎪⎨a 2=a2( k + i)⎪⎪⎪a 3=a ( i +j)⎩ 2相应的晶胞基矢都为:⎧a =a i,⎪⎨b =a j,⎪⎩c =a k.2.六角密集结构可取四个原胞基矢a1, a 2,a 3与 a4,如图所示。
试写出O'A1A3、A1 A3 B3 B1、 A2 B2 B5 A5、 A1 A2 A3 A4 A5 A6这四个晶面所属晶面族的晶面指数(h k l m)。
解:(1).对于O'A1A3面,其在四个原胞基矢上的截矩分别为:1,1,- 1 ,1。
所以,其晶面2( )指数为。
(2).对于A1A3B3B1面,其在四个原胞基矢上的截矩分别为:1,1,-12,∞。
所以,其晶面指数为(1120)。
(3).对于A2B2B5A5面,其在四个原胞基矢上的截矩分别为:1,-1,∞,∞。
1所以,其晶面指数为 (1 100)。
(4).对于 A 1 A 2 A 3 A 4 A 5 A 6 面,其在四个原胞基矢上的截矩分别为:∞ ,∞ ,∞ ,1。
所以, 其晶面指数为 (0001) 。
3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为:简立方: π6 ;体心立方: 83π;面心立方: 62π ;六角密集: 62π ;金刚石:3π 。
固体物理参考答案(前七章)

固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。
黄昆固体物理课后习题答案6

黄昆固体物理课后习题答案6第六章⾃由电⼦论和电⼦的输运性质思考题1.如何理解电⼦分布函数)(E f 的物理意义是: 能量为E 的⼀个量⼦态被电⼦所占据的平均⼏率[解答]⾦属中的价电⼦遵从费密-狄拉克统计分布, 温度为T 时, 分布在能级E 上的电⼦数⽬1/)(+=-Tk E E BF e gn ,g 为简并度, 即能级E 包含的量⼦态数⽬. 显然, 电⼦分布函数11)(/)(+=-Tk E E BF e E f是温度T 时, 能级E 的⼀个量⼦态上平均分布的电⼦数. 因为⼀个量⼦态最多由⼀个电⼦所占据, 所以)(E f 的物理意义⼜可表述为: 能量为E 的⼀个量⼦态被电⼦所占据的平均⼏率. 2.绝对零度时, 价电⼦与晶格是否交换能量[解答] 晶格的振动形成格波,价电⼦与晶格交换能量,实际是价电⼦与格波交换能量. 格波的能量⼦称为声⼦, 价电⼦与格波交换能量可视为价电⼦与声⼦交换能量. 频率为i ω的格波的声⼦数11/-=Tk i B i e n ωη.从上式可以看出, 绝对零度时, 任何频率的格波的声⼦全都消失. 因此, 绝对零度时, 价电⼦与晶格不再交换能量.3.你是如何理解绝对零度时和常温下电⼦的平均动能⼗分相近这⼀点的[解答]⾃由电⼦论只考虑电⼦的动能. 在绝对零度时, ⾦属中的⾃由(价)电⼦, 分布在费密能级及其以下的能级上, 即分布在⼀个费密球内. 在常温下, 费密球内部离费密⾯远的状态全被电⼦占据, 这些电⼦从格波获取的能量不⾜以使其跃迁到费密⾯附近或以外的空状态上, 能够发⽣能态跃迁的仅是费密⾯附近的少数电⼦, ⽽绝⼤多数电⼦的能态不会改变. 也就是说, 常温下电⼦的平均动能与绝对零度时的平均动能⼀定⼗分相近. 4.晶体膨胀时, 费密能级如何变化[解答] 费密能级3/2220)3(2πn m E Fη=,其中n 是单位体积内的价电⼦数⽬. 晶体膨胀时, 体积变⼤, 电⼦数⽬不变, n 变⼩, 费密能级降低.5.为什么温度升⾼, 费密能反⽽降低[解答]当0≠T 时, 有⼀半量⼦态被电⼦所占据的能级即是费密能级. 温度升⾼, 费密⾯附近的电⼦从格波获取的能量就越⼤, 跃迁到费密⾯以外的电⼦就越多, 原来有⼀半量⼦态被电⼦所占据的能级上的电⼦就少于⼀半, 有⼀半量⼦态被电⼦所占据的能级必定降低. 也就是说, 温度升⾼, 费密能反⽽降低.6.为什么价电⼦的浓度越⼤, 价电⼦的平均动能就越⼤[解答]由于绝对零度时和常温下电⼦的平均动能⼗分相近,我们讨论绝对零度时电⼦的平均动能与电⼦浓度的关系.价电⼦的浓度越⼤价电⼦的平均动能就越⼤, 这是⾦属中的价电⼦遵从费密-狄拉克统计分布的必然结果. 在绝对零度时, 电⼦不可能都处于最低能级上, ⽽是在费密球中均匀分布. 由式3/120)3(πn k F =可知, 价电⼦的浓度越⼤费密球的半径就越⼤,⾼能量的电⼦就越多, 价电⼦的平均动能就越⼤. 这⼀点从和式看得更清楚. 电⼦的平均动能E 正⽐与费密能0F E , ⽽费密能⼜正⽐与电⼦浓度3/2n:()3/222032πn mE Fη=,()3/2220310353πn mE EF η==.所以价电⼦的浓度越⼤, 价电⼦的平均动能就越⼤.7.对⽐热和电导有贡献的仅是费密⾯附近的电⼦, ⼆者有何本质上的联系[解答]对⽐热有贡献的电⼦是其能态可以变化的电⼦. 能态能够发⽣变化的电⼦仅是费密⾯附近的电⼦. 因为, 在常温下, 费密球内部离费密⾯远的状态全被电⼦占据, 这些电⼦从格波获取的能量不⾜以使其跃迁到费密⾯附近或以外的空状态上, 能够发⽣能态跃迁的仅是费密⾯附近的电⼦, 这些电⼦吸收声⼦后能跃迁到费密⾯附近或以外的空状态上.对电导有贡献的电⼦, 即是对电流有贡献的电⼦, 它们是能态能够发⽣变化的电⼦. 由式)(00ε+=v τe E f f f可知, 加电场后,电⼦分布发⽣了偏移. 正是这偏移)(0εv τe E f部分才对电流和电导有贡献. 这偏移部分是能态发⽣变化的电⼦产⽣的. ⽽能态能够发⽣变化的电⼦仅是费密⾯附近的电⼦, 这些电⼦能从外场中获取能量, 跃迁到费密⾯附近或以外的空状态上. ⽽费密球内部离费密⾯远的状态全被电⼦占拒, 这些电⼦从外场中获取的能量不⾜以使其跃迁到费密⾯附近或以外的空状态上. 对电流和电导有贡献的电⼦仅是费密⾯附近电⼦的结论从式xk Sxx ESv e j Fετπ?=d 4222和⽴⽅结构⾦属的电导率E S v e k S xF ?=?d 4222τπσ看得更清楚. 以上两式的积分仅限于费密⾯, 说明对电导有贡献的只能是费密⾯附近的电⼦.总之, 仅仅是费密⾯附近的电⼦对⽐热和电导有贡献, ⼆者本质上的联系是: 对⽐热和电导有贡献的电⼦是其能态能够发⽣变化的电⼦, 只有费密⾯附近的电⼦才能从外界获取能量发⽣能态跃迁.8.在常温下, 两⾦属接触后, 从⼀种⾦属跑到另⼀种⾦属的电⼦, 其能量⼀定要达到或超过费密能与脱出功之和吗[解答] 电⼦的能量如果达到或超过费密能与脱出功之和, 该电⼦将成为脱离⾦属的热发射电⼦. 在常温下, 两⾦属接触后, 从⼀种⾦属跑到另⼀种⾦属的电⼦, 其能量通常远低于费密能与脱出功之和. 假设接触前⾦属1和2的价电⼦的费密能分别为1F E 和2F E , 且1F E >2F E , 接触平衡后电势分别为1V 和2V . 则两⾦属接触后, ⾦属1中能量⾼于11eV E F -的电⼦将跑到⾦属2中. 由于1V ⼤于0, 所以在常温下, 两⾦属接触后, 从⾦属1跑到⾦属2的电⼦, 其能量只⼩于等于⾦属1的费密能.9.两块同种⾦属, 温度不同, 接触后, 温度未达到相等前, 是否存在电势差为什么[解答]两块同种⾦属, 温度分别为1T 和2T , 且1T >2T . 在这种情况下, 温度为1T 的⾦属⾼于0FE 的电⼦数⽬, 多于温度为2T 的⾦属⾼于0F E 的电⼦数⽬. 两块⾦属接触后, 系统的能量要取最⼩值, 温度为1T 的⾦属⾼于0F E 的部分电⼦将流向温度为2T 的⾦属. 温度未达到相等前, 这种流动⼀直持续. 期间, 温度为1T 的⾦属失去电⼦, 带正电; 温度为2T 的⾦属得到电⼦, 带负电, ⼆者出现电势差.10.如果不存在碰撞机制, 在外电场下, ⾦属中电⼦的分布函数如何变化[解答]如果不存在碰撞机制, 当有外电场ε后, 电⼦波⽮的时间变化率ηεe t -=d d k .上式说明, 不论电⼦的波⽮取何值, 所有价电⼦在波⽮空间的漂移速度都相同. 如果没有外电场ε时, 电⼦的分布是⼀个费密球, 当有外电场ε后, 费密球将沿与电场相反的⽅向匀速刚性漂移, 电⼦分布函数永远达不到⼀个稳定分布. 11.为什么价电⼦的浓度越⾼, 电导率越⾼[解答]电导σ是⾦属通流能⼒的量度. 通流能⼒取决于单位时间内通过截⾯积的电⼦数(参见思考题18). 但并不是所有价电⼦对导电都有贡献, 对导电有贡献的是费密⾯附近的电⼦. 费密球越⼤, 对导电有贡献的电⼦数⽬就越多. 费密球的⼤⼩取决于费密半径3/12)3(πn k F =.可见电⼦浓度n 越⾼, 费密球越⼤, 对导电有贡献的电⼦数⽬就越多, 该⾦属的电导率就越⾼.12.电⼦散射⼏率与声⼦浓度有何关系电⼦的平均散射⾓与声⼦的平均动量有何关系[解答]设波⽮为k 的电⼦在单位时间内与声⼦的碰撞⼏率为),',(θΘk k , 则),',(θΘk k 即为电⼦在单位时间内与声⼦的碰撞次数. 如果把电⼦和声⼦分别看成单原⼦⽓体, 按照经典统计理论, 单位时间内⼀个电⼦与声⼦的碰撞次数正⽐与声⼦的浓度.若只考虑正常散射过程, 电⼦的平均散射⾓θ与声⼦的平均波⽮q 的关系为由于F k k k ==', 所以ηηF F k q k q 222sin==θ.在常温下, 由于q <ηηF F k q k q ==θ.由上式可见, 在常温下, 电⼦的平均散射⾓与声⼦的平均动量q η成正⽐.13.低温下, 固体⽐热与3T 成正⽐, 电阻率与5T 成正⽐, 2T 之差是何原因[解答]按照德拜模型, 由式可知, 在甚低温下, 固体的⽐热34)(512D B V T Nk C Θπ=.⽽声⼦的浓度-=-=mB mB T k pT k ce v e D V n ωωωωωωπωω0/2320/1d 231d )(1ηη,作变量变换T k x B ωη=,得到甚低温下333232T v Ak n p Bηπ=,其中∞-=021d xe x x A .可见在甚低温下, 固体的⽐热与声⼦的浓度成正⽐. 按照§纯⾦属电阻率的统计模型可知, 纯⾦属的电阻率与声⼦的浓度和声⼦平均动量的平⽅成正⽐. 可见, 固体⽐热与3T 成正⽐, 电阻率与5T 成正⽐, 2T 之差是出⾃声⼦平均动量的平⽅上. 这⼀点可由式得到证明. 由可得声⼦平均动量的平⽅286220/240/3321d 1d )(T v v Bk e v e v q s p B T k s T k p D B D B =--=??ωωωωωωωωηηηη,其中∞∞--=02031d 1d x xe x x e x x B 。
黄昆固体物理课后习题答案6

第六章 自由电子论和电子的输运性质思 考 题1.如何理解电子分布函数)(E f 的物理意义是: 能量为E 的一个量子态被电子所占据的平均几率[解答]金属中的价电子遵从费密-狄拉克统计分布, 温度为T 时, 分布在能级E 上的电子数目1/)(+=-T k E E B F e g n ,g 为简并度, 即能级E 包含的量子态数目. 显然, 电子分布函数11)(/)(+=-T k E E B F e E f是温度T 时, 能级E 的一个量子态上平均分布的电子数. 因为一个量子态最多由一个电子所占据, 所以)(E f 的物理意义又可表述为: 能量为E 的一个量子态被电子所占据的平均几率.2.绝对零度时, 价电子与晶格是否交换能量[解答]晶格的振动形成格波,价电子与晶格交换能量,实际是价电子与格波交换能量. 格波的能量子称为声子, 价电子与格波交换能量可视为价电子与声子交换能量. 频率为i ω的格波的声子数11/-=T k i B i e n ω .从上式可以看出, 绝对零度时, 任何频率的格波的声子全都消失. 因此, 绝对零度时, 价电子与晶格不再交换能量.3.你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的[解答]自由电子论只考虑电子的动能. 在绝对零度时, 金属中的自由(价)电子, 分布在费密能级及其以下的能级上, 即分布在一个费密球内. 在常温下, 费密球内部离费密面远的状态全被电子占据, 这些电子从格波获取的能量不足以使其跃迁到费密面附近或以外的空状态上, 能够发生能态跃迁的仅是费密面附近的少数电子, 而绝大多数电子的能态不会改变. 也就是说, 常温下电子的平均动能与绝对零度时的平均动能一定十分相近.4.晶体膨胀时, 费密能级如何变化[解答]费密能级3/2220)3(2πn m E F=,其中n 是单位体积内的价电子数目. 晶体膨胀时, 体积变大, 电子数目不变, n 变小, 费密能级降低.5.为什么温度升高, 费密能反而降低[解答]当0≠T 时, 有一半量子态被电子所占据的能级即是费密能级. 温度升高, 费密面附近的电子从格波获取的能量就越大, 跃迁到费密面以外的电子就越多, 原来有一半量子态被电子所占据的能级上的电子就少于一半, 有一半量子态被电子所占据的能级必定降低. 也就是说, 温度升高, 费密能反而降低.6.为什么价电子的浓度越大, 价电子的平均动能就越大[解答]由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子浓度的关系.价电子的浓度越大价电子的平均动能就越大, 这是金属中的价电子遵从费密-狄拉克统计分布的必然结果. 在绝对零度时, 电子不可能都处于最低能级上, 而是在费密球中均匀分布. 由式3/120)3(πn k F =可知, 价电子的浓度越大费密球的半径就越大,高能量的电子就越多, 价电子的平均动能就越大. 这一点从和式看得更清楚. 电子的平均动能E 正比与费密能0F E , 而费密能又正比与电子浓度3/2n :()3/22232πn m E F =,()3/2220310353πn m E E F ==.所以价电子的浓度越大, 价电子的平均动能就越大.7.对比热和电导有贡献的仅是费密面附近的电子, 二者有何本质上的联系[解答]对比热有贡献的电子是其能态可以变化的电子. 能态能够发生变化的电子仅是费密面附近的电子. 因为, 在常温下, 费密球内部离费密面远的状态全被电子占据, 这些电子从格波获取的能量不足以使其跃迁到费密面附近或以外的空状态上, 能够发生能态跃迁的仅是费密面附近的电子, 这些电子吸收声子后能跃迁到费密面附近或以外的空状态上.对电导有贡献的电子, 即是对电流有贡献的电子, 它们是能态能够发生变化的电子. 由式)(00ε⋅∂∂+=v τe E f f f可知, 加电场后,电子分布发生了偏移. 正是这偏移 )(0ε⋅∂∂v τe E f部分才对电流和电导有贡献. 这偏移部分是能态发生变化的电子产生的. 而能态能够发生变化的电子仅是费密面附近的电子, 这些电子能从外场中获取能量, 跃迁到费密面附近或以外的空状态上. 而费密球内部离费密面远的状态全被电子占拒, 这些电子从外场中获取的能量不足以使其跃迁到费密面附近或以外的空状态上. 对电流和电导有贡献的电子仅是费密面附近电子的结论从式x k S x x E S v e j F ετπ∇=⎰d 4222和立方结构金属的电导率 E S v e k S x F ∇=⎰d 4222τπσ 看得更清楚. 以上两式的积分仅限于费密面, 说明对电导有贡献的只能是费密面附近的电子.总之, 仅仅是费密面附近的电子对比热和电导有贡献, 二者本质上的联系是: 对比热和电导有贡献的电子是其能态能够发生变化的电子, 只有费密面附近的电子才能从外界获取能量发生能态跃迁.8.在常温下, 两金属接触后, 从一种金属跑到另一种金属的电子, 其能量一定要达到或超过费密能与脱出功之和吗[解答]电子的能量如果达到或超过费密能与脱出功之和, 该电子将成为脱离金属的热发射电子. 在常温下, 两金属接触后, 从一种金属跑到另一种金属的电子, 其能量通常远低于费密能与脱出功之和. 假设接触前金属1和2的价电子的费密能分别为1F E 和2F E , 且1F E >2F E , 接触平衡后电势分别为1V 和2V . 则两金属接触后, 金属1中能量高于11eV E F -的电子将跑到金属2中. 由于1V 大于0, 所以在常温下, 两金属接触后, 从金属1跑到金属2的电子, 其能量只小于等于金属1的费密能.9.两块同种金属, 温度不同, 接触后, 温度未达到相等前, 是否存在电势差 为什么[解答]两块同种金属, 温度分别为1T 和2T , 且1T >2T . 在这种情况下, 温度为1T 的金属高于0F E 的电子数目, 多于温度为2T 的金属高于0F E 的电子数目. 两块金属接触后, 系统的能量要取最小值, 温度为1T 的金属高于0F E 的部分电子将流向温度为2T 的金属. 温度未达到相等前, 这种流动一直持续. 期间, 温度为1T 的金属失去电子, 带正电; 温度为2T 的金属得到电子, 带负电, 二者出现电势差.10.如果不存在碰撞机制, 在外电场下, 金属中电子的分布函数如何变化[解答]如果不存在碰撞机制, 当有外电场ε后, 电子波矢的时间变化率 εe t -=d d k .上式说明, 不论电子的波矢取何值, 所有价电子在波矢空间的漂移速度都相同. 如果没有外电场ε时, 电子的分布是一个费密球, 当有外电场ε后, 费密球将沿与电场相反的方向匀速刚性漂移, 电子分布函数永远达不到一个稳定分布.11.为什么价电子的浓度越高, 电导率越高[解答]电导σ是金属通流能力的量度. 通流能力取决于单位时间内通过截面积的电子数(参见思考题18). 但并不是所有价电子对导电都有贡献, 对导电有贡献的是费密面附近的电子. 费密球越大, 对导电有贡献的电子数目就越多. 费密球的大小取决于费密半径3/12)3(πn k F =.可见电子浓度n 越高, 费密球越大, 对导电有贡献的电子数目就越多, 该金属的电导率就越高.12.电子散射几率与声子浓度有何关系 电子的平均散射角与声子的平均动量有何关系[解答]设波矢为k 的电子在单位时间内与声子的碰撞几率为),',(θΘk k , 则),',(θΘk k 即为电子在单位时间内与声子的碰撞次数. 如果把电子和声子分别看成单原子气体, 按照经典统计理论, 单位时间内一个电子与声子的碰撞次数正比与声子的浓度.若只考虑正常散射过程, 电子的平均散射角θ与声子的平均波矢q 的关系为由于F k k k ==', 所以F F k q k q 222sin==θ.在常温下, 由于q <<k , 上式可化成 F F k q k q ==θ.由上式可见, 在常温下, 电子的平均散射角与声子的平均动量q 成正比. 13.低温下, 固体比热与3T 成正比, 电阻率与5T 成正比, 2T 之差是何原因[解答]按照德拜模型, 由式可知, 在甚低温下, 固体的比热 34)(512D B V T Nk C Θπ=.而声子的浓度⎰⎰-=-=m B m B T k p T k ce v e D V n ωωωωωωπωω0/2320/1d 231d )(1 ,作变量变换 T k x B ω =,得到甚低温下 333232T v Ak n p Bπ=, 其中 ⎰∞-=021d x e x x A .可见在甚低温下, 固体的比热与声子的浓度成正比.按照§纯金属电阻率的统计模型可知, 纯金属的电阻率与声子的浓度和声子平均动量的平方成正比. 可见, 固体比热与3T 成正比, 电阻率与5T 成正比, 2T 之差是出自声子平均动量的平方上. 这一点可由式得到证明. 由可得声子平均动量的平方286220/240/3321d 1d )(T v v Bk e v e v q s p B T k s T k p D B D B =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎰⎰ωωωωωωωω ,其中⎰⎰∞∞--=02031d 1d x x e x x e x x B 。
固体物理期末复习题目及答案

.第一章晶体结构1、把等体积的硬球堆成下列结构,求球可能占据的最大体积和总体积之比。
(1)简立方 (2)体心立方 (3)面心立方(4)金刚石 解:(1)、简立方,晶胞内含有一个原子n=1,原子球半径为R ,立方晶格的顶点原子球相切,立方边长a=2R,体积为()32R ,所以 ()33344330.5262n R R K V R πππ⋅==== (2)、体心立方晶胞内含有2个原子n=2,原子球半径为R ,晶胞边长为a ,立方晶格的体对角线原子球相切,体对角线长为4个原子半径,所以3a R =3334423330.6843n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭(3)、面心立方晶胞内含有4个原子n=4,晶胞的面对角线原子球相切,面对角线长度为4个原子半径,立方体边长为a,所以2a R =3334442330.7442n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭(4)、金刚石在单位晶格中含有8个原子,碳原子最近邻长度2R 为体对角线14长,体对角线为83R a = 3334483330.3483n R R K V R πππ⋅⨯====⎛⎫⎪⎝⎭2、证明面心立方和体心立方互为倒格子。
09级微电子学专业《固体物理》期末考复习题目至诚 学院 信息工程 系 微电子学 专业 姓名: 陈长彬 学号: 2109918033、证明:倒格子原胞体积为()3*2cvvπ=,其中v c为正格子原胞的体积。
4、证明正格子晶面 与倒格矢 正交。
5能写出任一晶列的密勒指数,也能反过来根据密勒指数画出晶列;能写出任一晶面的晶面指数,也能反过来根据晶面指数画出晶面。
见课件例题 以下作参考: 15.如图1.36所示,试求:(1) 晶列ED ,FD 和OF 的晶列指数;(2) 晶面AGK ,FGIH 和MNLK 的密勒指数; (3) 画出晶面(120),(131)。
密勒指数:以晶胞基矢定义的互质整数( )。
[截a,b,c.]晶面指数:以原胞基矢定义的互质整数( )。
固体物理答案第六章

第六章自由电子论和电子的输运性质习题1. 一金属体积为V ,电子总数为N ,以自由电子气模型(1)在绝热条件下导出电子气的压强为 其中.5300F NE U = (2)证明电子气体的体积弹性模量【解答】(1)在绝热近似条件下,外场力对电子气作的功W 等于系统内能的增加dU ,即式中P 是电子气的压强.由上式可得由此得到(2将2.证明费米能其中n 作变量变换则有即T k E B F e +1由上式解得3.证明解法二:电子总数由以上两式解得4.由同种金属制做的两金属块,一个施加30个大气压,另一个承受一个大气压,设体积弹性模量为21110m N ,电子浓度为328105m ⨯,计算两金属块间的接触电势差.【解答】两种金属在同一环境下,它们的费密能相同,之间是没有接触电势差的.但当体积发生变化,两金属的导电电子浓度不同,它们之间将出现接触电势差.设压强为0时金属的费密能为F E ,金属1受到一个大气压后,费密能为1F E ,金属2受到30个大气压后,费密能为2F E ,则由《固体物理教程》(6.25)式可知,金属1与金属2间的接触电势差由上边第3题可知由《固体物理教程》(2.10)式可知,固体的体积变化V ∆与体积弹性模量K 和压强P 的关系为所以两金属的接触电势差将代入两金属的接触电势差式子,得5.若磁场强度B 沿z 轴,电流密度沿x 轴,金属中电子受到的碰撞阻力为P P ,/τ-是电子的动量,试从运动方程出发,求金属的霍尔系数.【解答】电子受的合力 ()().B v mv B v P dt P d F ⨯+--=⨯+--==ετετ(1) 由于电子受的阻力与它的速度成正比,所以电场力与阻力平衡时的速度是最高平均速度,此时电子的加速度变为0,(1)式化成().B v me v ⨯+-=ετ(2) 因为电流的方向沿x 轴,平衡后,电子沿z 轴方向和y 轴的速度分量为0.因此,由(2)式得,x x m e v ετ-=(3)0=y ε=图6.3x j =和(5R H 得到 R H 其中l 令则(W 式中F τ是费密面上的电子的平均自由时间.电子的平均自由时间F τ和平均速度F v 与平均自由程l的关系是而平均速度由下式求得于是得到 ()2102223F B mE T k nl k π=.7.设沿xy 平面施加一电场,沿z 轴加一磁场,试证,在一级近似下,磁场不改变电子的分布函数,并用经典力学解释这一现象. 【解答】在只有磁场和电场情况下,《固体物理教程》(6.47)式化成由上式可解得考虑到外界磁场和电场对电子的作用远小于原子对电子的作用,必有f k ∇0f k ∇≈.于是有相当好的近似所以 可见在一级近似下,磁场对分布函数并无贡献.由经典理论可知,电子在磁场中运动受到一洛伦兹力B v e ⨯-,该力与电子的运动方向v 垂直,它只改变电子的运动方向,并不增加电子的能量,即不改变电子的能态.也就是说,从经典理论看,磁场不改变电子的分布函数. 8.0f 是平衡态电子分布函数,证明【解答】金属中导电电子处于平衡态时,其分布函数 ()110+=-T k E E B F e f .令则有 9.立方晶系金属,电流密度j 与电场ε和磁场B 的关系是εεβεαεσ2B B B B j -•+⨯+= ,式中 其中10.其中B A >(1(2(1所以 *m F v = A B 于是因为B A >,所以A 金属电子的费米速度大.(2)如果外电场沿x 方向,则x 方向的电场x ε与电流密度x j 的关系(参见《固体物理教程》6.84式)为上式积分沿费米面进行.将上式与比较,可得立方晶系金属的电导率 在费米面是一球面的情况下,上式积分为其中利用了v E k =∇.将关系式代入电导率式得可见B 金属的电导率大.11.求出一维金属中自由电子的能态密度、费米能级、电子的平均动能及一个电子对比热的贡献.【解答】设一维一价金属有N 个导电电子,晶格常数为α.如图6.4所示,在dE E E +-图6.4一维金属中自由电子的能带 能量区间波矢数目为利用自由电子的能量于波矢的关系可得dE E E +-能量区间的量子态数目由此得到能态密度其中=E F E ,所以能量E 图6.5其中能量其中平均一个电子所具有的能量利用分布积分,得到利用《固体物理教程》(6.7)和(6.10)两式得平均一个电子对热容量的贡献为13.证明热发射电子垂直于金属表面运动的平均动能为T k B ,平行于表面运动的平均动能也是T k B .【解答】当无外加电场,温度也不太高时,金属中的价电子是不会脱离金属的,因为金属中的价电子被原子实紧紧的吸引着,电子处于深度为0E 一势阱中.如图6.6所示,要使最低能级上的电子逃离金属,它至少要从外界获得0E 的能量.要使费米面上的电子逃离金属,它至少要从外界获得()F E E -=0ϕ的能量.为方便计,取一单位体积的金属.在k 空间内k d范围内的电子数目图6.6深度为0E 势阱其中转换成速度空间,则在v d v v+→区间内的电子数目 式中利用了关系对于能脱离金属的热发射电子,其能量E 必满足()ϕ>-F E E 对大多数金属来说,T k B >>ϕ,所以必有 式中已取于是设金属表面垂直于z 轴,热发射电子沿z 轴方向脱离金属,则要求而速度分量v 利用积分公式得到利用积分公式得到 0E 因为在v 利用积分公式14.其中(0F E N 式中于是由此可得(),100F F E N E =--- 15.每个原子占据的体积为3a ,绝对零度时价电子的费密半径为计算每个原子电子数目.【解答】由《固体物理教程》(6.4)式可知,在绝对零度时导电电子的费密半径现在已知一金属导电电子的费密半径所以,该金属中导电电子的密度 3a 是一个原子占据的体积,由此可知,该金属的原子具有两个价电子.16.求出绝对零度时费密能0F E 、电子浓度n 、能态密度()0F E N及电子比热e V C 与费密半径0F k 的关系. 【解答】绝对零度时电子的费密半径电子浓度n 与费密半径的关系是 由《固体物理教程》(6.3)式可得到绝对零度时电子的费密能与费密半径的关系为由《固体物理教程》(5.103)式可知,自由电子的能态密度是由此可得由《固体物理教程》(6.13)式可知平均一个电子对热容量的贡献为因为所以一个电子的热容与费密半径的关系为17.【解答】F k 将漂移速度将代入上式,近的少数电子由于n <<'18.则A 由上式的到齐次方程的通解为 τt e B - .电子漂移速度满足的方程的解为 d v =τt e B - ().10t i e i m e ωωττε+-当电子达到稳定态后,上式右端的第一项趋于0.于是d v =().10t ie i m e ωωττε+- 按照经典理论,电流密度j 与漂移速度d v ,电导σ和电场强度ε的关系为j =()().102εωσωτεω=+=-t i d e t i m ne v ne 由上式得其中如果设电场为则有19.求出立方晶系金属的积分1P 、32P P和 【解答】由《固体物理教程》(6.119),(6.120)和(6.123)三式得以上三式中的面积分是在一个等能面上进行,对于等能面是球面的情况,面积分的值E =因为另外21.,方向与温与正向温差电流反向,条件更不可少其实此问题用6.19题的结果也可证明.忽略费密能随温度的变化,则将6.19题的21P P 和代入上式,得22.当金属中存在温度梯度时,电子分布函数()x f 可以看成是平衡分布函数0f 的刚性平移,证明平移量为.【解答】 当金属中存在温度梯度时,导电子的分布函数变成了(参见《固体物理教程》6.116式) 其中v 是电子的平均速度,n 是电子浓度,ε是温差电场.将代入上式得到将上式与下式比较得到上式表明,当金属中存在温度梯度时,导电电子的分布函数()k f 可看成平衡分布函数()k f0在波矢空间里的刚性平移,平移量为。
固体物理答案

第六章6.1 一维周期场中电子的波函数()x k ψ应满足布洛赫定理,若晶格常数为a ,电子的波函数为(1)()x a x k πψsin =(2)()x a i x k πψ3cos=(3)()()∑∞-∞=-=i k a x f x ψ (f 是某个确定的函数)试求电子在这些状态的波矢 解:布洛赫函数为()()x e a x k ika k ψψ=+ (1)x ax aa x aππππsin)sin()(sin-=+=+x ae a x aika ππsin)(sin=+ 1-=∴ika e ,π±=ka ,ak π±=(2)()x a i x a i a x a i ππππ3cos 33cos 3cos-=⎪⎭⎫⎝⎛+=+ 同理,1-=∴ikae,π±=ka ,ak π±=(3)()[]∑∑∞-∞=∞-∞=--=+- a x f a a x f )1(()()∑∑∞-∞=∞-∞=-=-=a x f a x f '' 此处1'-= ,1=ika e ,π20或=ka ,ak π20或= 6.2已知一维晶格中电子的能带可写成()⎪⎭⎫⎝⎛+-=ka ka ma k E 2cos 81cos 8722 ,式中a 是晶格常数,m 是电子的质量,求(1)能带的宽度,(2)电子的平均速度,(3) 在带顶和带底的电子的有效质量解:能带宽度为 m i n m a x E E E -=∆, 由极值条件 ()0=dkk dE , 得0cos sin 21sin 2sin 41sin =-=-ka ka ka ka ka 上式的唯一解是0sin =ka 的解,此式在第一布里渊区内的解为ak π或0=当k =0时,()k E 取极小值min E ,且有()00min ==E E当a k π=时,()k E 取极大值max E ,且有22max 2maa E E=⎪⎭⎫ ⎝⎛=π 由以上的可得能带宽度为22minmax 2ma E E E =-=∆(2)电子的平均速度为()⎪⎭⎫⎝⎛-==ka ka ma dk k dE v 2sin 41sin 1(3)带顶和带底电子的有效质量分别为 m ka ka m k E m a k ak ak 322cos 21cos 122-=⎪⎭⎫ ⎝⎛-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡∂∂=±=-±=±=*πππ12200201cos cos 222k k mm ka ka m E k -*==⎡⎤⎢⎥⎛⎫==-=⎢⎥ ⎪∂⎝⎭⎢⎥⎢⎥∂⎣⎦6.2 一维周期势场为()()[]⎪⎩⎪⎨⎧-≤≤+-+≤≤---=bna x b a n b na x b na na x b mW x V )1(021222当当,其中b a 4= ,W 为常数,求此晶体第一及第二禁带宽度解:据自由电子近似得知禁带宽度的表示式为 n g V E 2= ,其中n V 是周期势场()x V 傅立叶级数的系数,该系数为:()dx e x V a V nx ai a a n π22/2/1--⎰=求得,第一禁带宽度为()dx e x V a V E xa i a a g π22/2/11221--⎰==[]dx e x b mW bnx a i bb π22222412--⎰-=[]dx x b x b mW bbb ⎪⎭⎫⎝⎛-=⎰-2cos 2412222π3228πb mW =第二禁带宽度为()dx e x V a V E xa i a a g π42/2/21221--⎰==[]dx e x b mW bx a i bb π--⎰-=2222412[]dx x b x b mW bbb ⎪⎭⎫⎝⎛-=⎰-πcos 2412222222πb mW =6.3 用紧束缚近似计算最近邻近似下一维晶格s 态电子能带,画出()k E ,()k m *与波矢的关系,证明只有在原点和布里渊区边界附近,有效质量才和波矢无关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相互作用试根据紧束缚近似的结果,求出能量 E k 的表达式, 并计算相应的电子速度 v k 和有效质量各个分量 m ij 。
解:若只计及最近邻的相互作用,用紧束缚近似法处理晶体中
s态电子的能量 ,其结果是
最近邻 E k E 0 A e i 2k Rn Rs J sn Rn
6.3 设晶格势场对电子的作用力为 FL ,电子受到的外场力为
Fe ,证明:
Fe m m Fe FL
证明: 因为 p mv 为电子的动量, 所以有
dv m F总 Fe FL dt
另一方面,加速度
(1)
dv dv dk a dt dk dt
(2)
1 dE dk 而速度 v 代入(2)式,并应用关系式 h Fe h dk dt
1 4 2 a 2 J 2 cos2akx cosakx cos 3ak y 2 m xx h
1 12 2 a 2 J cosakx cos 3ak y 2 m yy h
1 1 4 3 2 a 2 J sinak x sin 3ak y 2 m xy m yx h
Emax E0 A 2J
这就是能带顶的数值,故能带宽度
E Emax Emin 4J
在能带底附近,k值很小,sin ka ka , (2)式可写成
h2 k 2 2 E k Emin 4J ka Emin * 2mb
此处
* mb
h2 8 J 2 a 2
因此,无外场时,晶体中总电流为零。
6.5 应用紧束缚方法于一维单原子链,如只计及最近邻原子间
的相互作用,
(1)证明其s态电子的能带为
2 1 E k Emin 4J sin ak 2
E 式中, min 为能带底部的能量;J为交迭积分.
(2)求能带的宽度及能带底部和顶部附近的电子的有效质量。 证明:(1)在一维情况下,用紧束缚近似讨论晶体电子的能量, 结果可写成
式中 a 是晶格常数。试求 (1)能带的宽度; (2)电子在波矢 k 的状态时的速度;
(3)能带底部和顶部电子的有效质量。
解: (1)能带宽度为 ΔE Emax Emin 由极值条件
dE k 0 dk
得
1 1 sinka sin2ka sinka sinkacoska 0 4 2
对比(1)式,即得
v k v k
电子占有某个状态的几率只同该状态的能量有关。 因为
E k E k ,电子占有 k 状态和 k 状态的几率相同。
而由 v k v k 知道,这两个状态的电子电流互相抵消,
第六章 晶体中电子的输运性质
6.1 用紧束缚方法可以导出体心立方晶体s态电子的能带为
k ya kza k xa at E k E s A 8J cos cos cos 2 2 2
(1)试求能带顶部和底部的电子有效质量;
E (2)试画出沿 k x方向 k y kz 0 , k x 和v k x 的曲线。
对于s态电子,各个最近邻 的交迭积分皆相等, 令 J sn J ,则得
o a
x
e i2π ak x e i2π ak x e i π a(k x 3k y ) E k E0 A J e i π a(k x 3k y ) e i π a(k x 3k y ) e i π a(k x 2cos2π akx 2ei π ak x cos 3 π aky E0 A J 2e i π ak x cos 3 π ak y
2 2 , mzz 同理可得 m yy 2Js a 2 2Js a 2
E max 4 J 2 a 2k 2 E max h2 k 2 2m t*
m t* 式中
h2 8 J a
2 2
为能带顶部电子的有效质量, 因为
J 0 ,故 mt* 0 ,即能带顶部电子的有效质量为负值。
6.6 设二维正三角形晶格中原子间距为a,只计最近临电子间的
由以上可得能带宽度为
ΔE Emax - Emin
2 2 ma 2
1 (2)由 v k0 k E k 式,可得电子的速度 0
1 dEk 1 v sinka sin2ka dk ma 4
1 1 2E 2 由 可求得带顶和带底电子的有效质量 (3) 2 式, m k
4 π aJ sin2 π akx sin π akx cos 3 π aky i 所以 v k h 3cosπ akx sin 3 π aky j 1 1 2E 其次,由公式 2 m ij h k i k j
可求得有效质量各分量为
Ek E0 A J e i 2ka e i 2ka
E0 A 2J cos2ka
E 0 A 2J 4 J sin 2 ka E min 4 J sin 2 ka
式中Emin E0 A 2J 代表能带底的数值。 (2)从上式可知,当 k 1 / 2a 时,能量取最大值 (2)
E k E k k x k x
E k E k k y k y E k E k k z k z
代入(2)式,有 1 E k E k E k v k i j k h k x k y k z
i
同理可得
2 2 m yy , mzz 2 2Js a 2Js a 2
其他交叉项的倒数全为零。 而在布里渊区边界上的
2π 2π 2π ,0,0 , 0, ,0 , 0,0, a a a
处是能带顶,电子的有效质量为
3k y )
E0 A 2J cos2akx 2 cosakx cos 3akx
,可按如下方法求得 至于速度 v k
1 E 4aJ vx sin2ak x sinak x cos 3ak y h k x h
1 E 4 3aJ vy cosak x sin 3ak y h k y h
m m m 2Js a 2
xx yy zz
2
其他交叉项的倒数也全为零。
在能带底部 k x k y kz 0 时 (2)
2 m xx m yy mzz 2Js a 2
当 k y kz 0 时
E k x
Esat A8J Esat A8J
式中 Rs 和 Rn 分别是参考原子及其各个最近邻的位矢。 在二维
正三角形晶格中,6个最近邻(如图)。 如选取参考原子为坐标
原点, Rs 0 , 即 6个最近邻
的坐标分别为
y
a 3a a,0, a,0, , 2 2 a 3a a 3a , , , 2 2 2 , 2 a 3a , 2 2
上式的唯一解是 sinka 0 的解, 此式在第一布里渊区内的 解为
E 当 k 0 时, k 取极小值 Emin , 且有
π k 0, a
Emin E 0 0
E 当 k 0 时, k 取极大值 E max , 且有
Emax
π 2 2 E a ma 2
分别为
m
k
π a
1 2 1 2 2 m coska cos2ka m 2 3 k π E a k 2 k π
a
m
k 0
1 2 1 2 m coska cos2ka 2m 2 k 0 E k 2 k 0
相等,方向相反,即 v k v k
并解释为什么无外场时,晶体总电流等于零。
证明: k 态的电子速度为
1 E k E k E k 1 v k k E k i j k h h k x k y k z
(1)
于是
1 E k E k E k v k i j k h k x k y k z
(2)
因此 因为能量 E k 是波矢 k 的偶函数, E k E k , 即
可得
Fe dv 1 d 2 E 2 Fe * 2 dt h dk m
(3)
d 2E 为电子的有效质量。 式中 m * h 2 / dk 2
联合(1)(3)两式,即得
Fe m m Fe FL
*
6.4 证明:对于能带中的电子, 状态和 k 状态的速度大小 k
E k E0 A
最近邻
e i 2k Rn Rs J sn
Rn
(1)
式中 Rs 和 Rn 分别代表参考原子及其最近邻的位矢。 在一维原
R 子链中,只有两个最近邻。选取参考原子为坐标原点, s 0,
则两个最近邻的位矢可分别记为 Rn a,a ,此处a为原子间距。 由于交迭积分 J sn 对两个最近邻是相等的,记为 J ,便得
解: (1)由能带的表示式及余弦函数的性质可知,当
k x k y kz 0 时,E s 取最小值,即 k x k y kz 0 2 2 是能带底,电子有效质量为 m xx 2E 2J s a 2 s k 2 x k 0